首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
Telomerase is responsible for the immortal phenotype of cancer cells and telomerase inhibition may specifically target cancer cell proliferation. Ligands able to selectively bind to G-quadruplex telomeric DNA have been considered as telomerase inhibitors but their mechanisms of action have often been deduced from a non-quantitative telomerase activity assay (TRAP assay) that involves a PCR step and that does not provide insight on the mechanism of inhibition. Furthermore, quadruplex ligands have also been shown to exert their effects by affecting association of telomere binding proteins with telomeres. Here, we use quantitative direct telomerase activity assays to evaluate the strength and mechanism of action of hydrosoluble perylene diimides (HPDIs). HPDIs contain a perylene moiety and different numbers of positively charged side chains. Side chain features vary with regard to number and distances of the charges. IC50 values of HPDIs were in the low micromolar (0.5–5 μM) range depending on the number and features of the side chains. HPDIs having four side chains emerged as the best compounds of this series. Analysis of primer elongation products demonstrated that at low HPDI concentrations, telomerase inhibition involved formation of telomeric G-quadruplex structures, which inhibited further elongation by telomerase. At high HPDI concentrations, telomerase inhibition occurred independently of G-quadruplex formation of the substrate. The mechanism of action of HPDIs and their specific binding to G-quadruplex DNA was supported by PAGE analysis, CD spectroscopy and ESI-MS. Finally, competition Telospot experiments with duplex DNA indicated specific binding of HPDIs to the single-stranded telomeric substrates over double stranded DNA, a result supported by competitive ESI-MS. Altogether, our results indicate that HPDIs act by stabilizing G-quadruplex structures in single-stranded telomeric DNA, which in turn prevents repeat addition processivity of telomerase.  相似文献   

2.
Tang J  Kan ZY  Yao Y  Wang Q  Hao YH  Tan Z 《Nucleic acids research》2008,36(4):1200-1208
Human chromosome ends are protected with kilobases repeats of TTAGGG. Telomere DNA shortens at replication. This shortening in most tumor cells is compensated by telomerase that adds telomere repeats to the 3′ end of the G-rich telomere strand. Four TTAGGG repeats can fold into G-quadruplex that is a poor substrate for telomerase. This property has been suggested to regulate telomerase activity in vivo and telomerase inhibition via G-quadruplex stabilization is considered a therapeutic strategy against cancer. Theoretically G-quadruplex can form anywhere along the long G-rich strand. Where G-quadruplex forms determines whether the 3′ telomere end is accessible to telomerase and may have implications in other functions telomere plays. We investigated G-quadruplex formation at different positions by DMS footprinting and exonuclease hydrolysis. We show that G-quadruplex preferentially forms at the very 3′ end than at internal positions. This property provides a molecular basis for telomerase inhibition by G-quadruplex formation. Moreover, it may also regulate those processes that depend on the structure of the very 3′ telomere end, for instance, the alternative lengthening of telomere mechanism, telomere T-loop formation, telomere end protection and the replication of bulky telomere DNA. Therefore, targeting telomere G-quadruplex may influence more telomere functions than simply inhibiting telomerase.  相似文献   

3.
Human telomerase inhibition by substituted acridine derivatives.   总被引:8,自引:0,他引:8  
A series of 3,6-disubstituted acridine derivatives have been rationally designed as telomerase inhibitors. They have been designed on the basis that inhibition of telomerase occurs by stabilising G-quadruplex structures formed by the folding of telomeric DNA. The most potent inhibitors have IC50 values against telomerase of between 1.3 and 8 microM, comparable to their cytotoxicity in ovarian cancer cell lines.  相似文献   

4.
The G-overhangs of telomeres are thought to adopt particular conformations, such as T-loops or G-quadruplexes. It has been suggested that G-quadruplex structures could be stabilized by specific ligands in a new approach to cancer treatment consisting in inhibition of telomerase, an enzyme involved in telomere maintenance and cell immortality. Although the formation of G-quadruplexes was demonstrated in vitro many years ago, it has not been definitively demonstrated in living human cells. We therefore investigated the chromosomal binding of a tritiated G-quadruplex ligand, 3H-360A (2,6-N,N′-methyl-quinolinio-3-yl)-pyridine dicarboxamide [methyl-3H]. We verified the in vitro selectivity of 3H-360A for G-quadruplex structures by equilibrium dialysis. We then showed by binding experiments with human genomic DNA that 3H-360A has a very potent selectivity toward G-quadruplex structures of the telomeric 3′-overhang. Finally, we performed autoradiography of metaphase spreads from cells cultured with 3H-360A. We found that 3H-360A was preferentially bound to chromosome terminal regions of both human normal (peripheral blood lymphocytes) and tumor cells (T98G and CEM1301). In conclusion, our results provide evidence that a specific G-quadruplex ligand interacts with the terminal ends of human chromosomes. They support the hypothesis that G-quadruplex ligands induce and/or stabilize G-quadruplex structures at telomeres of human cells.  相似文献   

5.
The telomeric G-rich single-stranded DNA can adopt in vitro an intramolecular quadruplex structure, which has been shown to directly inhibit telomerase activity. The reactivation of this enzyme in immortalized and most cancer cells suggests that telomerase is a relevant target in oncology, and telomerase inhibitors have been proposed as new potential anticancer agents. In this paper, we have analyzed the selectivity of four ethidium derivatives and ethidium itself toward different G-quadruplex species, with electrospray mass spectrometry and competitive equilibrium dialysis and evaluated their inhibitory properties against telomerase. A selectivity profile may be obtained through electrospray ionization mass spectrometry (ESI-MS), which is in fair agreement with competitive equilibrium dialysis data. It also provides unambiguous data on the number of binding sites per nucleic acid (maximal number of two ethidium derivatives per quadruplex, in agreement with external stacking). Our experiments also demonstrate that one compound (4) is the most active and selective G-quadruplex ligand within this series and the most selective telomerase inhibitor in a modified TRAP-G4 assay.  相似文献   

6.
7.
Fluorescence-based melting assays for studying quadruplex ligands   总被引:2,自引:0,他引:2  
The telomeric G-rich single-stranded DNA can adopt in vitro an intramolecular quadruplex structure, which has been shown to directly inhibit telomerase activity. The reactivation of this enzyme in immortalized and most cancer cells suggests that telomeres and telomerase are relevant targets in oncology, and telomere ligands and telomerase inhibitors have been proposed as new potential anticancer agents. In this paper, we have analysed the FRET method used to measure the stabilization and selectivity of quadruplex ligands towards the human telomeric G-quadruplex. The stabilization value depends on the nature of the fluorescent tags, the incubation buffer, and the method chosen for T(m) calculation, complicating a direct comparison of the results obtained by different laboratories.  相似文献   

8.
The reactivation of telomerase activity in most cancer cells supports the concept that telomerase is a relevant target in oncology, and telomerase inhibitors have been proposed as new potential anticancer agents. The telomeric G-rich single-stranded DNA can adopt an intramolecular G-quadruplex structure in vitro, which has been shown to inhibit telomerase activity. The C-rich sequence can also adopt a quadruplex (intercalated) structure (i-DNA). Two acridine derivatives were shown to increase the melting temperature of the G- quadruplex and the C-quadruplex at 1 microM dye concentration. The increase in Tm value of the G-quadruplex was associated with telomerase inhibition in vitro. The most active compound, "BisA", showed an IC(50) value of 0.75 microM in a standard TRAP assay.  相似文献   

9.
The telomeric G-rich single-stranded DNA can adopt in vitro an intramolecular quadruplex structure, which has been shown to directly inhibit telomerase activity. The reactivation of this enzyme in immortalized and most cancer cells suggests that telomerase is a relevant target in oncology, and telomerase inhibitors have been proposed as new potential anticancer agents. In this paper, we describe ethidium derivatives that stabilize G-quadruplexes. These molecules were shown to increase the melting temperature of an intramolecular quadruplex structure, as shown by fluorescence and absorbance measurements, and to facilitate the formation of intermolecular quadruplex structures. In addition, these molecules may be used to reveal the formation of multi-stranded DNA structures by standard fluorescence imaging, and therefore become fluorescent probes of quadruplex structures. This recognition was associated with telomerase inhibition in vitro: these derivatives showed a potent anti-telomerase activity, with IC50 values of 18–100 nM in a standard TRAP assay.  相似文献   

10.
Human telomere DNA is of intense interest because of its role in the biology of both cancer and aging. The single-stranded telomere terminus can adopt the structure of a G-quadruplex, which is of particular important for anticancer drug discovery many researchers have reported various G-quadruplex structures in the human telomere. Although the human telomere consists of a number of tandem repeats, higher-order G-quadruplex structures are less discussed due to the complexity of the structures. Here we examined the orientation of the ends of the G-quadruplex structures with consideration given to higher-order structures. We prepared end-extended and BrG-substituted oligonucleotides. Native PAGE analysis, CD measurements and NMR spectroscopy showed that the ends of stable G-quadruplex structures point in opposite directions. Our results indicate that the human telomere DNA is likely to form rod-like higher-order structures. This may provide important information for understanding telomere structure and the development of telomere G-quadruplex-binding molecules as telomerase inhibitors.  相似文献   

11.
While the importance of the aromatic core in small organic molecules, studied as G-quadruplex mediated telomerase inhibitors, appears well studied by a number of researches, the role of side chains has been less well characterized. In this paper, we have studied the ability of six perylene derivatives with different side chains to induce both inter- and intramolecular G-quadruplex structures. The distance between the aromatic core and the positive charges in the side chains emerges as a significant molecular feature in G-quadruplex formation. Furthermore, the G-quadruplex formation appears also related to drugs 'self-association', influenced by the side chains basicity. The different efficiencies of the six perylene derivatives in interacting both with inter- and intramolecular G-quadruplex structures satisfactorily correlate with telomerase inhibition in cell-free systems.  相似文献   

12.
13.
The integrity of telomeres in most cancer cells is maintained by the action of the telomerase enzyme complex, which catalyzes the synthesis of telomeric DNA repeats in order to replace those lost during replication. Telomerase is especially up-regulated in metastatic cancer and is thus emerging as a major therapeutic target. One approach to telomerase inhibition involves the sequestration of the single-stranded 3' ends of telomeric DNA into higher-order quadruplex structures. We have recently shown that tetra-substituted naphthalene diimide compounds are potent quadruplex-stabilizing molecules with telomerase inhibitory activity in cells. We show here that one such compound, BMSG-SH-3, which has been optimized by computer modeling, has significant in vivo antitumor activity against a model for pancreatic cancer, a cancer that is especially resistant to current therapies. A large reduction in telomerase activity in treated tumors was observed and the naphthalene diimide compound was found to be selectively localized in the treated tumors. We find that the expression of the therapeutically important chaperone protein HSP90, a regulator of telomerase is also reduced in vivo by BMSG-SH-3 treatment. The compound is a potent stabilizer of two G-quadruplex sequences found in the promoter region of the HSP90 gene, as well as a G-quadruplex from human telomeric DNA. It is proposed that the simultaneous targeting of these quadruplexes may be an effective anti-tumor strategy.  相似文献   

14.
Kern JT  Thomas PW  Kerwin SM 《Biochemistry》2002,41(38):11379-11389
Human telomeres are comprised of d(TTAGGG) repeats that are capable of forming G-quadruplex DNA structures. Ligands that bind to and stabilize these G-quadruplex DNA structures are potential inhibitors of the cancer cell-associated enzyme telomerase. Other potential biological uses of G-quadruplex targeting ligands have been proposed. One particularly challenging aspect of the contemplated uses of G-quadruplex targeting ligands is their selectivity for G-quadruplex DNA versus double-stranded DNA structures. We have previously reported the observation that two structurally related 3,4,9,10-perylenetetracarboxylic acid diimide-based G-quadruplex DNA ligands, PIPER [N,N'-bis(2-(1-piperidino)ethyl)-3,4,9,10-perylenetetracarboxylic acid diimide] and Tel01 [N,N'-bis(3-(4-morpholino)propyl)-3,4,9,10-perylenetetracarboxylic acid diimide], have different levels of G-quadruplex DNA binding selectivity at pH 7 as determined by absorbance changes in the presence of different DNA structures [Kerwin, S. M., Chen, G., Kern, J. T., and Thomas, P. W. (2002) Bioorg. Med. Chem. Lett. 12, 447-450]. Here we report that the less G-quadruplex DNA selective ligand PIPER can unwind double-stranded, closed circular plasmid DNA, as determined by a topoisomerase I assay. A model for the interaction of Tel01 with the G-quadruplex DNA structure formed by d(TAGGGTTA) was determined from NMR experiments. This model is similar to the previously published model for PIPER bound to the same G-quadruplex DNA and failed to provide a structural basis for the observed increased selectivity of Tel01 interaction with G-quadruplex DNA. In contrast, investigation into the aggregation state of Tel01 and PIPER as well as other 3,4,9,10-perylenetetracarboxylic acid diimide analogues bearing basic side chains demonstrates that ligand aggregation is correlated with G-quadruplex DNA binding selectivity. For all six analogues examined, those ligands that were aggregated at pH 7 in 70 mM potassium phosphate, 100 mM KCl, 1 mM EDTA buffer also demonstrated G-quadruplex DNA binding selectivity under these buffer conditions. Ligands that were not aggregated under these conditions display much lower levels of G-quadruplex DNA selectivity. The aggregation state of these ligands is extremely sensitive to the buffer pH. Tel01, which is aggregated at pH 7, is not aggregated at pH 6.4, where it demonstrates only modest G-quadruplex DNA binding selectivity, and PIPER in pH 8.5 buffer is both aggregated and highly G-quadruplex DNA-selective. To our knowledge, these studies demonstrate the first DNA structure selectivity as achieved through pH-mediated ligand aggregation. The potential impact of these findings on the selectivity of other classes of G-quadruplex DNA ligands is discussed.  相似文献   

15.
It is well established that G-quadruplex DNA structures form at ciliate telomeres and their formation throughout the cell-cycle by telomere-end-binding proteins (TEBPs) has been analyzed. During replication telomeric G-quadruplex structure has to be resolved to allow telomere replication by telomerase. It was shown that both phosphorylation of TEBPβ and binding of telomerase are prerequisites for this process, but probably not sufficient to unfold G-quadruplex structure in timely manner to allow replication to proceed. Here we describe a RecQ-like helicase required for unfolding of G-quadruplex structures in vivo. This helicase is highly reminiscent of human RecQ protein-like 4 helicase as well as other RecQ-like helicase found in various eukaryotes and E. coli. In situ analyses combined with specific silencing of either the telomerase or the helicase by RNAi and co-immunoprecipitation experiments demonstrate that this helicase is associated with telomerase during replication and becomes recruited to telomeres by this enzyme. In vitro assays showed that a nuclear extract prepared from cells in S-phase containing both the telomerase as well as the helicase resolves telomeric G-quadruplex structure. This finding can be incorporated into a mechanistic model about the replication of telomeric G-quadruplex structures during the cell cycle.  相似文献   

16.
In developing G-quadruplex interactive telomerase inhibitors two main features have to be taken into account: the hydrophobic interactions with the G-quartet plane and the electrostatic interactions with the negatively charged phosphates of the four grooves. In this paper, we report the synthesis of four hydrosoluble coronene derivatives, which are characterized by a large hydrophobic aromatic core and four orthogonal hydrophilic side chains. We have studied their ability to induce both inter- and intramolecular G-quadruplex structures and found a significant selectivity of all the coronene derivatives for the intramolecular G-quadruplex. The efficiency in inhibiting human telomerase has been evaluated in a cell-free system and the experimental results correlate with the relative affinities of these compounds for the G-quadruplex monomeric structure, as derived by molecular modelling simulations. Thus, the coronene derivatives can be considered as a new class of telomerase inhibitors, although further investigations are surely necessary to fully exploit their features.  相似文献   

17.
Guanine-rich DNA strands can fold in vitro into non-canonical DNA structures called G-quadruplexes. These structures may be very stable under physiological conditions. Evidence suggests that G-quadruplex structures may act as ‘knots’ within genomic DNA, and it has been hypothesized that proteins may have evolved to remove these structures. The first indication of how G-quadruplex structures could be unfolded enzymatically came in the late 1990s with reports that some well-known duplex DNA helicases resolved these structures in vitro. Since then, the number of studies reporting G-quadruplex DNA unfolding by helicase enzymes has rapidly increased. The present review aims to present a general overview of the helicase/G-quadruplex field.  相似文献   

18.
19.
20.
Telomere length homeostasis is a prerequisite for the generation and growth of cancer. In >85% cancer cells, telomere length is maintained by telomerase that add telomere repeats to the end of telomere DNA. Because the G-rich strand of telomere DNA can fold into G-quadruplex that inhibits telomerase activity, stabilizing telomere quadruplex by small molecules is emerging as a potential therapeutic strategy against cancer. In these applications, the specificity of small molecules toward quadruplex over other forms of DNA is an important property to ensure no processes other than telomere elongation are interrupted. The evaluating assays currently available more or less have difficulty identifying or distinguishing quadruplex-irrelevant effect from quadruplex stabilization. Here, we describe an exonuclease I hydrolysis assay that evaluates quadruplex stabilization by DNA-interacting compounds, discriminates inhibitory effect from different sources and helps determine the optimal compound concentration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号