首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 111 毫秒
1.
By caching acorns, jays serve as important dispersal agents for oak (Quercus) species. Yet little is known about which acorn characteristics affect selection by jays. In the traditional model of jay/oak symbiosis, large, brown, ripe acorns free of invertebrate parasites (e.g., Curculio acorn weevils) are selected by jays. Recently, it has been suggested that a tri-trophic relationship between oaks, jays, and weevils may have evolved to counter the negative dietary effects of acorn tannins. Under the tri-trophic model, jays would preferentially select acorns containing weevil larvae. We tested the assumptions that (1) acorns containing curculionid larvae exist in sufficient quantities to support jay populations and (2) jays can detect, and preferentially select, acorns containing weevil larvae, and investigated the cues by which jays select acorns. Captive Mexican jays (Aphelocomaultramarina) were presented Emory oak (Quercusemoryi) acorns in aviary feeding trials. Large, dense, viable acorns free of curculionid larvae were preferentially selected. Contrary to results of previous research, color did not affect selection. Acorn viability increased and curculionid larval occupancy decreased in adjacent savannas and isolated stands relative to existing oak woodland, perhaps favoring oak recruitment into adjacent lower-elevation grasslands. Our results compel us to reject the tri-trophic model for this system, and are consistent with the traditional jay/oak symbiosis model. Relatively long-distance dispersal of viable acorns favors Emory oak replacement, and spatial patterns of acorn viability and curculionid parasitism suggest expansion of Emory oak into adjacent low-elevation semi-arid grasslands. Received: 29 February 1996 / Accepted: 26 September 1996  相似文献   

2.
White‐throated magpie‐jays (Calocitta formosa) and brown jays (Cyanocorax morio) are cooperative breeders that live in complex groups composed of helpers and multiple male and female breeders. Behavioral observations and multilocus DNA fingerprinting have indicated that the social and genetic mating systems of these two species are diverse. Extra‐group paternity appears to be common in both species, necessitating the use of single locus genetic methods to efficiently search for fathers. We therefore characterized 19 microsatellite loci for these two species (12 for magpie‐jays and seven for brown jays) to aid in parentage studies.  相似文献   

3.
A comparison of ribosomal internal transcribed spacer 1 (ITS1) elements of digenetic trematodes (Platyhelminthes) including unidentified digeneans isolated from Cyathura carinata (Crustacea: Isopoda) revealed DNA sequence similarities at more than half of the spacer at its 3′ end. Primary sequence similarity was shown to be associated with secondary structure conservation, which suggested that similarity is due to identity by descent and not chance. Using an analysis of apomorphies, the sequence data were shown to produce a distinct phylogenetic signal. This was confirmed by the consistency of results of different tree reconstruction methods such as distance approaches, maximum parsimony, and maximum likelihood. Morphological evidence additionally supported the phylogenetic tree based on ITS1 data and the inferred phylogenetic position of the unidentified digeneans of C. carinata met the expectations from known trematode life-cycle patterns. Although ribosomal ITS1 elements are generally believed to be too variable for phylogenetic analysis above the species or genus level, the overall consistency of the results of this study strongly suggests that this is not the case in digenetic trematodes. Here, 3′ end ITS1 sequence data seem to provide a valuable tool for elucidating phylogenetic relationships of a broad range of phylogenetically distinct taxa. Received: 20 October 1997 / Accepted: 24 March 1998  相似文献   

4.
Phylogenetic relationships among reptiles were examined using previously published and newly determined hemoglobin sequences. Trees reconstructed from these sequences using maximum-parsimony, neighbor-joining, and maximum-likelihood algorithms were compared with a phylogenetic tree of Amniota, which was assembled on the basis of published morphological data. All analyses differentiated α chains into αA and αD types, which are present in all reptiles except crocodiles, where only αA chains are expressed. The occurrence of the αD chain in squamates (lizards and snakes only in this study) appears to be a general characteristic of these species. Lizards and snakes also express two types of β chains (βI and βII), while only one type of β chain is present in birds and crocodiles. Reconstructed hemoglobin trees for both α and β sequences did not yield the monophyletic Archosauria (i.e., crocodilians + birds) and Lepidosauria (i.e., Sphenodon+ squamates) groups defined by the morphology tree. This discrepancy, as well as some other poorly resolved nodes, might be due to substantial heterogeneity in evolutionary rates among single hemoglobin lineages. Estimation of branch lengths based on uncorrected amino acid substitutions and on distances corrected for multiple substitutions (PAM distances) revealed that relative rates for squamate αA and αD chains and crocodilian β chains are at least twice as high as those of the rest of the chains considered. In contrast to these rate inequalities between reptilian orders, little variation was found within squamates, which allowed determination of absolute evolutionary rates for this subset of hemoglobins. Rate estimates for hemoglobins of lizards and snakes yielded 1.7 (αA) and 3.3 (β) million years/PAM when calibrated with published divergence time vs. PAM distance correlates for several speciation events within snakes and for the squamate ↔ sphenodontid split. This suggests that hemoglobin chains of squamate reptiles evolved ∼3.5 (αA) or ∼1.7 times (β) faster than their mammalian equivalents. These data also were used to obtain a first estimate of some intrasquamate divergence times. Received: 15 September 1997 / Accepted: 4 February 1998  相似文献   

5.
The pinyon jay (Gymnorhinus cyanocephalus) is a primary seed disperser of pinyon pines (Pinus edulis and P. monophylla). Both the pinyon jay and the pinyon pines are experiencing significant decline. While the pinyon jay is a species of management value and conservation concern, little is known about its fecundity, among-flock dispersal, and population differentiation. We initiated genetic studies in pinyon jays using a hybridization enrichment technique to isolate seven polymorphic microsatellite repeats (AAAG and GATA) from the pinyon jay genome. A locus from the Mexican jay (Aphelocoma ultramarina) that amplifies robustly in pinyon jays is also reported. These eight loci revealed moderate to high diversity in an Arizona population of pinyon jays (4–36 alleles and H O 0.42–0.90). As in other species, tetranucleotide repeats produced easily resolved amplification products.  相似文献   

6.
Molecular analyses have been used recently to refine our knowledge of phylogenetic relationships within the ciliated protozoa (phylum Ciliophora). A current Hennigian phylogeny of the orders in the class Colpodea, based on light and electron microscopic analyses, makes three important assumptions with regard to apomorphic character states, namely, (1) that the kreyellid silver line evolved early in colpodean phylogeny, separating bryometopids, such as Bryometopus, from all other colpodeans; (2) that the macro–micronuclear complex is an autapomorphy of the cyrtolophosidids, such as Platyophrya; and (3) that merotelokinetal stomatogenesis is an apomorphic character of colpodids, such as Colpoda, Bresslaua, and Pseudoplatyophrya. These predictions of relationships within the class Colpodea were investigated by determining the complete small subunit rRNA gene sequences for the colpodid Bresslaua vorax, the grossglockneriid Pseudoplatyophrya nana, and the cyrtolophosidid Platyophrya vorax and a partial sequence for the bryometopid Bryometopus sphagni. These sequences were combined with the previously published complete SSrRNA sequences for the colpodid Colpoda inflata and the bursariomorphid Bursaria truncatella. The affiliations were assessed using both distance matrix and maximum-parsimony analyses. The tree topologies for the class Colpodea were identical in all analyses, with bootstrap support for bifurcations always exceeding 60%. The results suggest the following. (1) Since the clade including Bryometopus and its sister taxon, Bursaria, is never basal, the kreyellid silver-line system evolved later in colpodean phylogeny and does not separate bryometopids from all other colpodeans. (2) Since Platyophrya is always the sister taxon to the other five genera, there is a fundamental phylogenetic significance for its macro–micronuclear complex. (3) Since the colpodids, Colpoda, Bresslaua, and Pseudoplatyophrya, always group in one clade, merotelokinetal stomatogenesis appears to be a derived character state. Received: 30 June 1998 / Accepted: 3 December 1998  相似文献   

7.
We determined ∼215 bp of DNA sequence from the 3′-untranslated region (UTR) of 240 cloned L1 (LINE-1) elements isolated from 22 species of Rattus sensu lato and Rattus sensu stricto murine rodents. The sequences were sorted into different L1 subfamilies, and oligonucleotides cognate to them were hybridized to genomic DNA of various taxa. From the distribution of the L1 subfamilies in the various species, we inferred the partial phylogeny of Rattus sensu lato. The four Maxomys species comprise a well-defined clade separate from a monophyletic cluster that contains the two Leopoldamys and four Niviventer species. The Niviventer/Leopoldamys clade, in turn, shares a node with the clade that contains Berylmys, Sundamys, Bandicota, and Rattus sensu stricto. The evolutionary relationships that we deduced agree with and significantly extend the phylogeny of Rattus sensu lato established by other molecular criteria. Furthermore, the L1 amplification events scored here produced a unique phylogenetic tree, that is, in no case did a character (a given L1 amplification event) appear on more than one branch. The lack of homoplasy found in this study supports the robustness of L1 amplification events as phylogenetic markers for the study of mammalian evolution. Received: 8 November 1996 / Accepted: 11 April 1997  相似文献   

8.
The phylogenetic placement of the Aquifex and Thermotoga lineages has been inferred from (i) the concatenated ribosomal proteins S10, L3, L4, L23, L2, S19, L22, and S3 encoded in the S10 operon (833 aa positions); (ii) the joint sequences of the elongation factors Tu(1α) and G(2) coded by the str operon tuf and fus genes (733 aa positions); and (iii) the joint RNA polymerase β- and β′-type subunits encoded in the rpoBC operon (1130 aa positions). Phylogenies of r-protein and EF sequences support with moderate (r-proteins) to high statistical confidence (EFs) the placement of the two hyperthermophiles at the base of the bacterial clade in agreement with phylogenies of rRNA sequences. In the more robust EF-based phylogenies, the branching of Aquifex and Thermotoga below the successive bacterial lineages is given at bootstrap proportions of 82% (maximum likelihood; ML) and 85% (maximum parsimony; MP), in contrast to the trees inferred from the separate EF-Tu(1α) and EF-G(2) data sets, which lack both resolution and statistical robustness. In the EF analysis MP outperforms ML in discriminating (at the 0.05 level) trees having A. pyrophilus and T. maritima as the most basal lineages from competing alternatives that have (i) mesophiles, or the Thermus genus, as the deepest bacterial radiation and (ii) a monophyletic A. pyrophilusT. maritima cluster situated at the base of the bacterial clade. RNAP-based phylogenies are equivocal with respect to the Aquifex and Thermotoga placements. The two hyperthermophiles fall basal to all other bacterial phyla when potential artifacts contributed by the compositionally biased and fast-evolving Mycoplasma genitalium and Mycoplasma pneumoniae sequences are eschewed. However, the branching order of the phyla is tenuously supported in ML trees inferred by the exhaustive search method and is unresolved in ML trees inferred by the quartet puzzling algorithm. A rooting of the RNA polymerase-subunit tree at the mycoplasma level seen in both the MP trees and the ML trees reconstructed with suboptimal amino acid substitution models is not supported by the EF-based phylogenies which robustly affiliate mycoplasmas with low-G+C gram-positives and, most probably, reflects a ``long branch attraction' artifact. Received: 22 September 1999 / Accepted: 11 January 2000  相似文献   

9.
Complete sequences of seven protein coding genes from Penaeus notialis mitochondrial DNA were compared in base composition and codon usage with homologous genes from Artemia franciscana and four insects. The crustacean genes are significantly less A + T-rich than their counterpart in insects and the pattern of codon usage (ratio of G + C-rich versus A + T-rich codon) is less biased. A phylogenetic analysis using amino acid sequences of the seven corresponding polypeptides supports a sister-taxon status for mollusks–annelid and arthropods. Furthermore, a distance matrix-based tree and two most-parsimonious trees both suggest that crustaceans are paraphyletic with respect to insects. This is also supported by the inclusion of Panulirus argus COII (complete) and COI and COIII (partial) sequence data. From analysis of single and combined genes to infer phylogenies, it is observed that obtained from single genes are not well supported in most topologies cases and notably differ from that of the tree based on all seven genes. Received: 25 August 1998 / Accepted: 8 March 1999  相似文献   

10.
The gene superfamily of ligand-gated ion channel (LGIC) receptors is composed of members of excitatory LGIC receptors (ELGIC) and inhibitory LGIC receptors (ILGIC), all using amino acids as ligands. The ILGICs, including GABAA, Gly, and GluCl receptors, conduct Cl when the ligand is bound. To evaluate the phylogenetic relationships among ILGIC members, 90 protein sequences were analyzed by both maximum-parsimony and distance matrix-based methods. The strength of the resulting phylogenetic trees was evaluated by means of bootstrap. Four major phylogenetic branches are recognized. Branch I, called BZ, for the majority of the members are known to be related to benzodiazepine binding, is subdivided into IA, composed of all GABAA receptor α subunits, and IB, composed of the γ and ε subunits, which are shown to be tightly linked. Branch II, named NB for non–benzodiazepine binding, and consisting of GABAA receptor β, δ, π, and ρ subunits, is further subdivided into IIA, containing β subunits; IIB, containing δ, and π subunits; and IIC, containing ρ subunits. Branch IIIA, composed of vertebrate Gly receptors, is loosely clustered with Branch IIIB, composed of invertebrate GluCl receptors, to form Branch III, which is designated NA for being non–GABA responsive. Branch IV is called UD for being undefined in specificity. The existence of primitive forms of GABAA receptor non-β subunits in invertebrates is first suggested by the present analysis, and the identities of sequences p25123 from Drosophila melanogaster, s34469 from Lymnaea stagnalis, and u14635 and p41849 from C. aenorhabditis elegans are determined to be different from their previously given annotations. The proposed branching classification of ILGICs provides a phylogenetic map, based on protein sequences, for tracing the evolutionary pathways of ILGIC receptor subunits and determining the identities of newly discovered subunits on the basis of their protein sequences. Received: 15 April 1997 / Accepted: 11 March 1998  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号