首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 485 毫秒
1.
We report here the second case of Charcot-Marie-Tooth disease 1A (CMT1A) with a cytogenetically visible de novo direct duplication of 17p11.117p12. A male child who was initially referred for developmental delay and dysmorphism was subsequently shown to have significantly reduced motor nerve conduction velocities characteristic of CMT1A. This patient was not informative for the DNA markers mapping to the CMT1A region; however, with DNA markers pA10–41 and EW503 that map proximally and distally with respect to the disease locus, a dosage difference was observed between the two alleles. Comparison with parental genotypes indicated a de novo maternal duplication. Pulsed field gel analysis using probe VAW409R3a indicated that a 500-kb SacII junction fragment usually associated with CMT1A was absent in this patient. These findings confirm that the disease phenotype is probably caused by a gene dosage effect.  相似文献   

2.
The presence of 17p11.2 duplication in CMT 1 Italian families was studied. Fourteen families were tested with pVAW409R3a probe which detects the duplication at D17S122 locus. The duplication was found in all affected individuals, but not in the unaffected relatives and in the unrelated spouses. Also two sporadic cases were investigated: the duplication was present in both patients confirming this mutation as cause of the disease.  相似文献   

3.
A female patient with clinical signs and symptoms of a demyelinating neuropathy was shown to have a duplication of the 1.5-Mb region on chromosome 17p11.2, typical of the great majority of cases of Charcot-Marie-Tooth disease type 1A (CMT1A). However, analysis of DNA extracted from peripheral blood revealed a 2:2.4 instead of the usual 2:3 ratio between the 7.8- and 6.0-kb EcoRI fragments in the proximal and distal repetitive extragenic palindromic (REP) elements of CMT1A. Detection of a 3.2-kb EcoRI/SacI kb junction fragment with probe pLR7.8 confirmed the CMT1A duplication. The dosage of this junction fragment, compared with a 2.8-kb EcoRI/SacI fragment of the proximal REP elements of CMT1A, was 2:0.58 instead of the expected 2:1 dosage for heterozygous CMT1A duplications. We hypothesized that the lower dosages of these restriction fragments specific for the CMT1A duplication were due to mosaicism; this was confirmed by fluorescence in situ hybridization analysis with the D17S122-specific probe pVAW409R1. In peripheral blood lymphocytes the percentage of interphase nuclei with a duplication in 17p11.2 was 49%. In interphase nuclei extracted from buccal mucosa, hair-root cells or paraffin-embedded nervous tissue the duplication was detectable in 51%, 66% and 74%, respectively. This is the first report of mosaicism in a patient with a CMT1A duplication identified by three different and independent techniques. Received: 14 November 1995 / Revised: 13 February 1996  相似文献   

4.
We present a 6-year-old boy with moderate developmental delay, gait disturbance, autism related disorder and mild dysmorphic features. He was seen for evaluation of his retardation since the age of 2.8 years. At first sight, a cytogenetic analysis showed a normal 46,XY karyotype. Neurological examination at the age of 5.5 years revealed a motor and sensory polyneuropathy. A quantitative Southern blot with probes PMP22 and VAW409 specific for Charcot-Marie-Tooth type 1 (CMT1) disclosed a duplication which confirmed the diagnosis HMSN Ia. Subsequently, GTG banded metaphases were re-evaluated and a small duplication 17p was seen on retrospect. Additional FISH with probe LSISMS (Vysis) specific for the Smith-Magenis region at 17p11.2 again showed a duplication. Both parents had a normal karyotype and the duplication test for CMT1 showed normal results for both of them. The boy had a de novo 46,XY,dup(17)(p11.2p12) karyotype. The present observation confirms previous findings of mild psychomotor delay, neurobehavioural features and minor craniofacial anomalies as the major phenotypic features of dup(17)(p11.2) and dup(17)(p11.2p12); in cases of duplications comprising the PMP22 locus HMSN1 is associated. A recognizable facial phenotype emerges characterized by a broad forehead, hypertelorism, downslant of palpebral fissures, smooth philtrum, thin upper lip and ear anomalies.  相似文献   

5.
This study demonstrates a clear and current role for multicolor in situ hybridization in expediting positional cloning studies of unknown disease genes. Nine polymorphic DNA cosmids have been mapped to eight ordered locations spanning the Charcot-Marie-Tooth type 1 (CMT1A) disease gene region in distal band 17p11.2, by multicolor in situ hybridization. When used with linkage analysis, these methods have generated a fine physical map and have firmly assigned the CMT1A gene to distal band 17p11.2. Linkage analysis with four CMT1A pedigrees mapped the CMT1A gene with respect to two flanking markers (8B10-5 cM[LOD 5.2]-CMT1A-3.5 cM[LOD 5.3]-10E4). Additional loci were physically mapped and ordered by in situ hybridization and analysis of phase-known recombinants in CMT1A pedigrees. The order determined by multicolor in situ hybridization was 17cen-LEW301-8B10-5H5/6A9-VAW409- 5G7-6G1-4A11-VAW412-10E4-pter. Two ordered probes, 4A11 and 6G1, reside on the same 440-kb partial SfiI restriction fragment. These data demonstrate the ability of in situ hybridization to resolve loci within 0.5 Mb on early-metaphase chromosomes. Multicolor in situ hybridization also excluded the possibility of pericentric inversions in two unrelated patients with CMT1 and neurofibromatosis type 1. When used with pulsed-field gel electrophoresis, multicolor in situ hybridization can establish physical location, order, and distance in closely spaced chromosome loci.  相似文献   

6.
Charcot-Marie-Tooth disease (CMT) is the most common inherited peripheral neuropathy. One form of CMT, CMT type 1A, is characterized by uniformly decreased nerve conduction velocities, usually shows autosomal dominant inheritance, and is associated with a large submicroscopic duplication of the p11.2-p12 region of chromosome 17. A cohort of 75 unrelated patients diagnosed clinically with CMT and evaluated by electrophysiological methods were analyzed molecularly for the presence of the CMT1A DNA duplication. Three methodologies were used to assess the duplication: measurement of dosage differences between RFLP alleles, analysis of polymorphic (GT)n repeats, and detection of a junction fragment by pulsed-field gel electrophoresis. The CMT1A duplication was found in 68% of the 63 unrelated CMT patients with electrophysiological studies consistent with CMT type 1 (CMT1). The CMT1A duplication was detected as a de novo event in two CMT1 families. Twelve CMT patients who did not have decreased nerve conduction velocities consistent with a diagnosis of CMT type 2 (CMT2) were found not to have the CMT1A duplication. The most informative molecular method was the detection of the CMT1A duplication-specific junction fragment. Given the high frequency of the CMT1A duplication in CMT patients and the high frequency of new mutations, we conclude that a molecular test for the CMT1A DNA duplication is very useful in the differential diagnosis of patients with peripheral neuropathies.  相似文献   

7.
Charcot-Marie-Tooth neuropathy (CMT) is one of the most common hereditary disorders, affecting 1:2500 individuals. CMT is a heterogeneous group of disorders characterized by chronic peripheral motor and sensory neuropathy. We have performed the detection of 1.5 Mb CMT1A tandem duplication in 17p11.2-12 chromosome region for autosome-dominant CMT1 patients and their relatives using the analysis of two (CA)n polymorphic microsatellite loci: 17S921 and 17S1358 localised in the duplication region. CMT1A duplication was found in three of five autosome-dominant CMT1 families. It has been shown that CMT1A duplication analysis is important for early differential diagnosis of CMT including prenatal diagnosis and genetic consulting in high risk families.  相似文献   

8.
Within the last decade, numerous methods have been applied to detect the most common mutation in patients affected with Charcot-Marie-Tooth (CMT) disease, i.e. submicroscopic duplication in the 17p11.2–p12 region. In 1993, another neuropathy — known as hereditary neuropathy with liability to pressure palsies (HNPP) — has been shown to be caused by a 17p11.2–p12 deletion. Historically, Southern blot analysis was the first approach to identify CMT1A duplication or HNPP deletion. This time- and labor-consuming method requires prior selection of DNA samples. In fact, only CMT patients affected with the demyelinating form of CMT1 have been screened for CMT1A duplication. After the 17p11.2–p12 duplication was identified in the CMT1 families, subsequent studies revealed additional axonal features in the patients harboring the 17p11.2–p12 duplication. Thus it seems reasonable to test all patients affected with CMT for the presence of the 17p11.2–p12 duplication. To evaluate the utility of real-time polymerase chain reaction (Q-PCR) and restriction fragment length polymorphism PCR (RFLP-PCR), we screened a large group of 179 families with the diagnosis of CMT/HNPP for the presence of the 17p11.2–p12 duplication/deletion. Due to a high frequency of CMT1A duplication in familial cases of CMT, we propose (in contrast to the previous studies) to perform Q-PCR analysis in all patients diagnosed with CMT.  相似文献   

9.
Charcot-Marie-Tooth (CMT) disease and hereditary neuropathy with liability to pressure palsies (HNPP) are frequent forms of genetically heterogeneous peripheral neuropathies. Reciprocal unequal crossover between flanking CMT1A-REPs on chromosome 17p11.2-p12 is a major cause of CMT type 1A (CMT1A) and HNPP. The importance of a sensitive and rapid method for identifying the CMT1A duplication and HNPP deletion is being emphasized. In the present study, we established a molecular diagnostic method for the CMT1A duplication and HNPP deletion based on hexaplex PCR of 6 microsatellite markers (D17S921, D17S9B, D17S9A, D17S918, D17S4A and D17S2230). The method is highly time-, cost- and sample-saving because the six markers are amplified by a single PCR reaction and resolved with a single capillary in 3 h. Several statistical and forensic estimates indicated that most of these markers are likely to be useful for diagnosing the peripheral neuropathies. Reproducibility, as determined by concordance between independent tests, was estimated to be 100%. The likelihood that genotypes of all six markers are homozygous in randomly selected individuals was calculated to be 1.6 x 10(-4) which indicates that the statistical error rate for this diagnosis of HNPP deletion is only 0.016%.  相似文献   

10.
Hereditary neuropathy with liability to pressure palsies (HNPP) is in most cases associated with an interstitial deletion of the same 1.5-Mb region at 17p11.2 that is duplicated in Charcot-Marie-Tooth type 1A (CMT1A) patients. Unequal crossing-over following misalignment at flanking repeat sequences (CMT1A-REP), either leads to tandem duplication in CMT1A patients or deletion in HNPP patients. With the use of polymorphic DNA markers located within the CMT1A/HNPP duplication/deletion region we detected the HNPP deletion in 16 unrelated HNPP patients, 11 of Belgian and 5 of French origin. In all cases, the 1.5-Mb size of the HNPP deletion was confirmed by EcoRI dosage analysis using a CMT1A-REP probe. In the 16 HNPP patients, the same 370/320-kb EagI deletion-junction fragments were detected with pulsed field gel electrophoresis (PFGE), while in CMT1A patients, a 150-kb EagI duplication-junction fragment was seen. Thus, PFGE analysis of EagI-digested DNA with a CMT1A-REP probe allows direct detection of the HNPP deletion or the CMT1A duplication for DNA diagnostic purposes.  相似文献   

11.
Charcot-Marie-Tooth disease (CMT) is the most common inherited peripheral neuropathy. Sporadic cases of CMT have been described since the earliest reports of the disease. The most frequent form of the disorder, CMT1A, is associated with a 1.5-Mb DNA duplication on chromosome 17p11.2, which segregates with the disease. In order to investigate the prevalence of de novo CMT1A duplications, this study examined 118 duplication-positive CMT1A families. In 10 of these families it was demonstrated that the disease had arisen as the result of a de novo mutation. By taking into account the ascertainment of families, it can be estimated that > or = 10% of autosomal dominant CMT1 families are due to de novo duplications. The CMT1A duplication is thought to be the product of unequal crossing over between parental chromosome 17 homologues during meiosis. Polymorphic markers from within the duplicated region were used to determine the parental origin of these de novo duplications in eight informative families. Seven were of paternal and one of maternal origin. This study represents the first report of a de novo duplication with a maternal origin and indicates that it is not a phenomenon associated solely with male meioses. Recombination fractions for the region duplicated in CMT1A are larger in females than in males. That suggests that oogenesis may be afforded greater protection from misalignment during synapsis, and/or that there may be lower activity of those factors or mechanisms that lead to unequal crossing over at the CMT1A locus.  相似文献   

12.
Detection of tandem duplications and implications for linkage analysis.   总被引:1,自引:1,他引:0  
The first demonstration of an autosomal dominant human disease caused by segmental trisomy came in 1991 for Charcot-Marie-Tooth disease type 1A (CMT1A). For this disorder, the segmental trisomy is due to a large tandem duplication of 1.5 Mb of DNA located on chromosome 17p11.2-p12. The search for the CMT1A disease gene was misdirected and impeded because some chromosome 17 genetic markers that are linked to CMT1A lie within this duplication. To better understand how such a duplication might affect genetic analyses in the context of disease gene mapping, we studied the effects of marker duplication on transmission probabilities of marker alleles, on linkage analysis of an autosomal dominant disease, and on tests of linkage homogeneity. We demonstrate that the undetected presence of a duplication distorts transmission ratios, hampers fine localization of the disease gene, and increases false evidence of linkage heterogeneity. In addition, we devised a likelihood-based method for detecting the presence of a tandemly duplicated marker when one is suspected. We tested our methods through computer simulations and on CMT1A pedigrees genotyped at several chromosome 17 markers. On the simulated data, our method detected 96% of duplicated markers (with a false-positive rate of 5%). On the CMT1A data our method successfully identified two of three loci that are duplicated (with no false positives). This method could be used to identify duplicated markers in other regions of the genome and could be used to delineate the extent of duplications similar to that involved in CMT1A.  相似文献   

13.
The segregation patterns of DNA markers from the pericentromeric regions of chromosomes 1 and 17 were studied in seven pedigrees segregating an autosomal dominant gene for Charcot-Marie-Tooth neuropathy type I (CMT I; hereditary motor and sensory neuropathy I). A multilocus analysis with four markers (pMCR-3, pMUC10, FY, and pMLAJ1) spanning the pericentromeric region of chromosome 1 excluded the CMT I gene from this region in six pedigrees but gave some evidence for linkage to the region of Duffy in one pedigree. Linkage of the CMT I gene to markers in the pericentromeric region of chromosome 17 (markers pA10-41, pEW301, p3.6, and pTH17.19) was established; however, in these seven pedigrees homogeneity analysis with chromosome 17 markers detected significant genetic heterogeneity. This analysis suggested that three of the seven pedigrees are not linked to this same region. Overall, two of the seven CMT I pedigrees were not linked to markers tested from chromosomes 1 or 17. These results confirm genetic heterogeneity in CMT I and implicate the existence of a third autosomal locus, in addition to a locus on chromosome 17, and a probable locus on chromosome 1. This evidence of etiological heterogeneity, supported by statistical tests, will have to be taken into consideration when fine-structure genetic maps of the regions around CMT I are constructed.  相似文献   

14.
Charcot-Marie-Tooth disease (CMT) with deafness is clinically distinct among the genetically heterogeneous group of CMT disorders. Molecular studies in a large family with autosomal dominant CMT and deafness have not been reported. The present molecular study involves a family with progressive features of CMT and deafness, originally reported by Kousseff et al. Genetic analysis of 70 individuals (31 affected, 28 unaffected, and 11 spouses) revealed linkage to markers on chromosome 17p11.2-p12, with a maximum LOD score of 9.01 for marker D17S1357 at a recombination fraction of .03. Haplotype analysis placed the CMT-deafness locus between markers D17S839 and D17S122, a approximately 0.6-Mb interval. This critical region lies within the CMT type 1A duplication region and excludes MYO15, a gene coding an unconventional myosin that causes a form of autosomal recessive deafness called DFNB3. Affected individuals from this family do not have the common 1.5-Mb duplication of CMT type 1A. Direct sequencing of the candidate peripheral myelin protein 22 (PMP22) gene detected a unique G-->C transversion in the heterozygous state in all affected individuals, at position 248 in coding exon 3, predicted to result in an Ala67Pro substitution in the second transmembrane domain of PMP22.  相似文献   

15.
DNA duplication associated with Charcot-Marie-Tooth disease type 1A.   总被引:72,自引:0,他引:72  
Charcot-Marie-tooth disease type 1A (CMT1A) was localized by genetic mapping to a 3 cM interval on human chromosome 17p. DNA markers within this interval revealed a duplication that is completely linked and associated with CMT1A. The duplication was demonstrated in affected individuals by the presence of three alleles at a highly polymorphic locus, by dosage differences at RFLP alleles, and by two-color fluorescence in situ hybridization. Pulsed-field gel electrophoresis of genomic DNA from patients of different ethnic origins showed a novel SacII fragment of 500 kb associated with CMT1A. A severely affected CMT1A offspring from a mating between two affected individuals was demonstrated to have this duplication present on each chromosome 17. We have demonstrated that failure to recognize the molecular duplication can lead to misinterpretation of marker genotypes for affected individuals, identification of false recombinants, and incorrect localization of the disease locus.  相似文献   

16.
Charcot-Marie-Tooth neuropathy (CMT) is one of the most common hereditary disorders, affecting 1:2500 individuals. The major mutation--microduplication of 1.4 megabases in 17p11.2 region, which is responsible for 68-90 % of cases of CMT1, results in CMT1A. In the present article we provide the population genetic study in 52 unrelated non-CMT volunteers from population of Ukraine in three STRs (D17S921, D17S1358 and D17S122) from the 17p11.2 chromosomal region to determine their ability for the CMT1A-duplication detection using STR-PCR method in Ukraine. The informativity for the CMT1A detection in current use STR panel is calculated to be 93,6%. It has been shown that current use STR panel analysis is important for CMT1A duplication detection, early differential diagnosis of CMT including prenatal diagnosis and genetic consulting in high risk families.  相似文献   

17.
Five Italian families with recurrence of cases of Charcot-Marie-Tooth disease (type Ia) were analysed using three closely linked DNA probes that detect polymorphisms in the region 17p11.2. The probe pVAW409R3 detected the presence of a duplication in all the affected subjects, but not in the subjects with normal electromyographic (EMG) findings. This observation confirms previous data indicating the association of the duplication with the disease, suggesting that, at least in populations of European origin, the duplication might be the molecular feature diagnostic of the pathological trait.  相似文献   

18.
Charcot-Marie-Tooth disease (CMT) and related peripheral neuropathies are the most commonly inherited neurological disorders in humans, characterized by clinical and genetic heterogeneity. The most prevalent clinical entities belonging to this group of disorders are CMT type 1A (CMT1A) and hereditary neuropathy with liability to pressure palsies (HNPP). CMT1A and HNPP are predominantly caused by a 1.5 Mb duplication and deletion in the chromosomal region 17p11.2, respectively, and less frequently by other mutations in the peripheral myelin protein 22 (PMP22) gene. Despite being relatively common diseases, they haven't been previously studied in the Slovak population. Therefore, the aim of this study was to identify the spectrum and frequency of PMP22 mutations in the Slovak population by screening 119 families with CMT and 2 families with HNPP for causative mutations in this gene. The copy number determination of PMP22 resulted in the detection of CMT1A duplication in 40 families and the detection of HNPP deletion in 7 families, 6 of which were originally diagnosed as CMT. Consequent mutation screening of families without duplication or deletion using dHPLC and sequencing identified 6 single base changes (3 unpublished to date), from which only c.327C>A (Cys109X) present in one family was provably causative. These results confirm the leading role of PMP22 mutation analysis in the differential diagnosis of CMT and show that the spectrum and frequency of PMP22 mutations in the Slovak population is comparable to that seen in the global population.  相似文献   

19.
Autosomal dominant Charcot-Marie-Tooth type-1A neuropathy (CMT1A) is a demyelinating peripheral nerve disorder that is commonly associated with a submicroscopic tandem DNA duplication of a 1.5-Mb region of 17p11.2p12 that contains the peripheral myelin gene PMP22. Clinical features of CMT1A include progressive distal muscle atrophy and weakness, foot and hand deformities, gait abnormalities, absent reflexes, and the completely penetrant electrophysiologic phenotype of symmetric reductions in motor nerve conduction velocities (NCVs). Molecular and fluorescence in situ hybridization (FISH) analyses were performed to determine the duplication status of the PMP22 gene in four patients with rare cytogenetic duplications of 17p. Neuropathologic features of CMT1A were seen in two of these four patients, in addition to the complex phenotype associated with 17p partial trisomy. Our findings show that the CMT1A phenotype of reduced NCV is specifically associated with PMP22 gene duplication, thus providing further support for the PMP22 gene dosage mechanism for CMT1A. Received: 3 May 1995 / Revised: 1 August 1995  相似文献   

20.
Mitochondrial ATP synthase (F(1)F(0)-ATPase) is regulated by an intrinsic ATPase inhibitor protein, IF(1). We previously found that six residues of the yeast IF(1) (Phe17, Arg20, Glu21, Arg22, Glu25, and Phe28) form an ATPase inhibitory site [Ichikawa, N. and Ogura, C. (2003) J. Bioenerg. Biomembr. 35, 399-407]. In the crystal structure of the F(1)/IF(1) complex [Cabezón, E. et al. (2003) Nat. Struct. Biol. 10, 744-750], the core residues of the inhibitory site interact with Arg408, Arg412 and Glu454 of the beta-subunit of F(1). In the present study, we examined the roles of the three beta residues by means of site-directed mutagenesis. A total of six yeast mutants were constructed: R408I, R408T, R412I, R412T, E454Q, and E454V. The betaArg412 and betaGlu454 mutants (R412I, R412T, E454Q, and E454V) could grow on a nonfermentable lactate medium, but the betaArg408 mutants (R408I and R408T) could not. The ATPase activity of isolated mitochondria was decreased in R412I, R412T, E454Q, and E454V mutant cells, and undetectable in R408I and R408T cells. The subunits of F(1) (alpha, beta, and gamma) were detected in mitochondria from each mutant on immunoblotting, and the F(1)F(0) complex was isolated from them. These results indicate that betaArg408 is essential not for assembly of the F(1)F(0) complex but for the catalytic activity of the enzyme. In the crystal structure of F(1), betaArg408 binds to alphaGlu399 in the alpha(DP)/beta(DP) pair and seems to be important for formation of the closed alpha(DP)/beta(DP) conformation. IF(1) seems to disrupt this alpha(DP)Glu399/beta(DP)Arg408 interaction by binding to beta(DP)Arg408, and to interfere with the change from the open alpha(DP)/beta(DP) conformation to the closed conformation that is required for catalysis by F(1)F(0)-ATPase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号