首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 296 毫秒
1.
It has long been known that pathogenic Leptospira can mobilize the immune system but the specific contribution of neutrophils to control the infectious challenge remains to be clarified. We herein analyzed the phenotype of circulating neutrophils of patients with leptospirosis and healthy controls for the expression of toll-like receptor (TLR) type 2 (TLR2, to sense the leptospiral LPS) and several activation markers: interleukin 8 chemokine receptor CD182 (CXCR2), CD11b of the integrin/opsonin complement receptor type 3 (CR3) and CD15 (ligand of the selectin). The plasmatic level of the main CD182 ligand, interleukin 8 (CXCL8), was measured by ELISA. Hospitalized leptospirosis cases showed marked neutrophilia, particularly in the most severe cases. Interestingly, TLR2 was significantly increased in leptospirosis but identical levels of CD182 and CD11b were detected when compared to controls. CD15 was significantly decreased on neutrophils in leptospirosis but returned to normal within 1 month. Basal levels of IL-8 were measured in control subjects and were not increased in leptospirosis cases at the initial stage of the disease. In conclusion, we observed that neutrophils failed to regulate the expression of several of the receptors involved in cell activation and recruitment. This study further emphasizes the paradigm that neutrophils may be impaired in their overall capacity to thwart bacterial infection in leptospirosis patients.  相似文献   

2.
It is unknown whether neutrophilic inflammations can be regulated by T cells. This question was analyzed by studying acute generalized exanthematous pustulosis (AGEP), which is a severe drug hypersensitivity resulting in intraepidermal or subcorneal sterile pustules. Recently, we found that drug-specific blood and skin T cells from AGEP patients secrete high levels of the potent neutrophil-attracting chemokine IL-8/CXCL8. In this study, we characterize the phenotype and function of CXCL8-producing T cells. Supernatants from CXCL8(+) T cells were strongly chemotactic for neutrophils, CXCR1, and CXCR2 transfectants, but not for transfectants expressing CXCR4, CX3CR1, human chemokine receptor, and RDC1. Neutralization experiments indicated that chemotaxis was mainly mediated by CXCL8, but not by granulocyte chemotactic protein-2/CXCL6, epithelial cell-derived neutrophil attractant-78/CXCL5, or growth-related oncogene-alpha,beta,gamma/CXCL1,2,3. Interestingly, approximately 2.5% of CD4(+) T cells in normal peripheral blood also produced CXCL8. In addition to CXCL8, AGEP T cells produced large amounts of the monocyte/neutrophil-activating cytokine GM-CSF, and the majority released IFN-gamma and the proinflammatory cytokine TNF-alpha. Furthermore, apoptosis in neutrophils treated with conditioned medium from CXCL8(+) T cells could be reduced by 40%. In lesional skin, CXCL8(+) T cells consistently expressed the chemokine receptor CCR6, suggesting a prominent role for CCR6 in early inflammatory T cell recruitment. Finally, our data suggest that CXCL8-producing T cells facilitate skin inflammation by orchestrating neutrophilic infiltration and ensuring neutrophil survival, which leads to sterile pustular eruptions found in AGEP patients. This mechanism may be relevant for other T cell-mediated diseases with a neutrophilic inflammation such as Beh?et's disease and pustular psoriasis.  相似文献   

3.
Human immunodeficiency virus type 1 (HIV-1) entry into CD4(+) cells requires the chemokine receptors CCR5 or CXCR4 as co-fusion receptors. We have previously demonstrated that chemokine receptors are capable of cross-regulating the functions of each other and, thus, affecting cellular responsiveness at the site of infection. To investigate the effects of chemokine receptor cross-regulation in HIV-1 infection, monocytes and MAGIC5 and rat basophilic leukemia (RBL-2H3) cell lines co-expressing the interleukin-8 (IL-8 or CXCL8) receptor CXCR1 and either CCR5 (ACCR5) or CXCR4 (ACXCR4) were generated. IL-8 activation of CXCR1, but not the IL-8 receptor CXCR2, cross-phosphorylated CCR5 and CXCR4 and cross-desensitized their responsiveness to RANTES (regulated on activation normal T cell expressed and secreted) (CCL5) and stromal derived factor (SDF-1 or CXCL12), respectively. CXCR1 activation internalized CCR5 but not CXCR4 despite cross-phosphorylation of both. IL-8 pretreatment also inhibited CCR5- but not CXCR4-mediated virus entry into MAGIC5 cells. A tail-deleted mutant of CXCR1, DeltaCXCR1, produced greater signals upon activation (Ca(2+) mobilization and phosphoinositide hydrolysis) and cross-internalized CXCR4, inhibiting HIV-1 entry. The protein kinase C inhibitor staurosporine prevented phosphorylation and internalization of the receptors by CXCR1 activation. Taken together, these results indicate that chemokine receptor-mediated HIV-1 cell infection is blocked by receptor internalization but not desensitization alone. Thus, activation of chemokine receptors unrelated to CCR5 and CXCR4 may play a cross-regulatory role in the infection and propagation of HIV-1. Since DeltaCXCR1, but not CXCR1, cross-internalized and cross-inhibited HIV-1 infection to CXCR4, the data indicate the importance of the signal strength of a receptor and, as a consequence, protein kinase C activation in the suppression of HIV-1 infection by cross-receptor-mediated internalization.  相似文献   

4.
为了揭示慢性乙肝患者外周血中性粒细胞上CXCL8及其受体CXCR1和CXCR2的表达情况。本研究选取2015年1月至2017年12月在我院确诊并治疗的慢性乙肝患者126例,其中男性78例,女性48例;HBeAg(+)患者51例,HBeAg(-)患者75例,中性粒细胞内的HBV DNA(+)患者48例,HBV DNA(-)患者78例。另外,选取同期我院经病理诊断为肝细胞正常的肝移植供肝者30例作为对照组。检测各组受试者外周血中性粒细胞上的CXCL8、CXCR1和CXCR2的m RNA和蛋白表达。病理G分级为G3~G4的患者的平均CXCL8、CXCR1和CXCR2 mRNA表达水平均显著高于G1~G2患者。病理S分期为S3~S4患者的CXCL8、CXCR1和CXCR2 mRNA表达水平显著高于S0~S2患者。严重程度为重度的患者的CXCL8、CXCR1和CXCR2 mRNA表达水平显著高于轻中度患者。HBeAg(+)患者的CXCL8和CXCR1 mRNA表达水平显著高于HBeAg(-)患者,且HBV DNA(+)患者的CXCL8和CXCR1 m RNA表达水平显著高于HBV DNA(-)患者。研究结果表明,病例组患者的CXCL8、CXCR1和CXCR2蛋白的阳性表达率分别为89.68%、83.33%和58.73%,而健康对照组的为10.00%、23.33%和43.33%。病例组的CXCL8和CXCR1阳性表达率显著高于对照组,而病例组CXCR2蛋白阳性表达率与对照组无显著差异。初步结论表明,CXCL8及其受体CXCR1和CXCR2与患者临床病理分期及疾病严重程度密切相关。监测CXCL8与CXCRl的表达水平对慢性乙肝的早期诊断及肝细胞损伤程度的判断具有重要意义。  相似文献   

5.
To exert their cytotoxic function, cytotoxic T-lymphocytes (CTL) must be recruited into infected lymphoid tissue where the majority of human immunodeficiency virus (HIV) replication occurs. Normally, effector T cells exit lymph nodes (LNs) and home to peripheral sites of infection. How HIV-specific CTL migrate into lymphoid tissue from which they are normally excluded is unknown. We investigated which chemokines and receptors mediate this reverse homing and whether impairment of this homing could contribute to CTL dysfunction as HIV infection progresses. Analysis of CTL chemokine receptor expression in the blood and LNs of untreated HIV-infected individuals with stable, chronic infection or advanced disease demonstrated that LNs were enriched for CXCR3(+) CD8 T cells in all subjects, suggesting a key role for this receptor in CTL homing to infected lymphoid tissue. Compared to subjects with chronic infection, however, subjects with advanced disease had fewer CXCR3(+) CD8 T cells in blood and LNs. CXCR3 expression on bulk and HIV-specific CD8 T cells correlated positively with CD4 count and negatively with viral load. In advanced infection, there was an accumulation of HIV-specific CD8 T cells at the effector memory stage; however, decreased numbers of CXCR3(+) CD8 T cells were seen across all maturation subsets. Plasma CXCL9 and CXCL10 were elevated in both infected groups in comparison to the levels in uninfected controls, whereas lower mRNA levels of CXCR3 ligands and CD8 in LNs were seen in advanced infection. These data suggest that both CXCR3(+) CD8 T cells and LN CXCR3 ligands decrease as HIV infection progresses, resulting in reduced homing of CTL into LNs and contributing to immune dysfunction.  相似文献   

6.
Neutrophils are pivotal effector cells of innate immunity representing the first line of defense against aggression. They are the first cells to arrive at the site of the aggression, where they can directly eliminate the invading microorganisms. Their activation and recruitment into peripheral tissues is indispensable for host defense. With aging, there are alterations of the receptor by driven functions of human neutrophils as a decrease in the functional changes in signaling elicited by specific receptors, as CXCR1. We investigated the activation of neutrophils from elderly after the cells were cultivated with CXCL8. Although, CXCL8 induced elastase (ELA) secretion, data showed neither myeloperoxidase (MPO) activity nor production of IL-6, IL-10, GM-CSF by neutrophils from elderly compared with young individuals. On the other hand, in the presence of only LPS or LPS associated with CXCL8 neutrophils from elderly individuals, there were significant levels of IL-6, IL-10, GM-CSF but not MPO. These results indicate that neutrophils from elderly do not respond to CXCL8 stimulus, but they are activated by LPS to produce cytokines. However, MPO activity from elderly individuals was not different in the presence or absence of LPS and CXCL8.  相似文献   

7.
The primary structures of a CXC chemokine (CXCL8) and two CXC receptors (CXCR) have been characterized in fugu, Takifugu rubripes. Unlike mammalian and avian species, CXCL8 of teleosts including fugu lacks the ELR motif that appears to be important in ligand/receptor interactions on neutrophils. Genomic organization shows that fugu CXCL8 gene consists of four exons and three introns. As in other vertebrates, two CXCR genes isolated from fugu encode proteins CXCR1 and CXCR2 that possess characteristic seven transmembrane domains. Each receptor consists of two exons separated by an intron. Synteny analysis indicates that these two CXCRs were derived from whole genome duplication in teleosts, differing from mammalian CXCR1 and CXCR2. All of these genes are primarily expressed in the lymphoid tissues. Immune stimulation with PHA showed that the expression of both CXCL8 and CXCRs in PBL are upregulated even after only a short time period, but downregulated by LPS stimulation, implying that these genes are involved in the regulation of the immune response in fugu.  相似文献   

8.
CXCR2 is a G-protein-coupled receptor (GPCR) that binds the CXC chemokines, CXCL1-3 and CXCL5-8, and induces intracellular signals associated with chemotaxis. Many adaptor proteins are actively involved in the sequestration, internalization, and trafficking of CXCR2 and transduction of agonist-induced intracellular signaling. We have previously shown that adaptor protein beta-arrestin-2 (betaarr2) plays a crucial role in transducing signals mediated through CXCR2. To further investigate the role of betaarr2 on CXCR2-mediated signaling during acute inflammation, zymosan-induced neutrophils were isolated from peritoneal cavities of betaarr2-deficient (betaarr2(-/-)) and their wild-type (betaarr2(+/+)) littermate mice, and neutrophil CXCR2 signaling activities were determined by measurement of Ca(2+) mobilization, receptor internalization, GTPase activity, and superoxide anion production. The results showed that the deletion of betaarr2 resulted in increased Ca(2+) mobilization, superoxide anion production, and GTPase activity in neutrophils, but decreased receptor internalization relative to wild-type mice. Two animal models, the dorsal air pouch model and the excisional wound healing model, were used to further study the in vivo effects of betaarr2 on CXCR2-mediated neutrophil chemotaxis and on cutaneous wound healing. Surprisingly, the recruitment of neutrophils was increased in response to CXCL1 in the air pouch model and in the excisional wound beds of betaarr2(-/-) mice. Wound re-epithelialization was also significantly faster in betaarr2(-/-) mice than in betaarr2(+/+) mice. Taken together, the data indicate that betaarr2 is a negative regulator for CXCR2 in vivo signaling.  相似文献   

9.
IL (interleukin)-8 [CXCL8 (CXC chemokine ligand 8)] exerts its role in inflammation by triggering neutrophils via its specific GPCRs (G-protein-coupled receptors), CXCR1 (CXC chemokine receptor 1) and CXCR2, for which additional binding to endothelial HS-GAGs (heparan sulphate-glycosaminoglycans) is required. We present here a novel approach for blocking the CXCL8-related inflammatory cascade by generating dominant-negative CXCL8 mutants with improved GAG-binding affinity and knocked-out CXCR1/CXCR2 activity. These non-signalling CXCL8 decoy proteins are able to displace WT (wild-type) CXCL8 and to prevent CXCR1/CXCR2 signalling thereby interfering with the inflammatory response. We have designed 14 CXCL8 mutants that we subdivided into three classes according to number and site of mutations. The decoys were characterized by IFTs (isothermal fluorescence titrations) and SPR (surface plasmon resonance) to determine GAG affinity. Protein stability and structural changes were evaluated by far-UV CD spectroscopy and knocked-out GPCR response was shown by Boyden chamber and Ca2+ release assays. From these experiments, CXCL8(Δ6F17KF21KE70KN71K) emerged with the most promising in vitro characteristics. This mutant was therefore further investigated in a murine model of mBSA (methylated BSA)-induced arthritis in mice where it showed strong anti-inflammatory activity. Based on these results, we propose that dominant-negative CXCL8 decoy proteins are a promising class of novel biopharmaceuticals with high therapeutic potential in inflammatory diseases.  相似文献   

10.
Large DNA viruses, such as herpesvirus and poxvirus, encode proteins that target and exploit the chemokine system of their host. UL146 and UL147 in the cytomegalovirus (CMV) genome encode the two CXC chemokines vCXCL1 and vCXCL2. In this study, vCXCL1 was probed against a panel of the 18 classified human chemokine receptors. In calcium mobilization assays vCXCL1 acted as an agonist on both CXCR1 and CXCR2 but did not activate or block any of the other 16 chemokine receptors. vCXCL1 was characterized and compared with CXCL1/GROα, CXCL2/GROβ, CXCL3/GROγ, CXCL5/ENA-78, CXCL6/GCP-2, CXCL7/NAP-2 and CXCL8/IL-8 in competition binding, calcium mobilization, inositol triphosphate turnover, and chemotaxis assays using CXCR1- and CXCR2-expressing Chinese hamster ovary, 300.19, COS7, and L1.2 cells. The affinities of vCXCL1 for the CXCR1 and CXCR2 receptors were 44 and 5.6 nm, respectively, as determined in competition binding against radioactively labeled CXCL8. In calcium mobilization, phosphatidylinositol turnover, and chemotaxis assays, vCXCL1 acted as a highly efficacious activator of both receptors, with a rather low potency for the CXCR1 receptor but comparable with CXCL5 and CXCL7. It is suggested that CMV uses the UL146 gene product expressed in infected endothelial cells to attract neutrophils by activating their CXCR1 and CXCR2 receptors, whereby neutrophils can act as carriers of the virus to uninfected endothelial cells. In that way a lasting pool of CMV-infected endothelial cells could be maintained.  相似文献   

11.
The WHIM syndrome, which features high susceptibility to human papillomavirus (HPV) infection, is a rare immunodeficiency associated with autosomal dominant heterozygous mutations of the CXCR4 chemokine receptor. CXCL12 and its receptors, CXCR4 and CXCR7, are linked to tumorigenesis, and we reported that abnormal expression of CXCL12 in epidermal keratinocytes correlates with HPV infection. However, the HPV-related pathologies observed in WHIM patients remain mechanistically unexplained. We show that keratinocytes immortalized by oncogenic HPV16 or HPV18 upregulate CXCL12 and its receptors in a manner dependent upon expression of the viral proteins E6 and E7. Autocrine signaling activated by CXCL12-engagement of its receptors controls motility and survival of the infected cells. Strikingly, expression of a WHIM syndrome-related gain-of-function CXCR4 mutant confers transforming capacity to HPV18-immortalized keratinocytes. These results establish a pivotal role for CXCL12 signaling in HPV-mediated transformation and provide a mechanistic basis for understanding HPV pathogenesis in WHIM syndrome.  相似文献   

12.
The G-protein-coupled receptor, CXCR4, is highly expressed on a number of cell types, and together with its ligand, CXCL12, plays an important role in immune development and trafficking of cells. CXCR4 promotes tumor growth, angiogenesis and metastasis, and is a prognostic marker in a number of different types of tumors. Additionally, CXCR4 is utilized, together with CD4, for entry of T-tropic HIV viruses. Ethnic differences in incidence and mortality of various cancers, and in the response to highly active antiretroviral treatment (HAART) of HIV-1 infected individuals have been reported. The aim of this study was to establish if differences in the CXCR4–CXCL12 axis exist between ethnically divergent uninfected South Africans. CXCR4 density was significantly higher on CD4+ and CD8+ T cells, B cells and CD56dim NK cells, and CXCL12 levels lower in Black compared with Caucasian individuals. Furthermore, an inverse correlation was observed between CXCR4 density on CD56+ and CD3+ cells and age, only in Black individuals. CXCL12–3′A heterozygosity (AG) found in 28% of Caucasians did not explain the higher plasma levels of CXCL12 compared to Black individuals who were all GG genotypes, suggesting that other factors influence homeostatic levels of CXCL12. In conclusion, this study demonstrates that ethnically divergent populations show clear differences in both CXCR4 density and CXCL12 plasma levels which may influence the course of cancer and HIV-1 infection.  相似文献   

13.
Persistent infection or chronic inflammation contributes significantly to tumourigenesis and tumour progression. C-X-C motif ligand 8 (CXCL8) is a chemokine that acts as an important multifunctional cytokine to modulate tumour proliferation, invasion and migration in an autocrine or paracrine manner. Studies have suggested that CXCL8 and its cognate receptors, C-X-C chemokine receptor 1 (CXCR1) and C-X-C chemokine receptor 2 (CXCR2), mediate the initiation and development of various cancers including breast cancer, prostate cancer, lung cancer, colorectal carcinoma and melanoma. CXCL8 also integrates with multiple intracellular signalling pathways to produce coordinated effects. Neovascularisation, which provides a basis for fostering tumour growth and metastasis, is now recognised as a critical function of CXCL8 in the tumour microenvironment. In this review, we summarize the biological functions and clinical significance of the CXCL8 signalling axis in cancer. We also propose that CXCL8 may be a potential therapeutic target for cancer treatment.  相似文献   

14.
We previously demonstrated that in astrocytes, SDF-1/CXCL12 exclusively signals through CXCR7 despite the additional presence of the alternate SDF-1/CXCL12 receptor, CXCR4. In addition, we provided evidence that astrocytic CXCR7-signalling involves a G protein-dependent mechanism. This is insofar remarkable as in all other cell types studied to date, CXCR7 either acts as a scavenger chemokine receptor, a modulator of CXCR4, or a non-classical chemokine receptor, signalling through ß-arrestin. To begin to unravel the molecular framework impinging the selective function of CXCR7 on a given cell type, we have now analysed the role of G protein-coupled receptor kinases (Grks) in astrocytic CXCR7 signalling. We demonstrate that Grk2 mediates signalling of SDF-1/CXCL12-bound CXCR7 as suggested by the finding that SDF-1/CXCL12-induced activation of Erk1/2 and Akt is abrogated following RNAi-mediated inhibition of Grk2, but not of Grk3, Grk5, or Grk6. We further unravel that Grk2 additionally controls signalling of SDF-1/CXCL12-bound CXCR7 in astrocytes by mediating internalization and subsequent silencing of CXCR7. Finally, we demonstrate that Grk2 is likewise expressed by microglial cells and Schwann cells, cell types in which CXCR7 does not act as a classical chemokine receptor. In conclusion, our findings establish that Grk2 tightly controls CXCR7 signalling in astrocytes, but does not imprint the cell type-specific function of this chemokine receptor.  相似文献   

15.
Chemokines play crucial roles in combating microbial infection and initiating tissue repair by recruiting neutrophils in a timely and coordinated manner. In humans, no less than seven chemokines (CXCL1, CXCL2, CXCL3, CXCL5, CXCL6, CXCL7, and CXCL8) and two receptors (CXCR1 and CXCR2) mediate neutrophil functions but in a context dependent manner. Neutrophil-activating chemokines reversibly exist as monomers and dimers, and their receptor binding triggers conformational changes that are coupled to G-protein and β-arrestin signaling pathways. G-protein signaling activates a variety of effectors including Ca2+ channels and phospholipase C. β-arrestin serves as a multifunctional adaptor and is coupled to several signaling hubs including MAP kinase and tyrosine kinase pathways. Both G-protein and β-arrestin signaling pathways play important non-overlapping roles in neutrophil trafficking and activation. Functional studies have established many similarities but distinct differences for a given chemokine and between chemokines at the level of monomer vs. dimer, CXCR1 vs. CXCR2 activation, and G-protein vs. β-arrestin pathways. We propose that two forms of the ligand binding two receptors and activating two signaling pathways enables fine-tuned neutrophil function compared to a single form, a single receptor, or a single pathway. We summarize the current knowledge on the molecular mechanisms by which chemokine monomers/dimers activate CXCR1/CXCR2 and how these interactions trigger G-protein/β-arrestin-coupled signaling pathways. We also discuss current challenges and knowledge gaps, and likely advances in the near future that will lead to a better understanding of the relationship between the chemokine-CXCR1/CXCR2-G-protein/β-arrestin axis and neutrophil function.  相似文献   

16.
Small neutralizing molecules to inhibit actions of the chemokine CXCL12   总被引:1,自引:0,他引:1  
The chemokine CXCL12 and the receptor CXCR4 play pivotal roles in normal vascular and neuronal development, in inflammatory responses, and in infectious diseases and cancer. For instance, CXCL12 has been shown to mediate human immunodeficiency virus-induced neurotoxicity, proliferative retinopathy and chronic inflammation, whereas its receptor CXCR4 is involved in human immunodeficiency virus infection, cancer metastasis and in the rare disease known as the warts, hypogammaglobulinemia, immunodeficiency, and myelokathexis (WHIM) syndrome. As we screened chemical libraries to find inhibitors of the interaction between CXCL12 and the receptor CXCR4, we identified synthetic compounds from the family of chalcones that reduce binding of CXCL12 to CXCR4, inhibit calcium responses mediated by the receptor, and prevent CXCR4 internalization in response to CXCL12. We found that the chemical compounds display an original mechanism of action as they bind to the chemokine but not to CXCR4. The highest affinity molecule blocked chemotaxis of human peripheral blood lymphocytes ex vivo. It was also active in vivo in a mouse model of allergic eosinophilic airway inflammation in which we detected inhibition of the inflammatory infiltrate. The compound showed selectivity for CXCL12 and not for CCL5 and CXCL8 chemokines and blocked CXCL12 binding to its second receptor, CXCR7. By analogy to the effect of neutralizing antibodies, this molecule behaves as a small organic neutralizing compound that may prove to have valuable pharmacological and therapeutic potential.  相似文献   

17.
Interleukin-8 (IL-8) activates neutrophils via the chemokine receptors CXCR1 and CXCR2. However, the airways of individuals with cystic fibrosis are frequently colonized by bacterial pathogens, despite the presence of large numbers of neutrophils and IL-8. Here we show that IL-8 promotes bacterial killing by neutrophils through CXCR1 but not CXCR2. Unopposed proteolytic activity in the airways of individuals with cystic fibrosis cleaved CXCR1 on neutrophils and disabled their bacterial-killing capacity. These effects were protease concentration-dependent and also occurred to a lesser extent in individuals with chronic obstructive pulmonary disease. Receptor cleavage induced the release of glycosylated CXCR1 fragments that were capable of stimulating IL-8 production in bronchial epithelial cells via Toll-like receptor 2. In vivo inhibition of proteases by inhalation of alpha1-antitrypsin restored CXCR1 expression and improved bacterial killing in individuals with cystic fibrosis. The cleavage of CXCR1, the functional consequences of its cleavage, and the identification of soluble CXCR1 fragments that behave as bioactive components represent a new pathophysiologic mechanism in cystic fibrosis and other chronic lung diseases.  相似文献   

18.
The chemokine receptors, CXCR1 and CXCR2, couple to Gαi to induce leukocyte recruitment and activation at sites of inflammation. Upon activation by CXCL8, these receptors become phosphorylated, desensitized, and internalized. In this study, we investigated the role of different G protein-coupled receptor kinases (GRKs) in CXCR1- and CXCR2-mediated cellular functions. To that end, short hairpin RNA was used to inhibit GRK2, 3, 5, and 6 in RBL-2H3 cells stably expressing CXCR1 or CXCR2, and CXCL8-mediated receptor activation and regulation were assessed. Inhibition of GRK2 and GRK6 increased CXCR1 and CXCR2 resistance to phosphorylation, desensitization, and internalization, respectively, and enhanced CXCL8-induced phosphoinositide hydrolysis and exocytosis in vitro. GRK2 depletion diminished CXCR1-induced ERK1/2 phosphorylation but had no effect on CXCR2-induced ERK1/2 phosphorylation. GRK6 depletion had no significant effect on CXCR1 function. However, peritoneal neutrophils from mice deficient in GRK6 (GRK6(-/-)) displayed an increase in CXCR2-mediated G protein activation but in vitro exhibited a decrease in chemotaxis, receptor desensitization, and internalization relative to wild-type (GRK6(+/+)) cells. In contrast, neutrophil recruitment in vivo in GRK6(-/-) mice was increased in response to delivery of CXCL1 through the air pouch model. In a wound-closure assay, GRK6(-/-) mice showed enhanced myeloperoxidase activity, suggesting enhanced neutrophil recruitment, and faster wound closure compared with GRK6(+/+) animals. Taken together, the results indicate that CXCR1 and CXCR2 couple to distinct GRK isoforms to mediate and regulate inflammatory responses. CXCR1 predominantly couples to GRK2, whereas CXCR2 interacts with GRK6 to negatively regulate receptor sensitization and trafficking, thus affecting cell signaling and angiogenesis.  相似文献   

19.
CXCL8/interleukin-8 is a pro-inflammatory chemokine that triggers pleiotropic responses, including inflammation, angiogenesis, wound healing and tumorigenesis. We engineered the first selective CXCR1 agonists on the basis of residue substitutions in the conserved ELR triad and CXC motif of CXCL8. Our data reveal that the molecular mechanisms of activation of CXCR1 and CXCR2 are distinct: the N-loop of CXCL8 is the major determinant for CXCR1 activation, whereas the N-terminus of CXCL8 (ELR and CXC) is essential for CXCR2 activation. We also found that activation of CXCR1 cross-desensitized CXCR2 responses in human neutrophils co-expressing both receptors, indicating that these novel CXCR1 agonists represent a new class of anti-inflammatory agents. Further, these selective CXCR1 agonists will aid at elucidating the functional significance of CXCR1 in vivo under pathophysiological conditions.  相似文献   

20.
CXCL8 is a potent chemokine, inducing focal adhesion kinase (FAK) phosphorylation, and migration via a FAK-mediated pathway. Since, unlike growth factors, chemokines directly control integrins and cytoskeleton rearrangements, we determined whether these elements regulate CXCL8-induced FAK phosphorylation. The analysis intentionally dissociated between the CXCL8 receptors CXCR1 and CXCR2. In both CXCR1- and CXCR2-expressing cells, actin and microtubules were required for CXCL8-induced FAK phosphorylation, and CXCL8-induced cell spreading was accompanied by concordant re-localization of FAK with actin and beta-tubulin. The phosphorylation of five FAK sites depended on intact actin filaments and microtubules. While in CXCR2-expressing cells FAK phosphorylation was adhesion-dependent and was stimulated by fibronectin, in CXCR1-expressing cells FAK phosphorylation was adhesion-independent. Of note, even in the absence of integrin stimulation, the CXCL8-induced phosphorylation of FAK in CXCR1-expressing cells required cytoskeletal elements. CXCL8-induced migration in both cell types was highly reliant on actin filaments, but only the migration of CXCR1-expressing cells was fully dependent on microtubules. Overall, several aspects of CXCL8-induced FAK phosphorylation and migration are regulated in a receptor-specific manner. These observations lay the basis for future investigation of the equilibrium between CXCR1 and CXCR2 in cells expressing both receptors together, such as neutrophils, endothelial cells and tumor cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号