首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
GH has diverse physiological actions and regulates the tissue-specific expression of numerous genes involved in growth, metabolism, and differentiation. Several of the effects of GH on somatic growth and gene expression are sex dependent and are regulated by pituitary GH secretory patterns, which are sexually differentiated. The resultant sex differences in plasma GH profiles are particularly striking in rodents and are the major determinant of sex differences in pubertal body growth rates and the expression in liver of several cytochrome P450 (CYP) enzymes that metabolize steroids, drugs, and environmental chemicals of importance to endocrinology, pharmacology, and toxicology. DNA microarray analysis was used to identify rat liver-expressed genes that show sexual dimorphism, and to ascertain the role of GH as a regulator of their sexually dimorphic expression. Adult male and female rats were untreated or were treated with GH by 7-d continuous infusion using an Alzet osmotic minipump. Poly(A) RNA was purified from individual livers and Cy3- and Cy5-labeled cDNA probes cohybridized to Pan Rat Liver and 5K Rat Oligonucleotide microarrays representing 5889 unique rat genes. Analysis of differential gene expression profiles identified 37 liver-expressed, female-predominant genes; of these, 27 (73%) were induced by continuous GH treatment of male rats. Moreover, only three of 30 genes up-regulated in male rat liver by continuous GH treatment did not display female-dominant expression. Further analysis revealed that 44 of 49 male-predominant genes (90%) were down-regulated in the livers of continuous GH-treated male rats compared with untreated male rats, whereas only five of 49 genes that were down-regulated in male rats by continuous GH treatment were not male dominant in their expression. Real-time PCR analysis applied to a sampling of 10 of the sexually dimorphic genes identified in the microarray analysis verified their sex- and GH-dependent patterns of regulation. Taken together, these studies establish that GH-regulated gene expression is the major mechanistic determinant of sexually dimorphic gene expression in the rat liver model.  相似文献   

3.
Cloning, expression, and regulation of lithocholic acid 6 beta-hydroxylase.   总被引:3,自引:0,他引:3  
We have isolated a hamster liver cDNA whose expression is induced upon feeding hamsters with a cholic acid-rich diet. It was identified as a cytochrome P450 family 3 protein, by sequence homology, and named CYP3A10. The activity of CYP3A10 was determined by transient expression of its cDNA in transfected COS cells and was found to hydroxylate lithocholic acid at position 6 beta. CYP3A10 RNA is 50-fold higher in males than in female hamsters. In males, it appears to be regulated by age with expression highest after puberty. Shortly after weaning (28 days), cholic acid feeding of male hamsters elevates the level of message over that of hamsters fed with normal laboratory chow. Females do not exhibit regulation by cholic acid. In hamster liver, murideoxycholic acid, the 6 beta-metabolite of lithocholic acid, is the major hydroxylated product of lithocholic acid. Lithocholic acid 6 beta-hydroxylase (6 beta-hydroxylase) activity is greatly diminished in hamster female liver microsomes as would be expected due to the lack of CYP3A10 mRNA in females. Additionally, male liver microsomal 6 beta-hydroxylase activity was increased by cholic acid feeding, consistent with the cholic acid-mediated induction of its RNA. These results indicate that, in male hamsters, 6 beta-hydroxylation is the major pathway for detoxification of lithocholate and that, likely, CYP3A10 is responsible for that activity.  相似文献   

4.
Stat5b gene disruption leads to an apparent growth hormone (GH) pulse insensitivity associated with loss of male-characteristic body growth rates and male-specific liver gene expression (Udy, G. B., Towers, R. P., Snell, R. G., Wilkins, R. J., Park, S. H., Ram, P. A., Waxman, D. J., and Davey, H. W. (1997) Proc. Natl. Acad. Sci. U. S. A. 94, 7239-7244). In the present study, disruption of the mouse Stat5a gene, whose coding sequence is approximately 90% identical to the Stat5b gene, resulted in no loss of expression in male mice of several sex-dependent, GH-regulated liver cytochrome P450 (CYP) enzymes. By contrast, the loss of STAT5b feminized the livers of males by decreasing expression of male-specific CYPs (CYP2D9 and testosterone 16alpha-hydroxylase) while increasing to female levels several female-predominant liver CYPs (CYP3A, CYP2B, and testosterone 6beta-hydroxylase). Since STAT5a is thus nonessential for these male GH responses, STAT5b homodimers, but not STAT5a-STAT5b heterodimers, probably mediate the sexually dimorphic effects of male GH pulses on liver CYP expression. In female mice, however, disruption of either Stat5a or Stat5b led to striking decreases in several liver CYP-catalyzed testosterone hydroxylase activities. Stat5a or Stat5b gene disruption also led to the loss of a female-specific, GH-regulated hepatic CYP2B enzyme. STAT5a, which is much less abundant in liver than STAT5b, and STAT5b are therefore both required for constitutive expression in female but not male mouse liver of certain GH-regulated CYP steroid hydroxylases, suggesting that STAT5 protein heterodimerization is an important determinant of the sex-dependent and gene-specific effects that GH has on the liver.  相似文献   

5.
CYP2B9 is a constitutively and female-specifically expressed P450 isoform in mouse livers. Hypophysectomy-induced CYP2B9 mRNA expression in males to a level similar to that in females, while the operation did not affect females. Twice-daily injection of growth hormone (GH), which mimics the male pattern of GH secretion, significantly repressed hypophysectomy-induced mRNA expression in males. The same treatment completely suppressed expression in intact females. Treatments with synthetic glucocorticoid dexamethasone (DEX) suppressed expression of CYP2B9 mRNA in intact females, but not in GH-treated and un-treated hypophysectomized females. In primary cultured mouse hepatocytes, CYP2B9 mRNA expression was concentration-dependently suppressed by natural glucocorticoids such as hydrocortisone and corticosterone as well as by DEX. Glucocorticoid-mediated suppression was partially inhibited by RU486, a potent antiglucocorticoid. In contrast, RU486 by itself suppressed expression of CYP2B9 mRNA. These observations suggest that the sexually dimorphic expression of CYP2B9 is partly due to suppression by the masculine plasma GH profile and by glucocorticoid hormones.  相似文献   

6.
7.
8.
The cytochrome P450 (CYP) isoform CYP2C11 is specifically expressed in the liver of adult male rats, and 5alpha-reductase is specifically expressed in the liver of the adult female rats. The sexually dimorphic expressions of these hepatic enzymes are regulated by the sex-dependent profiles of the circulating growth hormone (GH). However, it is not well known whether hormonal imprinting or activation factors in the neonatal brain influence the sexually dimorphic expression patterns of hepatic enzymes. We therefore examined the effect of perinatal exposure to 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) on sex-dependent expressions of hepatic enzymes. Pregnant rats were treated with TCDD at a dose of 0, 200, or 800 ng/kg on gestation day 15, exposing the pups to the chemical. Although the expression of CYP2C11 protein in the livers of male pups on postnatal day (PND) 49 was significantly higher than that of the controls, but the 5alpha-reductase activities in the livers of female pups were not altered by exposure to TCDD. Focusing on perinatal periods, testosterone and estrogen levels significantly increased in the brain of male pups on PND 2. The results suggest that the alteration of testosterone and estrogen levels affect hormonal imprinting in the neonatal brain of male pups, and thus induces a change in the level of male-specific hepatic CYP2C11. We conclude that perinatal exposure to TCDD at low doses may change the sexual differentiation of the neonatal brain in male rats.  相似文献   

9.
Many genes are expressed in mammalian liver in a sexually dimorphic manner. DNA microarray analysis has shown that growth hormone (GH) and its sex-dependent pattern of pituitary secretion play a major role in establishing the sexually dimorphic patterns of liver gene expression. However, GH may exert effects on protein post-translational modification and nuclear localization that are not reflected at the mRNA level. To investigate these potential effects of GH, we used two-dimensional gel electrophoresis followed by LC-MS/MS to: 1) identify rat liver nuclear proteins whose abundance or state of post-translational modification displays sex-dependent differences; and 2) determine the role of the plasma GH profile in establishing these differences. Nuclear extracts prepared from livers of individual male (n=9) and female (n=5) adult rats, and from males given GH by continuous infusion for 7 days to feminize liver gene expression (n=5 rats), were resolved by two-dimensional electrophoresis. Image analysis of SYPRO Ruby-stained gels revealed 165 sexually dimorphic protein spots that differ in normalized volume between male and female groups by >1.5-fold at p<0.05. Sixty of these proteins exhibited female-like changes in spot abundance following continuous GH treatment. Comparison of male and GH-treated male groups revealed 130 proteins that displayed >1.5-fold differences in abundance, with 60 of these GH-responsive spots being sexually dimorphic. Thus, GH plays an important role in establishing the sex-dependent differences in liver nuclear protein content. Twenty-eight of the sexually dimorphic and/or GH-regulated protein spots were identified by LC-MS/MS. Proteins identified include regucalcin, nuclear factor 45, and heterogeneous nuclear ribonucleoproteins A3, D-like, and K, in addition to proteins such as GST, normally associated with cytosolic extracts but also reported to be localized in the nucleus.  相似文献   

10.
The sexually dimorphic expression of the urinary protein genes of mice (Mup genes) in the liver is mediated by the different male and female temporal patterns of circulating GH. Normal females were induced to male levels when GH was administered by injection to mimic the male GH pattern, showing that expression at the male level does not require a male sex steroid status in addition to intermittent GH. Two Mup-alpha 2u-globulin hybrid transgenes with different Mup gene promoters showed sexually dimorphic expression, and their expression in females increased to male levels upon testosterone treatment. GH-deficient (lit/lit) mice did not express these transgenes, and GH-deficient females did not respond to testosterone treatment, showing that GH was required for induction. Both normal and GH-deficient females were induced to male levels when GH was administered by injection. This is the first report of a transgene responsive to GH. A transgene consisting of a Mup promoter fused to a Herpes simplex virus thymidine kinase reporter sequence also showed sexual dimorphism, although to a lesser degree. It was expressed at the same level in normal females and GH-deficient mice of both sexes and was induced when GH-deficient mice were treated with GH. We propose that this transgene has a basal constitutive expression, possibly due to the absence of any rodent DNA downstream of the promoter. Since expression of the transgene was significantly induced by GH, the GH response is due at least in part to sequences in the promoter region.  相似文献   

11.
Oligonucleotide probes that distinguish between two closely related mRNAs encoding steroid 6 beta-hydroxylases of rat P-450 gene family CYP3A were used to individually assess their responsiveness to pituitary hormone regulation. Northern blot analysis revealed that the elevation of immunoreactive P-450 IIIA2 in livers of hypophysectomized rats reflects an elevation of the constitutive, male-specific P-450 IIIA2 (P-450 2a) and not an induction of the drug-inducible P-450 IIIA1 (P-450p). P-450 IIIA2 mRNA levels in intact adult male rats were found to be markedly reduced by GH administered as a continuous infusion at levels as low as 1 mU/h, indicating that GH acts at a pretranslational step to suppress expression of this P-450 enzyme. In hypophysectomized male rats, however, this same hormone treatment was only partially effective at suppressing P-450 IIIA2 mRNA and protein, suggesting that other pituitary-dependent factors contribute to the suppression observed in the intact rats. Further analysis revealed that T4, but not ACTH or human CG, can act in concert with GH to effect a more complete suppression of hepatic P-450 IIIA2 mRNA and protein in hypophysectomized rats. T4 also suppressed the expression of another GH-regulated, male-specific hepatic enzyme, designated P-450 IIA2 (P-450 RLM2), particularly in hypophysectomized female rats. In contrast, the GH-responsive P-450 IIA1 (P-450 3) was much less affected by T4 treatment. Thus, while T4 can modulate P-450 IIIA2 expression, it does not serve as a universal regulator for hepatic expression of GH-responsive P-450s.  相似文献   

12.
The regulatory mechanism of cytosolic sulfation of T3 has been studied in rat liver. Sulfation of T3 is sexually differentiated in adult rats of Sprague-Dawley (SD), Fisher 344, and ACI strains. In SD strain, the male animals showed 4 times higher sulfating activity than did the females. The specific activity was decreased by hypophysectomy of male adult rats, but was not affected in the females. Thus, the sex-difference was abolished in the hypophysectomized condition. Supplement of human GH intermittently twice daily for 7 days, to mimic the male secretory pattern, increased T3 sulfating activity in both sexes of hypophysectomized rats, whereas continuous infusion to mimic a female secretory pattern had no appreciable effect. Cytosolic sulfation of T3 was decreased by 25 to 30% by thyroidectomy or propylthiouracil treatment of male adult rats, and was restored by the supplementation of T3 (50 micrograms/kg daily for 7 days) to thyroidectomized rats. Administration of T3 in hypophysectomized rats almost completely restored the sulfating activity in the males and increased the activity in the females. Cytosolic T3 sulfation was inhibited by the addition of known inhibitors of phenol sulfotransferase, pentachlorophenol or 2,6-dichloro-4-nitrophenol. These results indicate a role of pituitary GH in hepatic sulfation of thyroid hormones in rats. The data obtained also raise the possibility that GH may modify the effect of thyroid hormones on the pituitary by a feed-back mechanism through changing the level of a sex-dominant phenol sulfotransferase(s) in rat livers. T3 was also sulfated in hepatic cytosols of mouse, hamster, rabbit, dog, monkey, and human.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

13.
14.
Hepatic alcohol dehydrogenase (ADH) activity is higher in female than in male rats. Although sex steroids, thyroid, and growth hormone (GH) have been shown to regulate hepatic ADH, the mechanism(s) for sexual dimorphic expression is unclear. We tested the possibility that the GH secretory pattern determined differential expression of ADH. Gonadectomized and hypophysectomized male and female rats were examined. Hepatic ADH activity was 2.1-fold greater in females. Because protein and mRNA content were also 1.7- and 2.4-fold greater, results indicated that activity differences were due to pretranslational mechanisms. Estradiol increased ADH selectively in males, and testosterone selectively decreased activity and mRNA levels in females. Effect of sex steroids on ADH was lost after hypophysectomy; infusion of GH in males increased ADH to basal female levels, supporting a role of the pituitary-liver axis. However, GH and L-thyroxine (T4) replacements alone in hypophysectomized rats did not restore dimorphic differences for either ADH activity or mRNA levels. On the other hand, T4 in combination with intermittent administration of GH reduced ADH activity and mRNA to basal male values, whereas T4 plus GH infusion replicated female levels. These results indicate that the intermittent male pattern of GH secretion combined with T4 is the principal determinant of low ADH activity in male liver.  相似文献   

15.
Bile acids are efficiently removed from sinusoidal blood by a number of transporters including the Na+-taurocholate-cotransporting polypeptide (Ntcp). Na+-dependent bile salt uptake, as well as Ntcp, are expressed twofold higher in male compared with female rat livers. Also, estrogen administration to male rats decreases Ntcp expression. The aims of this study were to determine the hormonal mechanism(s) responsible for this sexually dimorphic expression of Ntcp. We examined castrated and hypophysectomized rats of both sexes. Sex steroid hormones, growth hormone, thyroid, and glucocorticoids were administered, and livers were examined for changes in Ntcp messenger RNA (mRNA). Ntcp mRNA and protein content were selectively increased in males. Estradiol selectively decreased Ntcp expression in males, whereas ovariectomy increased Ntcp in females, confirming the importance of estrogens in regulating Ntcp. Hypophysectomy decreased Ntcp mRNA levels in males and prevented estrogen administration from decreasing Ntcp, indicating the importance of pituitary hormones. Although constant infusion of growth hormone to intact males reduced Ntcp, its replacement alone after hypophysectomy did not restore the sex differences. In contrast, thyroid hormone and corticosterone increased Ntcp mRNA in hypophysectomized rats. Sex differences in Ntcp mRNA levels were produced only when the female pattern of growth hormone was administered to animals also receiving thyroid and corticosterone. Thyroid and dexamethasone also increased Ntcp mRNA in isolated rat hepatocytes, whereas growth hormone decreased Ntcp. These findings demonstrate the essential role that pituitary hormones play in the sexually dimorphic control of Ntcp expression in adult rat liver and in the mediation of estrogen effects.  相似文献   

16.
17.
The importance of gender-specific growth hormone (GH) secretion pattern in the regulation of growth and metabolism has been demonstrated clearly in rodents. We recently showed that GH secretion in humans is also sexually dimorphic. Whether GH secretion pattern regulates the metabolic effects of GH in humans is largely unknown. To address this question, we administered the same daily intravenous dose of GH (0.5 mg. m(-2). day(-1)) for 8 days in different patterns to nine GH-deficient adults. Each subject was studied on four occasions: protocol 1 (no treatment), protocol 2 (80% daily dose at 0100 and 10% daily dose at 0900 and 1700), protocol 3 (8 equal boluses every 3 h), and protocol 4 (continuous GH infusion). The effects of GH pattern on serum IGF-I, IGF-binding protein (IGFBP)-3, osteocalcin, and urine deoxypyridinoline were measured. Hepatic CYP1A2 and CYP3A4 activities were assessed by the caffeine and erythromycin breath tests, respectively. Protocols 3 and 4 were the most effective in increasing serum IGF-I and IGFBP-3, whereas protocols administering pulsatile GH had the greatest effects on markers of bone formation and resorption. All GH treatments decreased CYP1A2 activity, and the effect was greatest for pulsatile GH. Pulsatile GH decreased, whereas continuous GH infusion increased, CYP3A4 activity. These data demonstrate that GH pulse pattern is an independent parameter of GH action in humans. Gender differences in drug metabolism and, potentially, gender differences in growth rate may be explained by sex-specific GH secretion patterns.  相似文献   

18.
CYP3A41 is a female-specific major CYP3A in mouse livers. Adrenalectomy decreased expression of CYP3A41 as well as CYP3A11, another major CYP3A, and dexamethasone (DEX) restored the decreased expression. Hypophysectomy completely abolished CYP3A41 expression and growth hormone (GH) replacement only slightly restored the expression. Treatment with DEX alone did not induce expression of either CYP3A41 or CYP3A11 in hypophysectomized mice. However, combined treatment with GH and DEX strongly induced expression of CYP3A41 but not CYP3A11. In primary cultured mouse hepatocytes, DEX induced expression of both CYP3A41 and CYP3A11, and DEX-inducible expression of CYP3A41 was suppressed by RU486, a potent antiglucocorticoid. In contrast, RU486 by itself enhanced basal expression of CYP3A11 mRNA, while it showed no inhibitory effect on DEX-inducible expression. These observations indicate that glucocorticoids may participate in the GH-dependent control of the Cyp3a41 gene expression, probably mediated via the glucocorticoid receptor, which may be different from that of the Cyp3a11 gene expression.  相似文献   

19.
The synthesis of 7alpha-hydroxylated bile acids from oxysterols requires an oxysterol 7alpha-hydroxylase encoded by the Cyp7b1 locus. As expected, mice deficient in this enzyme have elevated plasma and tissue levels of 25- and 27-hydroxycholesterol; however, levels of another major oxysterol, 24-hydroxycholesterol, are not increased in these mice, suggesting the presence of another oxysterol 7alpha-hydroxylase. Here, we describe the cloning and characterization of murine and human cDNAs and genes that encode a second oxysterol 7alpha-hydroxylase. The genes contain 12 exons and are located on chromosome 6 in the human (CYP39A1 locus) and in a syntenic position on chromosome 17 in the mouse (Cyp39a1 locus). CYP39A1 is a microsomal cytochrome P450 enzyme that has preference for 24-hydroxycholesterol and is expressed in the liver. The levels of hepatic CYP39A1 mRNA do not change in response to dietary cholesterol, bile acids, or a bile acid-binding resin, unlike those encoding other sterol 7alpha-hydroxylases. Hepatic CYP39A1 expression is sexually dimorphic (female > male), which is opposite that of CYP7B1 (male > female). We conclude that oxysterol 7alpha-hydroxylases with different substrate specificities exist in mice and humans and that sexually dimorphic expression patterns of these enzymes in the mouse may underlie differences in bile acid metabolism between the sexes.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号