首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Summary The wavelength dependence of the afterpotentials following a bright illumination was studied in single photoreceptor cells of the droneflyEristalis. Cells with only a spectral sensitivity peak in the blue were selected. As previously demonstrated, these cells contain a rhodopsin absorbing maximally at about 450–460 nm, which upon photoconversion transforms into a metarhodopsin absorbing maximally at about 550 nm (Tsukahara and Horridge, 1977).With the visual pigment initially all in the rhodopsin form, a high rate of visual pigment conversion results in an afterhyperpolarization (AHP) when the fraction of metarhodopsin remains negligible after illumination as occurs at longer wavelengths if the intensity is high. Intensive illumination at short wavelengths is followed by a prolonged depolarizing afterpotential (PDA). The magnitude of the PDA peaks at low intensities at about 450–460 nm, corresponding to the peak of the cell's spectral sensitivity (i.e. the rhodopsin peak). With increasing intensity of illumination, however, the peak shifts progressively towards 430 nm, which corresponds to the photoequilibrium with maximum metarhodopsin that can be established by monochromatic light. From this result, it is inferred that the PDA is related to the induced fall in the rhodopsin fraction. The PDA can be abolished, or knocked down, by a long-wavelength flash which reconverts remaining metarhodopsin into rhodopsin. Therefore the decline of the PDA is restrained by the existing amount of metarhodopsin. Possible theories of afterpotentials are discussed.  相似文献   

2.
The polarization and spectral sensitivity of single photoreceptors ofAcheta domesticus L. was measured. The morphological characteristics of the cricket rhabdome satisfy the conditions for a symmetrical model, for which the polarization sensitivity of a single photoreceptor is identically equal to the dichroism of a single microvillus. Characteristic curves of spectral sensitivity of all photoreceptors measured (24 cells) were similar and had two maxima: the principal at 500 nm and a secondary peak at 360 nm, characteristic of a pigment such as rhodopsin in the rods of the vertebrate retina. The mean value of polarization sensitivity measured was 2.28 ± 0.85 (mean ± standard deviation, 70 cells), suggesting the existence of slight preferential orientation of the dipole moments of the rhodopsin molecules along the axes of the microvilli.I. N. Sechenov Institute of Evolutionary Physiology and Biochemistry, Academy of Sciences of the USSR, Leningrad. Institute of Problems in Information Transmission, Academy of Sciences of the USSR, Moscow. Translated from Neirofiziologiya, Vol. 11, No. 5, pp. 483–490, September–October, 1979.  相似文献   

3.
We recorded the total pulse response of the optic nerve in frogs to varying degrees of increase and decrease of light from the original adapting level. On the basis of these data, we plotted curves of dependence of the magnitude of response on the logarithm of relative value of increase and decrease of light (the amplitude characteristic — AC). The AC is steepest in the zone of adapting background and sloped on either side of it. It follows that under stationary conditions of illumination, the eye is capable of finely differentiating light intensity only within a narrow range (one logarithmic unit). After adaptation to a new level of illumination, the AC shifts along the scale of light intensity in such a way that the steepest portion corresponds to the adapting brightness. Increase in steepness of the AC occurs precisely during the process of adaptation. The contrast sensitivity of the human visual system is greatest near the adapting level and declines on either side of it. It follows that in man steepness of the visual system AC is greatest in the zone of the adapting background. Both increase and decrease of intensity of the adapting background are accompanied by a decline of contrast sensitivity, which rises again during the process of adaptation to a new level. Thanks to adaptive shift of the steep portion of the AC along the scale of light intensity, a visual system having a high contrast sensitivity only within a narrow "working" range is capable of finely differentiating light intensity in significantly changing conditions of illumination.Institute of Problems of Information Transmission, Academy of Sciences of the USSR, Moscow. Translated from Neirofiziologiya, Vol. 1, No. 1, pp. 81–89, July–August, 1969.  相似文献   

4.
The spectral sensitivities of single Limulus median ocellus photoreceptors have been determined from records of receptor potentials obtained using intracellular microelectrodes. One class of receptors, called UV cells (ultraviolet cells), depolarizes to near-UV light and is maximally sensitive at 360 nm; a Dartnall template fits the spectral sensitivity curve. A second class of receptors, called visible cells, depolarizes to visible light; the spectral sensitivity curve is fit by a Dartnall template with λmax at 530 nm. Dark-adapted UV cells are about 2 log units more sensitive than dark-adapted visible cells. UV cells respond with a small hyperpolarization to visible light and the spectral sensitivity curve for this hyperpolarization peaks at 525–550 nm. Visible cells respond with a small hyperpolarization to UV light, and the spectral sensitivity curve for this response peaks at 350–375 nm. Rarely, a double-peaked (360 and 530 nm) spectral sensitivity curve is obtained; two photopigments are involved, as revealed by chromatic adaptation experiments. Thus there may be a small third class of receptor cells containing two photopigments.  相似文献   

5.
Photoreceptors adapt to changes in illumination by altering transduction kinetics and sensitivity, thereby extending their working range. We describe a previously unknown form of rod photoreceptor adaptation in wild-type (WT) mice that manifests as a potentiation of the light response after periods of conditioning light exposure. We characterize the stimulus conditions that evoke this graded hypersensitivity and examine the molecular mechanisms of adaptation underlying the phenomenon. After exposure to periods of saturating illumination, rods show a 10–35% increase in circulating dark current, an adaptive potentiation (AP) to light exposure. This potentiation grows as exposure to light is extended up to 3 min and decreases with longer exposures. Cells return to their initial dark-adapted sensitivity with a time constant of recovery of ∼7 s. Halving the extracellular Mg concentration prolongs the adaptation, increasing the time constant of recovery to 13.3 s, but does not affect the magnitude of potentiation. In rods lacking guanylate cyclase activating proteins 1 and 2 (GCAP−/−), AP is more than doubled compared with WT rods, and halving the extracellular Mg concentration does not affect the recovery time constant. Rods from a mouse expressing cyclic nucleotide–gated channels incapable of binding calmodulin also showed a marked increase in the amplitude of AP. Application of an insulin-like growth factor-1 receptor (IGF-1R) kinase inhibitor (Tyrphostin AG1024) blocked AP, whereas application of an insulin receptor kinase inhibitor (HNMPA(AM)3) failed to do so. A broad-acting tyrosine phosphatase inhibitor (orthovanadate) also blocked AP. Our findings identify a unique form of adaptation in photoreceptors, so that they show transient hypersensitivity to light, and are consistent with a model in which light history, acting via the IGF-1R, can increase the sensitivity of rod photoreceptors, whereas the photocurrent overshoot is regulated by Ca-calmodulin and Ca2+/Mg2+-sensitive GCAPs.  相似文献   

6.
Summary In the anterior region ofEristalis eye there is a type of retinula cell with the following features. The spectral sensitivity is broad and the slope of the V/log10I curve increases with increasing wavelength when the response is measured to the initital peak of the receptor potential. With a change in stimulus wavelength from 452 nm to 594 nm, the optical axis moves about 1° and the plane of maximum sensitivity to polarized light changes by a definite angle. These effects can be attributed to an additional depolarizing effect on this retinula cell from a neighbouring cell of a different kind. The receptor potential waveform of the first cell type is also wavelength dependent. Measurements made to the plateau or notch following the peak reveal the same interaction but now it is an inhibition with latency 75–200 ms. A candidate cell which could cause the lateral interaction has a spectral sensitivity peak near 540 nm. If this is the correct source, the lateral interaction is in one direction because the slope of the V/log10I curve of the cell with 540 nm peak is independent of wavelength and it has negligible sensitivity in the range 350–450 nm.  相似文献   

7.
An electroretinogram (ERG), evoked by light stimuli, was recorded from ocelli of Polyorchis penicillatus (Hydromedusae). The ERG is a polyphasic response with a positive potential change at the onset of illumination followed by a slower biphasic pulse, and a positive deflection at the cessation of illumination which is followed by a series of high-frequency pulses. The most striking features of the initial pulse are its latency-log intensity relation and the gradation of pulse amplitude with respect to the intensity of the light stimulus and to different wavelengths. Maximum spectral sensitivity lies around 530 nm. Response patterns induced by shadowing and repeated stimulation of light- and dark-adapted ocelli are described. Morphological structures which could give rise to the mass response of the ocellus are discussed.  相似文献   

8.
The spectral sensitivity of the cod was determined under both dark adapted and light adapted conditions in the laboratory. Cod were trained by cardiac conditioning to detect a difference in radiance between an image of spots and the background radiance of a screen. Thresholds for this response were measured for a range of different wavelengths, and expressed as quantum adjusted values. Electroretino‐graphic studies were also performed on the eyes of cod, and spectral sensitivity curves prepared. Under dark adapted conditions both the behavioural and e.r.g. derived curves showed greatest sensitivity in the blue/green at 490 nm, matching the absorption curve for rhodopsin. A secondary peak in the behaviourally derived curve in the green/yellow at 550 nm indicated that a population of yellow cones may be implicated with the rods in scotopic vision. Under light adapted conditions the behavioural curves showed a shift to the blue, perhaps indicating an adaption to the high red content of the illuminating source. The e.r.g. curve showed greatest sensitivity to blue/green, as in the scotopic experiments but with an enhanced response at 550 nm, indicating greater cone activity. It is suggested that there is complex interaction between rods and cones in the cod retina, both types of receptor being active over a wide range of light intensities.  相似文献   

9.
Summary Spectral sensitivity of the cichlid fishHaplochromis burtoni was measured under both scotopic and photopic conditions using a two-choice, food reward, operant conditioning paradigm. The highest absolute sensitivity (scotopic) is one quantum for every 5 to 50 rods measured at 475 nm (equivalent to a corneal irradiance of 3.8×106 Q s–1 cm–2). A P5001 photopigment apparently mediates spectral sensitivity over most of the visible spectrum; microspectrophotometric studies of rods had previously shown them to contain this photopigment. However, the scotopic behavioral action spectrum shows a sensitivity to short wavelength light higher than is consistent with a P5001 photopigment alone mediating the scotopic visual process. Determinations made under photopic conditions reveal a behavioral action spectrum broader than that found under scotopic conditions and consistent with mediation by interaction of the three known cone types in an opponent processing manner. The calculated photopic threshold value of approximately 104 Q s–1 (receptor)–1 is in agreement with results from other species and corresponds to a corneal irradiance of about 7×1010Q s–1cm–2.  相似文献   

10.
Summary In the noctuid moth Spodoptera exempta, the distribution of visual pigments within the fused rhabdoms of the compound eyes was investigated by electron microscopy. Each ommatidium regularly contains eight receptor cells belonging to three morphological types: one distal, six medial, and one basal cell (Meinecke 1981); four different visual pigments — absorption maxima at approximately 355, 465, 515, and 560 nm — are known to occur within the eye (Langer et al. 1979). The compound eyes were illuminated in situ by use of monochromatic light of different wavelengths. This illumination produced a wide scale of structural changes in the microvilli of the rhabdomeres of individual cells. Preparation of eyes by freeze-substitution revealed the structural changes in the rhabdomeres to be effects of light occurring in vivo.The degree of structural changes may be considerably different in rhabdomeres within the same ommatidium; it was found to depend on the wavelength and the duration of illumination, the intensity received by the ommatidia as well as the spectral sensitivity of the receptor cells. Therefore, it was possible to estimate the spectral sensitivities of the morphological types of receptor cells. Generally, all medial cells are green receptors and all basal cells red receptors; distal cells are blue receptors in about two-thirds of the ommatidia, while in the remaining third of them distal cells are sensitive to ultraviolet light.Supported by Deutsche Forschungsgemeinschaft, Sonderforschungsbereich 114 (Bionach)  相似文献   

11.
Spectral sensitivities of jumping spider eyes   总被引:2,自引:0,他引:2  
Summary Spectral sensitivities of the anterior lateral, posterior lateral and anterior median eyes of the jumping spider,Menemerus confusus Boes. et Str. have been studied by recording electroretinograms (ERGs) and receptor potentials. The anterior and posterior lateral eyes have a single type of visual cell with a maximum spectral sensitivity at about 535–540 nm. The anterior median eye has four types of visual cells with maximum sensitivities at about 360, 480–500, 520–540 and 580 nm, respectively. The ERGs recorded from the optic nerve side (posterior part of the retina) were affected greatly by long wave chromatic light and those on the corneal side (anterior part of the retina) by short wave chromatic light, suggesting that each receptor layer contains a different photopigment.  相似文献   

12.
Bird colour vision is mediated by single cones, while double cones and rods mediate luminance vision in bright and dim light, respectively. In daylight conditions, birds use colour vision to discriminate large objects such as fruit and plumage patches, and luminance vision to detect fine spatial detail and motion. However, decreasing light intensity favours achromatic mechanisms and eventually, in dim light, luminance vision outperforms colour vision in all visual tasks. We have used behavioural tests in budgerigars (Melopsittacus undulatus) to investigate how single cones, double cones and rods contribute to spectral sensitivity for large (3.4°) static monochromatic stimuli at light intensities ranging from 0.08 to 63.5 cd/m2. We found no influences of rods at any intensity level. Single cones dominate the spectral sensitivity function at intensities above 1.1 cd/m2, as predicted by a receptor noise-limited colour discrimination model. Below 1.1 cd/m2, spectral sensitivity is lower than expected at all wavelengths except 575 nm, which corresponds to double cone function. We suggest that luminance vision mediated by double cones restores visual sensitivity when single cone sensitivity quickly decreases at light intensities close to the absolute threshold of colour vision.  相似文献   

13.
Summary The flying squirrel (Glaucomys volans) is a strongly nocturnal rodent. Previous anatomical observations suggested that the retina of this animal contains some cone-like receptors in addition to large numbers of rods. Evidence for duplicity of function in this visual system was obtained from an examination of three indices of visual activity: the electroretinogram (ERG), the isolated PIII retinal response, and the visually evoked cortical potential (VECP). The spectral sensitivity of the dark-adapted flying squirrel is similar to that of other mammals — it has a 500 nm peak (Figs. 3, 8). Responses of the ERG and isolated PIII to flickering light indicate the operation of two processes (Figs. 4, 7), one of which is unable to follow flickering light at repetition rates above 10–15 Hz. Spectral sensitivity measurements reveal that these two processes have different spectral sensitivities. The photopic mechanism in the flying squirrel visual system has peak sensitivity at about 520 nm (Figs. 5, 7, 9). The effects of steady light adaptation are much more obvious in the cortical potentials than they are in the retinal potentials.We thank David Birch for his advice and assistance. This research was supported by a Grant from the National Eye Institute (EY-00105).  相似文献   

14.
Summary This study reports photopic spectral sensitivity curves (351–709 nm) for four individual roach,Rutilus rutilus, determined by two choice appetitive training. All four curves show four sensitivity maxima at 361–398 nm, 421–448 nm, 501–544 nm and 634–666 nm which are related to the four known roach photopic visual pigments (Avery et al. 1982). The overall shape of the curves at long wavelengths indicates inhibitory interactions between the red and green cone mechanisms. That the high behavioural sensitivity in the UV is caused by a specific ultraviolet visual pigment and is not due to aberrant stimulation of the other cone types is shown by the redetermination of spectral sensitivity at short wavelengths (351–501 nm) following the selective bleaching of the three longer wavelength visual pigments. This depresses the blue sensitivity to a greater degree than the relatively unaffected UV sensitivity maximum. Spectral transmission data from two corneas and four lenses show that they transmit considerable amounts of light in the near UV.  相似文献   

15.
Sensory cells adjust their sensitivity to incoming signals, such as odor or light, in response to changes in background stimulation, thereby extending the range over which they operate. For instance, rod photoreceptors are extremely sensitive in darkness, so that they are able to detect individual photons, but remain responsive to visual stimuli under conditions of bright ambient light, which would be expected to saturate their response given the high gain of the rod transduction cascade in darkness. These photoreceptors regulate their sensitivity to light rapidly and reversibly in response to changes in ambient illumination, thereby avoiding saturation. Calcium ions (Ca2+) play a major role in mediating the rapid, subsecond adaptation to light, and the Ca2+-binding proteins GCAP1 and GCAP2 (or guanylyl cyclase–activating proteins [GCAPs]) have been identified as important mediators of the photoreceptor response to changes in intracellular Ca2+. However, mouse rods lacking both GCAP1 and GCAP2 (GCAP−/−) still show substantial light adaptation. Here, we determined the Ca2+ dependency of this residual light adaptation and, by combining pharmacological, genetic, and electrophysiological tools, showed that an unknown Ca2+-dependent mechanism contributes to light adaptation in GCAP−/− mouse rods. We found that mimicking the light-induced decrease in intracellular [Ca2+] accelerated recovery of the response to visual stimuli and caused a fourfold decrease of sensitivity in GCAP−/− rods. About half of this Ca2+-dependent regulation of sensitivity could be attributed to the recoverin-mediated pathway, whereas half of it was caused by the unknown mechanism. Furthermore, our data demonstrate that the feedback mechanisms regulating the sensitivity of mammalian rods on the second and subsecond time scales are all Ca2+ dependent and that, unlike salamander rods, Ca2+-independent background-induced acceleration of flash response kinetics is rather weak in mouse rods.  相似文献   

16.
Summary Prolactin cells were identified by means of immunocytochemistry with protein-A gold as a marker on ultrathin sections of the pituitary gland of young (3–4 months), middle-aged (16–19 months), and aged (26–30 months) male Wistar rats. Point-counting volumetry revealed that the prolactin (PRL) cell-volume density in middle-aged rats was significantly increased in comparison to the volume densities in young and aged rats. Within the PRL-cell population, four types of PRL cells were distinguished on the basis of the shape and size of their secretory granules. During aging, dramatic changes occurred in the relative volumes of the four cell types. The volume percentage of cells with round granules (type I, granule diameter 150–250 nm, and type IIA, granule diameter 250–350 nm) increased from ±30% in young rats to ±90% in old rats. The volume percentage of cells with round and polymorphic granules (type IIB; granule diameter 350–400 nm and type III; granule diameter 500–600 nm) decreased from ±70% in young rats to ±7% in old rats. Age-related changes in serum PRL levels were not found. It is concluded that although during the life span of the male Wistar rat considerable changes in PRL-cell volume densities and in the ratios of PRL-cell types occur serum, PRL levels remain more or less constant.  相似文献   

17.
Summary Photoreceptor cells of the drone,Apismellifera , have a voltage-gated Na+ membrane conductance that can be blocked by tetrodotoxin (TTX) and generates an action potential on abrupt depolarization: an action potential is triggered by the rising phase of a receptor potential evoked by an intense light flash (Autrum and von Zwehl 1964; Baumann 1968). We measured the intracellular voltage response to a small (9%), brief (30 ms) decrease in light intensity from a background, and found that its amplitude was decreased by 1M TTX. The response amplitude was maximal when the background intensity depolarized the cell to –38 mV. With intensities depolarizing the cell membrane to –45 to –33 mV the average response amplitude was decreased by TTX from 1.2mV to 0.5mV. TTX is also known to decrease the voltage noise during steady illumination (Ferraro et al. 1983) but, despite this, the ratio of peak-to-peak signal to noise was, on average, decreased by TTX. The results suggest that drone photoreceptors use voltage-gated Na+ channels for graded amplification of responses to small, rapid changes in light intensity.Abbreviations TTX tetrodotoxin - V i intracellular potential with respect to the bath - V o extracellular potential - V m,V i-V o approximate transmembrane potential - S amplitude of the voltage response to an 8.9% decrease in light intensity - N voltage noise, usually measured as root mean square voltage deviation as described in Methods  相似文献   

18.
Integrated spike activity of axons from the optic nerve was measured in an investigation of the e-vector sensitive mechanism underlying the ability of rainbow trout (Oncorhynchus mykiss) for orientation in downwelling, linearly-polarized light. In anaesthetized, immobilized fish, one eye was exposed to incremental light flashes which were superimposed over closely controlled background conditions. Under scotopic and various photopic conditions, intensity/response curves were generated from the on-response of the optic nerve. Relative sensitivity curves were then obtained as a function of e-vector direction for the 5 kinds of receptor cells in this trout's retina: rods, ultraviolet cones (UV), short wavelength cones (S), medium wavelength cones (M), and long wavelength cones (L).Under scotopic conditions, no sensitivity to e-vector was apparent: thus, rods do not mediate polarization sensitivity. Under photopic conditions, parr weighing 8–10 g exhibited e-vector sensitivity in two orthogonal channels. A UV stimulus (380 nm) on a white background evoked a three-peaked response (0°, 90°, and 180°) to the e-vector orientations presented in 30° increments between 0° and 180°. In contrast, when the background was illuminated with appropriate short and long wavelength cut-off filters, M-and L-cones showed maximum responses only to the horizontal (90°) plane whether they were stimulated at their -absorption band or their -absorption band in the near UV. Isolated UV-cones gave maximum responses to the vertical (0° and 180°) e-vector, thus corresponding to a second channel. The blue sensitive, S-cones, did not show evidence of polarization sensitivity. As well, no evidence of the polarization sensitivity was observed under UV isolating background conditions in larger individuals, 50–78 g smolts, although the other cone mechanisms responded as in smaller individuals.  相似文献   

19.
Talarico  L.  Cortese  A. 《Hydrobiologia》1993,(1):477-484
Audouinella saviana (Meneghini) Woelkerling was cultured at a constant temperature (24 °C) and different irradiances (from 1 µmol to 30 µmol photons m–2 s–1) of blue (430–470 nm) and green (500–560 nm) light in order to study its adaptive response. Modifications in colour, morphology and ultrastructure of the thalli, together with changes in pigment composition and in the spectral properties of chlorophyll a and R-phycoerythrin, were observed both by means of light and electron microscopy (TEM, SEM) and spectrophotometric and spectrofluorimetric analyses. In this paper we report the adaptive response of the seaweed to blue and green radiation by focussing on the cell wall and on the photosynthetic apparatus, particularly on phycobilisomes in situ and on R-PE after extraction. PBSs were fully structured only under blue light at low irradiance whilst they were absent under green light, whatever the irradiance, in spite of the high R-PE content. This fact, together with the spectral changes of R-PE, suggests adaptation at a molecular level, presumably referable to changes in aggregation state.  相似文献   

20.
Wilson  Matthew T.  Andrews  Allen H.  Brown  Annette L.  Cordes  Erik E. 《Hydrobiologia》2002,471(1-3):133-142
Halipteris willemoesi is a large octocoral commonly found in the Bering Sea. It is a member of a ubiquitous group of benthic cnidarians called sea pens (Octocorallia: Pennatulacea). Sea pens have a skeletal structure, the axial rod, that in cross section exhibits growth rings. Pairs of adjacent rings, or ring couplets, were assumed to be annuli and were used to estimate the age and growth of H. willemoesi. Twelve axial rods, extracted from H. willemoesi collected in the Bering Sea, were selected to represent small (25–29 cm total length), medium (97–130 cm TL) and large (152–167 cm TL) colonies. Each rod resembled a tapered dowel; the thickest part (0.90–6.75 mm in diameter) was at about 5–10% of total length from the base tip, the distal part was more gradually tapered than was the base. The number of ring couplets increased with rod size indicating their utility in estimating age and growth. Estimated age among rods was based on couplet counts at the thickest part of each rod; the average estimated age (±SE) was 7.1 ±0.7, 19.3 ±0.5, and 44.3 ±2.0 yr for small, medium and large-size rods, respectively. Based on these estimated ages, average growth rate in total length was 3.9 ± 0.2, 6.1 ± 0.3, and 3.6 ± 0.1 cm yr–1 for small, medium, and large-size colonies. The average annual increase in maximum rod diameter among all colonies was 0.145 ± 0.003 SE mm yr–1; therefore, age prediction from maximum rod diameter was calculated (estimated age (yr) = 7.0 * (maximum rod diameter, mm) –0.2; R 2 = 0.99). At maximum diameter, the average couplet width was relatively constant among the three colony sizes (0.072 ± 0.05 mm). X-ray diffraction and electron microprobe analyses revealed that the inorganic portion of the rod is composed of a high-magnesium calcite. Radiometric validation of these age and growth rate estimates was attempted, but high amounts of exogenous 210Pb precluded using the disequilibria of 210Pb:226Ra. Instead, 210Pb activities were measured in a series of cores extracted along the axial rod. These activities ranged from 0.691 ± 0.036 (SE) to 2.76 ± 0.13 dpm g–1, but there was no pattern of decay along the length of the rod; therefore, the growth rates and corresponding ages could not be validated. Based on estimated age from ring couplet counts, growth in total rod length is slow at first, fastest at medium size, and slows toward maximum size, with an estimated longevity approaching 50 yr.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号