首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Abstract: Although the specificity of multiple sclerosis (MS) brain immunoglobulins (lgs) remains unknown, the incubation of these lgs with human myelin can lead to myelin basic protein (MBP) degradation mediated by neutral proteases. In this study, we demonstrate that monoclonal antibodies (mAbs) specific to myelin components such as the CNS-specific myelin oligodendrocyte glycoprotein (MOG) and galactocerebroside (GalC) are found to induce a significant loss of MBP mediated by neutral proteases in myelin. By contrast, antibodies to periaxonal and structural components of myelin, such as MBP and myelin-associated glycoprotein, are ineffective in inducing such MBP degradation. Among the 11 different anti-MOG mAbs directed to externally located epitopes of MOG, only two were found to induce a significant degradation of MBP, suggesting that antibody-induced MBP degradation is not only antigen specific but also epitope specific. Based on the inhibition of MBP degradation in the presence of EGTA and the analysis of the degradation products obtained following incubation of myelin with mAbs to GalC and MOG (8-18C5), the neutral protease involved in this antibody-induced degradation of MBP could be calcium-activated neutral protease. Taken together, these results suggest that antibodies to GalC and MOG can play a major role in destabilizing myelin through MBP breakdown mediated by neutral proteases and thus have an important role to play in the pathogenesis of MS.  相似文献   

2.
Abstract: Cultured murine oligodendrocytes elaborate extensive membrane sheets that, unlike multilamellar myelin in vivo, allow the study of interactions between myelin proteins and cytoskeletal elements. This article describes the events that occur due to the interaction of specific antibodies with their respective antigens, myelin/oligodendrocyte-specific protein (MOSP) and myelin/oligodendrocyte glycoprotein (MOG), which are expressed uniquely by oligodendrocytes. After antibody binding, surface anti-MOSP:MOSP complexes redistribute over those cytoplasmic microtubular veins that have 2',3'-cyclic nucleotide 3'-phosphohydrolase colocalized along them. In contrast, surface anti-MOG-MOG complexes redistribute over internal myelin basic protein domains. Long-term anti-MOSP IgM exposure results in an apparent increase in number as well as thickness of microtubular structures in oligodendrocyte membrane sheets, whereas long-term anti-MOG exposure causes depolymerization of microtubular veins in membrane sheets. These data suggest that antibody binding to these two surface proteins elicits signals that have opposite effects on the cytoskeleton in oligodendroglial membrane sheets. Thus, it is possible that signals transduced via antibody binding may contribute to the pathogenesis of diseases affecting CNS myelin.  相似文献   

3.
The 2',3'-cyclic nucleotide 3'-phosphodiesterases (CNPs) are closely related oligodendrocyte proteins whose in vivo function is unknown. To identify subcellular sites of CNP function, the distribution of CNP and CNP mRNA was determined in tissue sections from rats of various developmental ages. Our results indicate that CNP gene products were expressed exclusively by oligodendrocytes in the CNS. CNP mRNA was concentrated around oligodendrocyte perinuclear regions during all stages of myelination. Developmentally, initial detection of CNP mRNA closely paralleled initial detection of its translation products. In electron micrographs of immunostained ultrathin cryosections, CNP was associated with oligodendrocyte membranes during the earliest phase of axonal ensheathment. In more mature fibers, immunocytochemistry established that the CNPs are not major components of compact myelin but are concentrated within specific regions of the oligodendrocyte and myelin internode. These include (a) the plasma membrane of oligodendrocytes and their processes, (b) the periaxonal membrane and inner mesaxon, (c) the outer tongue process, (d) the paranodal myelin loops, and (e) the "incisure-like" membranes found in many larger CNS myelin sheaths. A cytoplasmic pool of CNP was also detected in oligodendrocyte perikarya and larger oligodendrocyte processes. CNP was also enriched in similar locations in myelinated fibers of the PNS.  相似文献   

4.
Kim  Taeyoon  Pfeiffer  S. E. 《Brain Cell Biology》1999,28(4-5):281-293
Plasma membranes are complex arrays of protein and lipid subdomains. Detergent-insoluble, glycosphingolipid/cholesterol-enriched micro-domains (DIGCEMs) have been implicated in protein sorting and/or as sites for signaling cascades in the plasma membrane. We previously identified the presence of DIGCEMs in oligodendrocytes in culture and purified myelin and characterized a novel DIGCEM-associated tetraspan protein, MVP17/rMAL (Kim et al. (1995) Journal of Neuroscience Research 42, 413–422). We have now analyzed the association of known myelin proteins with DIGCEMs in order to provide a better understanding of their roles during myelin biogenesis. We used four well-established criteria to identify myelin DIGCEM-associated proteins: insolubility in a non-ionic detergent Triton X-100 at low temperature (4°C), flotation of the insoluble complexes to low density fractions in sucrose gradients, and TX-100 solubilization at 37°C, or at 4°C following treatment with the cholesterol-binding detergent saponin. We demonstrate that these proteins fall into four distinct groups. Although all tested proteins could be floated to a low-density fraction, proteolipid protein (PLP), myelin basic protein (MBP) and myelin associated glycoprotein (MAG) were solubilized by the detergent extraction, and connexin32 (Cx32) and oligodendrocyte-specific protein (OSP) met only some of the criteria for DIGCEMs. Only the non-compact myelin proteins 2′,3′-cyclic nucleotide 3′-phosphodiesterase (CNP) and myelin/oligodendrocyte glycoprotein (MOG) satisfied all four criteria for DIGCEM-associated proteins. Significantly, only ~40% of CNP and MOG were selectively associated with DIGCEMs. This suggests that they may have both non-active “soluble”, and functionally active DIGCEM-associated, forms in the membrane, consistent with current views that DIGCEMs provide platforms for bringing together and activating components of the signal transduction apparatus. We therefore propose that CNP and MOG may have unique roles among the major myelin proteins in signaling pathways mediated by lipid-protein microdomains formed in myelin.  相似文献   

5.
The neurological mutant mice shiverer (shi) and myelin deficient (shimld) lack a functional gene for the myelin basic proteins (MBP), have virtually no myelin in their CNS, shiver, seize, and die early. Mutant mice homozygous for an MBP transgene have MBP mRNA and MBP in net amounts approximately 25% of normal, have compact myelin, do not shiver or seize, and live normal life spans. We bred mice with various combinations of the normal, transgenic, shi, and shimld genes to produce mice that expressed MBP mRNA at levels of 0, 5, 12.5, 17.5, 50, 62.5, and 100% of normal. The CNS of these mice were analyzed for MBP content, tissue localization of MBP, degree of myelination, axon size, and myelin thickness. MBP protein content correlated with predicted MBP gene expression. Immunocytochemical staining localized MBP to white matter in normal and transgenic shi mice with an intensity of staining comparable to the degree of MBP gene expression. An increase in the percentage of myelinated axons and the thickness of myelin correlated with increased gene expression up to 50% of normal. The percentage of myelinated axons and myelin thickness remained constant at expression levels greater than 50%. The presence of axons loosely wrapped with oligodendrocytic membrane in mice expressing lower amounts of MBP mRNA and protein suggested that the oligodendroglia produced sufficient MBP to elicit axon wrapping but not enough to form compact myelin. Mean axon circumference of myelinated axons was greater than axon circumference of unmyelinated axons at each level of gene expression, further evidence that oligodendroglial cells preferentially myelinate axons of larger caliber.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

6.
7.
《The Journal of cell biology》1986,103(6):2673-2682
During the active phase of myelination in myelin-deficient mutant mice (mld), myelin basic protein (MBP) synthesis is defective and the myelin lamellae are uncompacted. In these mutants, we found a fast metabolism of the myelin-associated glycoprotein (MAG) and of sulfatides, and the presence of cholesterol esters and a degradation product of MAG, dMAG, indicating that mld myelin was unstable. The increased synthesis of MAG and Wolfgram protein, two proteins present in uncompacted myelin sheath and paranodal loops, was demonstrated by high levels of messengers. Simultaneously, we found an accumulation of inclusion bodies, vacuoles, and rough endoplasmic reticulum in mld oligodendrocytes. This material was heavily immunostained for MAG. Furthermore, the developmental change between the two molecular forms of MAG (p72MAG/p67MAG) was delayed in mld mice. In 85-d-old mld mice, the MBP content increased and myelin lamellae became better compacted. In these mutants, dMAG was absent and MAG mRNAs were found in normal amounts. Furthermore, the fine structure of mld oligodendrocytes was normal and the MAG immunostaining was similar to age-matched controls. These results support a functional role for MBP in maintaining the metabolic stability and the compact structure of myelin. Furthermore, in the absence of MBP and myelin compaction, the regulation of the synthesis of at least two membrane proteins related to myelin cannot proceed.  相似文献   

8.
The Structure and Function of Myelin Oligodendrocyte Glycoprotein   总被引:7,自引:4,他引:3  
Abstract : Myelin oligodendrocyte glycoprotein (MOG) is a quantitatively minor component of CNS myelin whose function remains relatively unknown. As MOG is an autoantigen capable of producing a demyelinating multiple sclerosis-like disease in mice and rats, much of the research directed toward MOG has been immunological in nature. Although the function of MOG is yet to be elucidated, there is now a relatively large amount of biochemical and molecular data relating to MOG. Here we summarize this information and include our recent findings pertaining to the cloning of the marsupial MOG gene. On the basis of this knowledge we suggest three possible functions for MOG : (a) a cellular adhesive molecule, (b) a regulator of oligodendrocyte microtubule stability, and (c) a mediator of interactions between myelin and the immune system, in particular, the complement cascade. Given that antibodies to MOG and to the myelin-specific glycolipid galactocerebroside (Gal-C) both activate the same signaling pathway leading to MBP degradation, we propose that there is a direct interaction between the membrane-associated regions of MOG and Gal-C. Such an interaction may have important consequences regarding the membrane topology and function of both molecules. Finally, we examine how polymorphisms and/or mutations to the MOG gene could contribute to the pathogenesis of multiple sclerosis.  相似文献   

9.
The presence of degradation products of the myelin/oligodendrocyte glycoprotein (MOG) and a new myelin/oligodendrocyte associated protein, FD1, defined by a monoclonal antibody was established in a subfraction (the floating fraction, or FF) of adult rabbit CNS. The histochemical distribution of FD1 was determined by indirect immunofluorescense using conventional and confocal microscopy. FD1 was found to be present in oligodendrocytes, and at the outer rim of CNS myelin sheaths. Strong antibody reactivity was noted at nodes of Ranvier, as well as in regions with a high nodal density. No staining of compact myelin was seen. In the PNS, inner and outer cytoplasmic compartments of the Schwann cells as well as their cell bodies were stained, with no staining of compact myelin. The FF has previously been shown to be highly enriched in Marchi-positive bodies. These structures are situated paranodally in the CNS of myelinated nerve fibers, and their presence has been interpreted as reflections of myelin breakdown and turnover occurring in association with myelin sheath segments situated close to nodes at Ranvier in adult, normal vertebrate CNS. The present findings extend previous observations of partially degraded myelin-associated proteins in the FF, and give further results indicating that Marchi-positive bodies are aspects of intermediate stages in myelin catabolism.  相似文献   

10.
Cyclic AMP (cAMP) is known to induce the activity of the myelin enzyme 2',3'-cyclic nucleotide 3'-phosphohydrolase (CNP; EC 3.1.4.37) in C6 rat glioma cells. This report shows that CNP is also inducible in oligodendrocytes explanted from 1-day-old rat cerebrum and grown in tissue culture. Induction was observed after a 1-day treatment with 1 mM N6, O2-dibutyryl cyclic AMP (dbcAMP) and was maximal after 5 days, reaching 200-240% of control. Induction was observed both in mixed cerebral cell cultures containing oligodendrocytes and astrocytes, and in purified cultures of oligodendrocytes prepared by a differential shakeoff procedure. Addition of dbcAMP to the cultures 3-9 days after the cells were explanted from rat brain induced CNP activity, but no induction was observed when dbcAMP treatment was begun 13 or more days after explanation. These results demonstrate that one component of myelin, CNP, is inducible in oligodendrocytes by a cAMP-mediated mechanism, and suggest a role for cAMP in the regulation of the myelin-associated functions of oligodendrocytes.  相似文献   

11.
A monoclonal antibody (8-18C5) directed against myelin/oligodendrocyte glycoprotein (MOG) induced demyelination in aggregating brain cell cultures. With increasing doses of anti-MOG antibody in the presence of complement, myelin basic protein (MBP) concentration decreased in a dose-related manner. A similar, albeit less pronounced, effect was observed on specific activity of 2',3'-cyclic nucleotide 3'-phosphohydrolase. In the absence of complement, anti-MOG antibody did not induce detectable demyelination. In contrast to the effect of anti-MOG antibody and as expected, anti-MBP antibody did not demyelinate aggregating brain cell cultures in the presence of complement. These results provide additional support to the suggestion that MOG, a quantitatively minor myelin component located on the external side of the myelin membrane, is a good target antigen for antibody-induced demyelination. Indeed, they show that a purified anti-MOG antibody directed against a single epitope on the glycoprotein can produce demyelination, not only in vivo as previously shown, but also in cultures. Such an observation has not been made with polyclonal antisera raised against purified myelin proteins like MBP and proteolipid protein, the major protein components of the myelin membrane, or myelin-associated glycoprotein. These observations may have important implications regarding the possible role of anti-MOG antibodies in demyelinating diseases.  相似文献   

12.
Abstract: Myelin proteins and the total Wolfgram protein fraction were isolated from the CNS of several mammalian species and characterized with rabbit anti-bovine 2', 3'-cyclic nucleotide 3'-phosphodiesterase (CNP) antisera after sodium dodecyl sulfate-polyacrylamide gel electrophoresis and electrophoretic transfer to nitrocellulose membranes. The corresponding CNP proteins cross-reacted across all species examined, suggesting that the CNP amino acid sequence was fairly well conserved in all six species. The same corresponding proteins were also identified immunochemically in the crude total Wolfgram protein fraction in the region of the W1 myelin protein, thus further supporting and extending two different previous reports indicating a relationship between CNP and the W1 protein. In addition to these CNS enzyme sources, peripheral nervous system CNP (rabbit and rat sciatic nerve) was also recognized by these same rabbit anti-bovine (CNS) CNP antisera. CNP was also detected in freshly isolated delipidated bovine oligodendrocyte membranes. These results suggest that rabbit anti-bovine CNP antisera may be of use in localization and structural studies of this enzyme in several different species and will permit clear identification of CNP in oligodendrocytes and their isolated membrane fractions.  相似文献   

13.
We have investigated the site of synthesis of the 2',3'-cyclic nucleotide 3'-phosphodiesterases (CNPs I and II) in rat brain. Rapid kinetics of incorporation of CNPs into oligodendrocyte plasma membrane in the intact brain are consistent with their synthesis on free polysomes. This hypothesis was confirmed by the translation in vitro of RNA isolated from free and bound polysomes, respectively. Unlike myelin basic protein (MBP) mRNAs, CNP mRNAs are not enriched in a myelin-associated pool of RNA. MBPs, but not CNPs, were found to readily associate in vitro with membrane vesicles derived from rough endoplasmic reticulum. The avidity of MBPs in binding to membranes is probably related to the previously observed spatial segregation of MBP mRNAs into actively myelinating cellular processes of the oligodendrocyte. Such a segregation would ensure that newly synthesized MBPs are immediately incorporated into myelin. In contrast, the CNPs probably associate with the cytoplasmic surface of the oligodendrocyte plasma membrane through interaction with a membrane-bound receptor.  相似文献   

14.
The myelin/oligodendrocyte glycoprotein (MOG) is found exclusively in the CNS, where it is localized on the surface of myelin and oligodendrocyte cytoplasmic membranes. The monoclonal antibody 8-18C5 identifies MOG. Several studies have shown that anti-MOG antibodies can induce demyelination, thus inferring an important role in myelin stability. In this study, we demonstrate that MOG consists of two polypeptides, with molecular masses of 26 and 28 kDa. This doublet becomes a single 25-kDa band after deglycosylation with trifluoromethanesulfonic acid or peptide-N4-(N-acetyl-beta-glucosaminyl)asparagine amidase, indicating that there are no or few O-linked sugars and that the doublet band represents differential glycosylation. Partial trypsin cleavage, which also gave a doublet band of lower molecular weight, confirmed this idea. MOG was purified by polyacrylamide gel electrophoresis, followed by electroelution. Three N-terminal sequences of eight to 26 amino acids were obtained. By western blot analysis, no binding was found between MOG and cerebellar soluble lectin. MOG does not seem to belong to the signal-transducing GTP-binding proteins. Reduced MOG concentrations were observed in jimpy and quaking dysmyelinating mutant mice, giving further support to its localization in compact myelin of the CNS.  相似文献   

15.
The mRNAs for two myelin proteins, myelin basic protein (MBP) and myelin-associated oligodendrocytic basic protein (MOBP)-81A, are uniquely located at sites where myelin sheaths are assembled. Here, we use subcellular fractionation to show that four MOBP mRNAs, like MBP mRNA, are located at sites of myelin sheath assembly, and that three other MOBP mRNAs are located in oligodendrocyte soma. The MOBP-81 protein is found in myelin and in another subcellular fraction, whereas other myelin proteins, including MBP, 2',3'-cyclic nucleotide 3'-phosphodiesterase, and myelin-associated glycoprotein, are largely restricted to myelin. Different MBP mRNAs are generated by alternative splicing. All of them contain an RNA transport sequence (RTS) that directs them to sites in oligodendrocytes, where myelin sheaths are assembled. Consequently, all are enriched in myelin. After fractionation, four MOBP mRNAs, MOBP-71, MOBP-81A, MOBP-99, and MOBP-169 (identified in this study), are enriched in myelin. These mRNAs contain a common exon, exon 8b, which has a nucleotide sequence that is similar to MBP mRNA RTS. This sequence likely directs these mRNAs to sites of myelin sheath assembly. Three other MOBP mRNAs, MOBP-69, MOBP-81B, and MOBP-170, lack this exon. Their subcellular distribution indicates that they are largely retained in oligodendrocyte soma. We conclude that the distribution of MOBPs in oligodendrocytes is strongly influenced by alternative splicing of the corresponding mRNAs.  相似文献   

16.
Electron microscopic immunocytochemical studies were carried out to localize myelin basic protein and myelin proteolipid protein during the active period of myelination in the developing rat brain using antisera to purified rat brain myelin proteolipid protein and large basic protein. The anti-large basic protein serum was shown by the immunoblot technique to cross-react with all five forms of basic protein present in the myelin of 8-day-old rat brain. Basic protein was localized diffusely in oligodendrocytes and their processes at very early stages in myelination. The immunostaining for basic protein was not specifically associated with any subcellular structures or organelles. The ultrastructural localization of basic protein suggests that it may be involved in fusion of the cytoplasmic faces of the oligodendrocyte processes during compaction of myelin. Immunoreactivity in the oligodendrocyte and myelin due to proteolipid protein appeared at a later stage of myelination than did that due to basic protein. Staining for proteolipid protein in the oligodendrocyte was restricted to the membranes of the rough endoplasmic reticulum, the Golgi apparatus, and apparent Golgi vesicles. The early, uncompacted periaxonal wrappings of oligodendrocyte processes were well stained with antiserum to large basic protein whereas staining for proteolipid protein was visible only after the compaction of myelin sheaths had begun. Our evidence indicates that basic protein and proteolipid protein are processed differently by the oligodendrocytes with regard to their subcellular localization and their time of appearance in the developing myelin sheath.  相似文献   

17.
Zusammenfassung In der Wand der Eminentia mediana des erwachsenen Kaninchens kommen myelinisierte Oligodendrozyten vor. Jeder von ihnen ist von einer dünnen Markscheide umgeben. Dieses Myelin unterscheidet sich in folgendem von Axon-Myelin: Stellenweise erscheinen die dieOligodendrozyten umgebenden Lamellen nicht als typische Linien (innere Verbundmembranen), sondern es bleiben zytoplasmatische Umscheidungen der Oligodendrozyten erhalten. Die Lamellen können mit einer zungenförmigen Schleife in verschiedener Länge innerhalb der Markscheide endigen. Das Myelin der Oligodendrozyten ist deshalb unregelmäßg strukturiert.
Myelinated oligodendrocytes in the wall of the median eminence in rabbit
Summary In the wall of the median eminence of the adult rabbit myelinated oligodendrocytes occur. Each of them is surrounded by thin myelin sheaths. This myelin differs in the following respects from axonal myelin: In some instances lamellae surrounding oligodendrocytes appear not as typical dense lines (internal compound membranes) but as persisting oligodendrocyte cytoplasm sheaths. Lamellae may terminate in various length within the sheaths forming a tonguelike loop. For this reason irregularities appear in the structure of oligodendrocyte myelin.
Die Untersuchung wurde mit dankenswerter Unterstützung durch die Deutsche Forschungsgemeinschaft durchgeführt.  相似文献   

18.
The activities of three myelin-associated enzymes, carbonic anhydrase, 5'-nucleotidase, and 2',3'-cyclic nucleotide-3'-phosphodiesterase (CNP), were measured in oligodendrocytes, neurons, and astrocytes isolated from the brain of rats 10, 20, 60, and 120 days old. The carbonic anhydrase specific activity in oligodendrocytes was three- to fivefold higher than that in brain homogenates at each age, and, at all the ages, low activities of this enzyme were measured in neurons and astrocytes. The oligodendrocytes and astrocytes from the brains of rats at all ages had higher activities of the membrane-bound enzyme 5'-nucleotidase than was observed in neurons. In oligodendrocytes from 10- and 20-day-old rats, the 5'-nucleotidase activity was two-to threefold the activity in the homogenates (i.e., relative specific activity = 2.0-3.0), and the relative specific activity of this enzyme in the oligodendrocytes declined to less than 1.0 at the later ages, concomitant with the accumulation of 5'-nucleotidase in myelin. The CNP activity was always higher in oligodendrocytes than in neurons, but not appreciably different from that in astrocytes from 20 days of age onward. The relative specific activity of CNP was highest in the oligodendrocytes from 10-day-old rats but was lower, at all ages, than we had observed in bovine oligodendrocytes. These enzyme activities in oligodendroglia are quite different in amount and developmental pattern from those reported previously for myelin.  相似文献   

19.
Bovine myelin/oligodendrocyte glycoprotein (MOG) was purified from a Wolfgram protein fraction of brain myelin by molecular sieving and preparative gel electrophoresis. The N-terminal sequence of this wheat germ agglutinin reacting glycoprotein was determined. Antibodies against purified MOG and synthetic N-terminal octapeptide of MOG were produced in rabbits. Respective affinity purified antibody preparations gave identical results on Western blots. Treatment with specific glycosidases indicated that the oligosaccharide chains of MOG are only of N-chain type. This glycoprotein seems to be restricted to mammalian species since it was not detected in other animal species, ranging from fish up to reptiles. Immunohistochemical investigations on rat brain sections revealed that MOG is restricted to myelin sheaths and oligodendrocytes, thus corroborating previous results obtained with the MOG 8-18C5 monoclonal antibody. Decreased staining pattern in Jimpy brain further attested its specific localization in myelin-related structures. The octapeptide site-specific antibodies were not reactive on brain sections which may be attributed to the burying of this N-terminal sequence in the membrane. These MOG polyclonal antibodies appear to be valuable tools for further studies concerning this minor glycoprotein.Abbreviations BSA bovine serum albumin - CNS central nervous system - DM-20 minor myelin proteolipid protein - MAG Myelin-associated glycoprotein - MBP myelin basic proteins - MOG Myelin/oligodendrocyte glycoprotein - OMgp Oligodendrocyte/Myelin glycoprotein - PAGE polyacrylamide gel electrophoresis - PBS phosphate buffered saline - PeptMOG n-terminal octapeptide of MOG - PLP major myelin proteolipid protein - PMSF phenylmethylsulfonylfluoride - SDS sodium dodecylsulphate - TBS Tris buffered saline - WPF Wolfgram protein fraction - WGA Wheat germ agglutinin  相似文献   

20.
Abstract: Myelin-deficient ( mld ) is a complex mutation affecting the myelin basic protein (MBP) locus of the mouse. It consists of duplication and partial inversion of the MBP gene and results in a dysfunctional MBP locus. The mutant phenotype is reversed, both in vivo and in vitro, in ∼5% of mld oligodendrocytes. One possible mechanism for the somatic reversion is recombination between homologous sequences of the duplicated gene copies to reconstitute a functional MBP locus. There are several possible recombination events that could reconstitute a functional MBP locus by DNA rearrangement. Two of these would result in reinversion and circularization of specific MBP gene sequences, respectively. In this work polymerase chain reaction analysis was used to detect both reinverted and circularized MBP gene sequences in mld mouse tissues, indicating that DNA rearrangement at the MBP locus does occur. Analysis of individually harvested cells showed that in revertant MBP-positive mld oligodendrocytes DNA rearrangement at the MBP locus was correlated with reactivation of the MBP gene. Fluctuation analysis showed that reactivation of the MBP locus is a stochastic event occurring with a frequency of ∼1.4 × 10−6 per cell per cell cycle during oligodendrocyte development. The frequency of rearrangement and reactivation of the MBP locus was comparable in double mutant ( mld/mld , scid/scid ) and single mutant ( mld/mld , + scid /+ scid ) mice, indicating that the scid factor is not required for MBP gene reactivation in mld . The significance of DNA rearrangement in mammalian development is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号