首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
The influence of Fe nutrition on the distribution of the heavy metals Fe, Mn, Zn, and Cu and of the heavy metal chelators nicotianamine (NA) and citrate in 6 different shoot and 3 different root parts and in xylem exudate of a NA-containing tomato wild type and its NA-less mutant was investigated. Under the same Fe supply the mutant showed higher Fe, Mn, and Zn concentrations in all organs investigated, with exception of the shoot apex. The Cu concentration in the mutant was only in root parts higher than in the wild type but much lower in leaves. Analyses of xylem exudate showed that Fe, Mn, and Zn were readily translocated by both genotypes from the roots to the shoot at all levels of Fe supply, whereas in the absence of NA, Cu was only poorly transported. Citrate as main Fe chelator in the xylem was present in high concentrations in xylem exudate of the wild type under low Fe supply but in the mutant also at 10 M FeEDTA. NA occurred in xylem exudate of the wild type in concentrations high enough to chelate heavy metal ions.Generally, high Fe supply induced a decrease of Mn, Cu, and Zn concentrations in all organs of the wild type whereas high concentrations were observed in most cases under Fe deficiency. A positive correlation between Fe supply and NA concentration existed only in the shoot apex and in the xylem exudate of wild type plants. From the correlation between Cu and NA translocation and from the high stability constant of the NA-Cu-complex (log K=18.6) it is concluded that NA is a chelator for Cu in the xylem, whereas the translocation of Fe, Mn, and Zn is independent of NA.  相似文献   

2.
Nicotianamine forms complexes with Zn(II) in vivo   总被引:2,自引:0,他引:2  
The non-proteinogenic amino acid nicotianamine (NA) is a major player in plant metal homeostasis. It is known to form complexes with different transition metals in vitro. Available evidence associates NA with translocation of Fe, and possibly other micronutrients, to and between different plant cells and tissues. To date, however, it is still extremely challenging to detect metal-ligand complexes in vivo because tissue disruption immediately changes the chemical environment and thereby the availability of binding partners. In order to overcome this limitation we used various Schizosaccharomyces pombe strains expressing a plant NAS gene to study formation of metal-NA complexes in vivo. Tolerance, accumulation and competition data clearly indicated formation of Zn(ii)-NA but not of Cu(ii)-NA complexes. Zn(ii)-NA was then identified by X-ray absorption spectroscopy (XAS). About half of the cellular Zn was found to be bound by NA in NAS-expressing cells while no NA-like ligands were detected by XAS in control cells not expressing NAS. Given the high conservation of eukaryotic metal homeostasis components, these results strongly suggest the possible existence of Zn(ii)-NA complexes also in planta. Reported observations implicating NA in plant Zn homeostasis would then indeed be attributable to direct interaction of Zn(ii) with NA rather than only indirectly to perturbations in Fe metabolism. Re-evaluation of extended X-ray absorption fine structure (EXAFS) spectra for the Zn hyperaccumulator Thlaspi caerulescens showed that NA is as expected not a major storage ligand for Zn. Instead it is hypothesized to be involved in efficient translocation of Zn to above-ground tissues in hyperaccumulators.  相似文献   

3.
Long-term effects of iron: Zinc interactions on growth in rats   总被引:1,自引:0,他引:1  
The influence of iron (Fe) on the bioavailability and functional status of zinc (Zn) was studied in young rats using metabolic balances and tissue dosages, which were compared to growth. Diets supplied adequate intakes of Fe (45 and 300 mg/kg diet) and Zn (14 and 45 mg/kg) for 2 mo. Two metabolic balance determinations were performed that were correlated for Zn and Fe during the first and the last weeks of the study. A significant effect of Fe supply, but not of Zn was displayed on Fe absorption; both Fe and Zn diet concentrations had a significant influence on Zn absorption. Fe and Zn organ contents were significantly correlated with the amount absorbed during the two metabolic balances. There was a positive correlation between liver and muscle Fe and Fe absorption, and Fe absorption and muscle Zn, as well as a negative one with liver Zn; a positive correlation was displayed between Zn absorption and Zn organ content. No correlation was found between Zn absorption and Fe tissue content. Growth was correlated with Zn, but not with Fe absorption during both balances. A positive correlation was displayed between growth and Zn liver content, and a negative one with Fe liver content. Care must be taken to give growing subjects balanced diets or supplementation, since the negative interactions between these trace elements are likely to persist as long as the diet is given.  相似文献   

4.
The relationship between Ni-induced hepatic lipid peroxidation (LPO) and the concentrations of Ni and trace elements was investigated in male ICR mice. The protective effects of antioxidants were also examined. Hepatic LPO and the concentrations of Ni, Fe, Cu, and Zn in the liver were enhanced after an ip injection of nickel chloride (NiCl2). Dose-response studies were conducted on male mice with different groups being injected with 50, 85, and 170 μmol Ni/kg. LPO increased significantly in a dose-dependent manner. In time-course studies, mice were administrated NiCl2 (170 μmol Ni/kg) and killed at intervals of 6, 12, 24, and 48 h after injection. Both LPO and the accumulation of Ni, Fe, Cu, and Zn in the liver showed a significantly positive time-course relationship after NiCl2 injection. At 1 h and 24 h after a single ip injection of 170 μmol Ni/kg, the mice were given an ip injection of ascorbic acid (vit C), glutathione (GSH), and selenium (Se). Vit C and GSH significantly decreased both the level of hepatic LPO and the concentration of Ni in the liver, but did not decrease the accumulation of Fe, Cu, and Zn. However, LPO in the experimental group of mice was different significantly from that in the control group. In conclusion, the results suggest that Ni-induced hepatic LPO may result from increasing the amounts of Ni, Fe, and Cu, since these elements are involved in the generation of hydroxyl radical by inducing the Fenton reaction, thus instigating the Ni-mediated hepatic LPO. The protective effects of vit C and GSH in hepatic LPO result not only from removing the oxygen reactive species, but also from decreasing the Ni concentration.  相似文献   

5.
The concentrations of Fe, Zn and Co were determined in up to five successive needle age classes in 54 individual Norway spruce trees from eight different sites (soil pH 3.1–7.7). Fe concentrations (12–25 μg in needles from the current year) were lower than most published values, due to the removal of surface contamination prior to analysis. Fe showed a significant positive correlation with Al. Successive needle age classes either had constant values or showed an increase for Fe concentrations; individual trees on a given site were rather uniform in their behaviour. Zn concentrations were 19–40 μg/g. On acid sites, they showed a positive correlation with total soil concentrations. The majority of trees showed decreasing Zn concentrations in successive needle age classes, but constant or increasing concentrations were also found; site homogeneity was less than with Fe. Co concentrations differed between trees on a neutral soil (12 ng/g) and on acid soils (41–174 ng/g). They showed a significant positive correlation with Mn needle concentrations. The changes of Co with needle age in most, but not all, trees were similar to those of Zn. The different changes of Fe, Zn and Co with needle age may be due to a different retranslocation. A modest retranslocation of Fe as opposed to a high retranslocation of Zn and Co (in most trees) is consistent with the observed behaviour. Received: 10 May 1999 / Accepted: 8 September 1999  相似文献   

6.
The concentration of metals (Al, Cu, Fe, Mn, Ni, Zn) and B were determined in the above- and belowground biomass of Phragmites australis collected from the microcosm constructed wetland system used for the polishing of real electroplating wastewater. Translocation factor and bioconcentration factor were determined. Pearson correlation test was used to determine correlation between metal concentration in substrate and above- and belowground parts of Phragmites australis. The obtained results suggested that Phragmites australis did not play a major role as an accumulator of metals. It was observed also that the substrate could have exerted an effect on the translocation of Ni, Cu, Zn and Mn. The analysed concentrations of metals and B in biomass were in the range or even below the concentrations reported in the literature with the exception of Ni. The aboveground biomass was found suitable as a composting input in terms of metals concentrations.  相似文献   

7.
Nicotianamine (NA) is among the most studied plant metal chelators. A large body of evidence supports its crucial role for Fe distribution in plants and as a precursor of phytosiderophore synthesis in grasses. NA forms stable complexes in vitro not only with Fe(II) and Fe(III) but also with various other divalent metal cations including Zn(II). Early observations indicated a possible contribution of NA to Zn trafficking in plants. Numerous studies on transgenic monocot and dicot plants with modulated NA levels have since then reported Zn accumulation phenotypes. NAS genes were shown to represent promising targets for biofortification efforts. For instance, NA was found to bind Zn in rice grains in a form bioavailable for humans. Recently, additional strong support for the existence of Zn–NA complexes in planta has been obtained in rice, Arabidopsis thaliana and the Zn hyperaccumulating plant A. halleri. We review the evidence for a role of NA in the intercellular and long-distance transport of Zn in plants and discuss open questions.  相似文献   

8.
Concentrations of various essential and toxic elements (Ba, Ca, Co, Cu, Fe, Mg, Mn, Sr, Zn and Al, Ag, Cd, Cr, Ni, Pb, Tl) were analysed by inductively coupled plasma mass spectrometry in the acanthocephalan Acanthocephalus lucii and in different tissues of its host Perca fluviatilis. Nearly all the elements were found in significantly higher concentrations in the acanthocephalan than in the host tissues. Spearman correlation analysis revealed several strong inter-element associations within the organs of perch and within the parasites. Furthermore, statistical analysis revealed different competitive interactions. The concentrations of several essential elements (Ba, Ca, Fe, Mn, Sr and Zn) within the parasites decreased with an increasing number or weight of worms inside the intestine of the host. Additionally, the levels of some elements in the perch liver were negatively correlated with the weight of A. lucii in the intestine. Thus, it emerged that not only is there competition for essential elements between acanthocephalans inside the gut but there is also competition for these elements between the host and its parasites.  相似文献   

9.
《Process Biochemistry》2004,39(7):833-839
The constants of complexation of extracellular polymers (ECPs) extracted from sludges for three metals, Cu, Ni and Zn at pH 7, were determined using a polarographic method (stripping mercury dropping electrode mode (SMDE)). The curves obtained were exploited according to Chau's or Ruzic's method. The influence of the biochemical composition of ECP on the binding of Cu, Ni and Zn was investigated on six solutions of ECP. Polarography in SMDE mode is a simple method to determine complexation constants of ECP extracted from activated sludges. For each, the number of sites of complexation increased in the following order: Zn≪Ni<Cu. The low number of binding sites onto ECP for Zn did not allow the determination of a constant of complexation. For ECP studied, the constant of complexation was always higher for Cu than for Ni. A statistical study showed that the higher the content of proteins, humic acids and polysaccharides contained in ECP, the more they were able to bind high quantities of Cu. For Ni, the parameters of complexation were linked to the amount of uronic acid. These results suggest that carboxylic groups play a major role in Ni and Cu complexation by ECP at pH 7.  相似文献   

10.
We determined the hepatic and renal concentrations of Cd, Pb, Zn, Cu, and Fe in (1) marine mammals (three bottle-nosed dolphins, six California sea lions, and one sea otter), (2) freshwater and brackish-water mammals (one Oriental short-clawed otter and four European river otters), and (3) sea birds (three rock-hopper penguins, two king penguins, three Humboldt penguins, four Macaroni penguins, and four Magellanic penguins), all of which were kept in a zoo and an aquarium in Japan. We investigated the species-specificity of Cd accumulation in these aquatic animals. We also presented the basic data on metal concentrations. The concentrations of Cd in liver and kidney tended to be higher in marine mammals than in freshwater mammals. Many penguins, sea birds, showed high Cd concentrations. These results suggest that the habits of these animal species may be involved in accumulation of Cd. Pb concentrations were below the detection limit or low in both liver and kidney [not detected (ND)=0.132 μg/g and ND=0.183 μg/g, respectively]. The hepatic concentrations of Zn and Cu were high in young animals. In penguins, a positive correlation was found between the Zn and Cd concentrations in the liver and kidney and between the Cu and Cd concentrations in the liver. Individual variation was large in Fe concentration (48–3746 μg/g in the liver and 51–980 μg/g in the kidney).  相似文献   

11.
Concentrations of cadmium, lead, iron, zinc, copper, chromium, nickel, aluminium and arsenium were analysed in blood serum of cattle from organic (n = 20) and conventional (n = 21) farms. The elements were determined by inductively coupled plasma atomic emission spectrometry using an Optima 2000 DV instrument (Perkin Elmer Inc.). Animals from the organic farm were characterised by significantly lower (P < 0.01) serum concentrations of Pb, Zn, Fe, Cu, Cr, Ni, As and Al compared to animals from the conventional farm. The concentration of Cd was similar in animals from both organic and conventional farms. The concentration of toxic elements in cattle from organic and conventional farms studied was very low. The trace essential elements were generally within the adequate ranges except Zn and Cu, which were deficient. In organically reared animals, also serum Fe content was below the critical level for diagnosing iron deficiency. Pb was significantly correlated with Cd, Zn, Fe, Cu and Ni. A significant positive correlation between the concentration of Cd and Zn, Cu and Ni concentrations was only observed in cows from the organic farm. The present results suggest that organically raised animals are less exposed to harmful environmental influences such as the environmental pollution with heavy metals. On the other hand, these animals are at a greater risk of mineral deficiency compared to animals kept on conventional farms.  相似文献   

12.
13.
Literature data concerning the effect of increasing dietary Ni concentrations on Fe, Cu, and Zn status in rats are sparse and, in part, controversial. Therefore, the effects of the addition of either 0, 3, 50, or 100 mg Ni/kg diet on Fe, Cu, and Zn status of rats were investigated in two separate experiments. Purified diets were used that were composed according to the established nutrient requirements of rats. Ni in kidney was increased with increasing Ni intakes. Dietary Ni did not significantly influence Fe concentrations in plasma, liver, kidney, femur, and spleen. Likewise, the addition of Ni to the diet did not alter Cu status. Zn concentrations in femur were significantly decreased after feeding the diets with 100 mg Ni/kg. However, Zn in plasma, liver, kidney, and spleen was not affected. It is concluded that variations in dietary Ni concentrations have no major impact on Fe, Cu, and Zn status in rats.  相似文献   

14.
The influence of the endogenous micronutrient chelator, nicotianamine(NA), and of Cu nutrition on the distribution of Cu, Fe, Mn,Zn, and NA was investigated in eight different shoot organs,roots, and in xylem exudates of the NA-containing tomato wildtype Lycopersicon esculentum Mill. cv. Bonner Beste and itsNA-less mutant chloronerva. Contrary to the other heavy metals, copper transport in thexylem was inefficient in the mutant and was enhanced by an applicationof NA to the roots or leaves in proportion to the applied NAconcentration. Also, with NA application, the Cu concentrationin mutant roots decreased significantly, and increased in theshoot. Fe and Mn transport in the xylem was greater in the mutantthan in the wild type, and was decreased in the mutant by theapplication of NA to the leaves. Zn transport in the xylem wasthe same in both genotypes and was unaffected by NA application.After application of NA to leaves and roots of the mutant itwas possible to detect NA in the xylem exudate (up to 2nmolNA(g–1 root FWh–1). High Cu supply (3 µM) resulted in higher Cu and Mn concentrationsin all organs of the wild type as compared to mutant organs,but Fe concentrations were not influenced. Under high Cu supply(3µM) the NA concentrations of roots and the three youngestleaves of the wild type were higher than under normal Cu supply(0.3 µM). The highest concentrations were found in theshoot apex under both Cu conditions (up to 361 nmol NAg–1FW). It is concluded from our experiments and from the high stabilityconstant of the NA-Cu-complex (log K= 18.6) that NA is involvedin Cu translocation whereas for the translocation of Fe, Mn,and Zn, NA is not essential. Key words: Copper transport, micronutrients, mobilization, nicotianamine, xylem  相似文献   

15.
Eight elements (i.e. K, Ca, Mn, Fe, Cu, Zn, Se, and Rb) were measured in 50 different regions of 12 normal human brains by particle-induced X-ray emission (PIXE) analysis. The dry weight concentrations of K, Fe, Cu, Zn, Se, and Rb were consistently higher for gray than for white matter areas. The K, Zn and Se concentrations for the regions of mixed composition and, to some extent, also the Rb concentrations, were intermediate between the gray and white matter values, and they tended to decrease with decreasing neuron density. The mean dry weight concentrations of K, Ca, Zn, Se, and Rb in the various brain regions were highly correlated with the mean wet-to-dry weight ratios of these regions. For Mn, Fe, and Cu, however, such a correlation was not observed, and these elements exhibited elevated levels in several structures of the basal ganglia. For K, Fe, and Se the concentrations seemed to change with age. A hierarchical cluster analysis indicated that the structures clustered into two large groups, one comprising gray and mixed matter regions, the other white and mixed matter areas. Brain structures involved in the same physiological function or morphologically similar regions often conglomerated in a single subcluster.  相似文献   

16.
This work is an application of energy dispersive X-ray fluorescence (EDXRF) as analytical technique for trace element determination in human tissues. Potassium (K), calcium (Ca), iron (Fe), copper (Cu), zinc (Zn), bromine (Br), rubidium (Rb) and lead (Pb) were determined directly in blood samples from 66 mothers at delivery after full-term pregnancies. The corresponding 66 cord-blood samples of the newborns were also analysed, in order to find element correlations between maternal and newborn blood at birth. The studied samples were obtained from mothers aged between 15 and 39 years old, the gestational age being between 35 and 41 weeks and the newborns' weight between 2.310 and 4.310 kg. Samples were lyophilised and analysed without any chemical treatment. Very low levels of Pb were found both in maternal and fetal cord blood samples. Cu values ranged from 3 to 13 microg g-1, both for mothers and children. A correlation between Cu and Fe concentrations in maternal and fetal cord blood was found. Zn is considered as one of the key elements in newborn health. Concentrations between 10 and 40 microg g-1 were measured. A positive correlation between Br levels in mothers and children was observed. Positive correlations for mothers were observed between Zn and Rb as well as K and Fe. The corresponding correlations in fetal cord blood samples were not observed, however positive correlations were found between Ca and K; Cu and Fe. The mean concentrations for each element were similar in maternal and in fetal cord blood, except for Cu and Zn, being higher in maternal samples. No correlations between element concentrations and pathologies of the mothers were observed.  相似文献   

17.
珍稀濒危植物矮牡丹体内矿质元素的研究   总被引:8,自引:0,他引:8  
采用原子吸收分光光度法测定了矮牡丹体内的10种矿质元素,即K、Mg、Mn、Fe、Ni、Zn、Cu、Cd、Cr、Pb。分析了矿质元素在矮牡丹体内的分布规律及矮牡丹对各种元素的富集能力。结果表明:在不同器官中的矿质元素含量有显著差异, K、Mg、Mn、Ni、Cd、Cr、Pb以叶中为高, Fe、Zn、Cu分别以根、茎、叶柄中含量最高;大多数元素在叶柄中含量最低。矮牡丹对K、Mg、Mn、Fe、Zn有较强的吸收富集能力,一般叶的富集系数较其它器官为高。元素间相关分析表明:Zn、Cd、Cr、Pb、Mn、Fe、Ni、Cu之间有显著的相关性, K、Mg之间的相关性显著。此外,土壤与植物体内元素含量表现出显著的相关性。  相似文献   

18.
Trace element concentrations in body tissues of healthy centenarians have not been widely analyzed, yet they can be used as reference data leading to improved assessment of the aging process and monitoring of the micronutrient status of this age group. The present study sought to assess trace element concentrations and behaviors in the fingernails of healthy Chinese centenarians. The effects of gender on element concentrations, which also play an important role in determining the lifespan, were also investigated. Trace elements (Ba, Cd, Co, Cr, Cu, Fe, Li, Mn, Mo, Ni, Pb, Se, Sr, and Zn) in the fingernails of 78 healthy Chinese centenarians were determined by inductively coupled plasma mass spectrometry. The overall reference values obtained in milligram per kilogram are as follows: Ba, 5.10; Cd, 0.031; Co, 0.101; Cr, 0.82; Cu, 3.71; Fe, 154.35; Li, 0.31; Mn, 3.09; Mo, 0.040; Ni, 0.95; Pb, 1.86; Se, 0.44; Sr, 6.20; and Zn, 147.96. Data analysis showed that only Cr and Se concentrations show a normal distribution, and no significant difference between male and female groups was found for any element except Cr. Result also revealed that sufficient Se, Co, and Zn as well as lower or lack of exposure to Cr contribute positively to the lifespan of centenarians. The results suggest that regulating in vivo contents of trace elements, especially Se, Co, and Zn, is reasonable to intervene with geriatric diseases.  相似文献   

19.
We studied the relationships between testate amoeba communities and heavy metal (Pb, Cd, Zn, Ni, Cu, Mn, and Fe) concentrations in the moss Barbula indica sampled at 29 sites in and around the city of Hanoi (Vietnam). Our first approach was to compare the heavy metal concentrations and testate amoeba variables between the city (zone 1) and the surrounding (zone 2). Mean moss concentrations of Pb, Cd, Zn, Ni, and Cu were significantly higher and testate amoeba species richness and abundance were significantly lower in zone 1 and the abundance of eight taxa differed significantly between the two zones. We then studied the correlation between heavy metals and testate amoebae. Species richness and abundance were correlated negatively to Pb concentration. Shannon H′ was negatively correlated to both Pb and Cd. The abundance of several species was negatively correlated with Pb, Cd, Zn, and Ni; however, at the community level, Pb emerged as the only significant variable in a redundancy analysis. Our results suggest that testate amoebae are sensitive to and may be good bioindicators for heavy metal pollution, especially lead. Further research is needed to understand the causal relationships underlying the observed patterns.  相似文献   

20.
Metal determination in human tissues is the most common application of biological monitoring for screening, diagnosis and assessment of metal exposures and their risks. Various biopsy-materials may be used. This paper deals with the quantitative determination of Cd, Pb, Cr, Mn, Fe, Ni, Cu, and Zn concentrations in nails of male subjects exposed to these metals alongwith their respective controls, while working in locomotive, carriage and roadways workshops, and lead battery factories. The levels of Cd, Pb, Cr, Mn, Fe, Ni, Cu and Zn in fingernails, assayed by atomic absorption spectrophotometry, were compared with their respective controls by student ‘t’ test. All the obtained values were correlated to the personal and medical history of the subjects under study. Significantly high levels of Cd, Pb, Cr, Fe, Ni, Cu and Zn were present in smokers, compared to nonsmokers. The concentrations of Cd, Pb, Cr, Mn and Fe were not significantly high in vegetarian subjects. It was also observed that there is no contribution of liquor towards nail-metal concentration. Significant correlations were observed between skin disease and Cr, Mn, Fe, Cu; hypertension and Cd, Mn, Cu; mental stress and Cd, Pb, Mn, Ni, Cu, Zn; diabetes and Cr, Mn, Ni; chest pain and Pb; respiratory trouble and Cr, Mn, Fe, Ni, Zn; tuberculosis and Zn; acidity and Cd; and ophthalmic problems and Mn, Fe, Ni, and Zn  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号