首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The priming agent β-aminobutyric acid (BABA) is known to enhance Arabidopsis resistance to the bacterial pathogen Pseudomonas syringae pv. tomato (Pst) DC3000 by potentiating salicylic acid (SA) defence signalling, notably PR1 expression. The molecular mechanisms underlying this phenomenon remain unknown. A genome-wide microarray analysis of BABA priming during Pst DC3000 infection revealed direct and primed up-regulation of genes that are responsive to SA, the SA analogue benzothiadiazole and pathogens. In addition, BABA was found to inhibit the Arabidopsis response to the bacterial effector coronatine (COR). COR is known to promote bacterial virulence by inducing the jasmonic acid (JA) response to antagonize SA signalling activation. BABA specifically repressed the JA response induced by COR without affecting other plant JA responses. This repression was largely SA-independent, suggesting that it is not caused by negative cross-talk between SA and JA signalling cascades. Treatment with relatively high concentrations of purified COR counteracted BABA inhibition. Under these conditions, BABA failed to protect Arabidopsis against Pst DC3000. BABA did not induce priming and resistance in plants inoculated with a COR-deficient strain of Pst DC3000 or in the COR-insensitive mutant coi1-16. In addition, BABA blocked the COR-dependent re-opening of stomata during Pst DC3000 infection. Our data suggest that BABA primes for enhanced resistance to Pst DC3000 by interfering with the bacterial suppression of Arabidopsis SA-dependent defences. This study also suggests the existence of a signalling node that distinguishes COR from other JA responses.  相似文献   

2.
3.
The phytotoxin coronatine (COR) contributes to the virulence of Pseudomonas syringae pv. tomato ( Pst ) strain DC3000 on Arabidopsis thaliana and tomato. However, little is known regarding the role of COR in the virulence of DC3000 on cultivated Brassica spp. In this study, the role of COR and its precursors, coronafacic acid (CFA) and coronamic acid (CMA), were examined in the virulence of Pst DC3000 on collard and turnip, two important edible brassicas. Pst DC3000 and three well-defined COR biosynthetic mutants of DC3000 exhibited substantial differences in the timing and phenotype of disease lesions on collard and turnip. When examined 3 days post-inoculation (dpi), collard inoculated with DC3000 exhibited visible anthocyanin production and lesions were chlorotic and water-soaked. On turnip, chlorotic and necrotic lesions were evident on DC3000-inoculated leaves 5 dpi. The bacterial population dynamics on plants inoculated with DC3000 and the COR mutants indicated that COR was essential for DC3000 to maintain high populations in turnip, but not collard. Real-time quantitative PCR revealed that the jasmonic acid pathway responsive genes, LOX2 and CORI1 , were expressed in both hosts inoculated with Pst DC3000. PR1 , a marker associated with the salicylic acid pathway, was expressed in collard and turnip inoculated with the CFA CMA mutant DB29, but not DC3000. Further comparison of PR1 and LOX2 expression indicated that CFA plays a subtle role in modulating defence in turnip. This is the first study to investigate the role of COR in the interaction of Pst DC3000 and cultivated brassicas using genetically and biochemically defined COR mutants.  相似文献   

4.
Pseudomonas syringae pv. tomato strain DC3000 (Pst DC3000) causes bacterial speck disease on tomato. The pathogenicity of Pst DC3000 depends on both the type III secretion system that delivers virulence effector proteins into host cells and the phytotoxin coronatine (COR), which is thought to mimic the action of the plant hormone jasmonic acid (JA). We found that a JA-insensitive mutant (jai1) of tomato was unresponsive to COR and highly resistant to Pst DC3000, whereas host genotypes that are defective in JA biosynthesis were as susceptible to Pst DC3000 as wild-type (WT) plants. Treatment of WT plants with exogenous methyl-JA (MeJA) complemented the virulence defect of a bacterial mutant deficient in COR production, but not a mutant defective in the type III secretion system. Analysis of host gene expression using cDNA microarrays revealed that COR works through Jai1 to induce the massive expression of JA and wound response genes that have been implicated in defense against herbivores. Concomitant with the induction of JA and wound response genes, the type III secretion system and COR repressed the expression of pathogenesis-related (PR) genes in Pst DC3000-infected WT plants. Resistance of jai1 plants to Pst DC3000 was correlated with a high level of PR gene expression and reduced expression of JA/wound response genes. These results indicate that COR promotes bacterial virulence by activating the host's JA signaling pathway, and further suggest that the type III secretion system might also modify host defense by targeting the JA signaling pathway in susceptible tomato plants.  相似文献   

5.
为分析褪黑素(N-乙酰-5-甲氧基色胺)在植物先天免疫中的功能及调控机理,研究以病原菌丁香假单胞杆菌(Pseudomonas syringae pv.tomato DC3000,Pst DC3000)—烟草互作系统为模型,检测了病原菌侵染对烟草褪黑素相关基因表达的影响,并探讨了褪黑素对植物叶片病原菌生长以及气孔开度和活性氧自由基(reactive oxygen species,ROS)含量的影响以及调控机理。结果表明:(1)Pst DC3000处理提高了烟草褪黑素合成(NtSNAT1)和受体(NtPMTR1)基因表达,且外源褪黑素处理降低了叶片中的病原菌含量。(2)与野生型植物相比,过表达大豆GmSNAT1基因显著提高了转基因烟草中内源褪黑素含量和NtPMTR1的表达,且转基因烟草叶片中的Pst DC3000菌落数显著下降。(3)外源褪黑素和细菌鞭毛蛋白多肽flg22处理诱导了野生型和转基因烟草保卫细胞中ROS产生和气孔关闭,且转基因植物对褪黑素和flg22诱导的气孔关闭和ROS产生比野生型烟草更加敏感。综上所述,研究表明褪黑素可能通过受体NtPMTR1介导的信号途径促进保卫细胞ROS产生,诱导气孔关闭,从而降低病原菌Pst DC3000的入侵。  相似文献   

6.
Many plant pathogens suppress antimicrobial defenses using virulence factors that modulate endogenous host defenses. The Pseudomonas syringae phytotoxin coronatine (COR) is believed to promote virulence by acting as a jasmonate analog, because COR-insensitive 1 (coil) Arabidopsis thaliana and tomato mutants are impaired in jasmonate signaling and exhibit reduced susceptibility to P. syringae. To further investigate the role of jasmonate signaling in disease development, we analyzed several jasmonate-insensitive A. thaliana mutants for susceptibility to P. syringae pv. tomato strain DC3000 and sensitivity to COR. Jasmonate-insensitive 1 (jin1) mutants exhibit both reduced susceptibility to P. syringae pv. tomato DC3000 and reduced sensitivity to COR, whereas jasmonate-resistant 1 (jar1) plants exhibit wild-type responses to both COR and P. syringae pv. tomato DC3000. A jin1 jar1 double mutant does not exhibit enhanced jasmonate insensitivity, suggesting that JIN1 functions downstream of jasmonic acid-amino acid conjugates synthesized by JAR1. Reduced disease susceptibility in jin1 mutants is correlated with elevated expression of pathogenesis-related 1 (PR-1) and is dependent on accumulation of salicylic acid (SA). We also show that JIN1 is required for normal P. syringae pv. tomato DC3000 symptom development through an SA-independent mechanism. Thus, P. syringae pv. tomato DC3000 appears to utilize COR to manipulate JIN1-dependent jasmonate signaling both to suppress SA-mediated defenses and to promote symptom development.  相似文献   

7.
The FLAGELLIN-SENSING2 (FLS2) receptor kinase recognizes bacterial flagellin and initiates a battery of downstream defense responses to reduce bacterial invasion through stomata in the epidermis and bacterial multiplication in the apoplast of infected plants. Recent studies have shown that during Pseudomonas syringae pv tomato (Pst) DC3000 infection of Arabidopsis (Arabidopsis thaliana), FLS2-mediated immunity is actively suppressed by effector proteins (such as AvrPto and AvrPtoB) secreted through the bacterial type III secretion system (T3SS). We provide evidence here that T3SS effector-based suppression does not appear to be sufficient to overcome FLS2-based immunity during Pst DC3000 infection, but that the phytotoxin coronatine (COR) produced by Pst DC3000 also plays a critical role. COR-deficient mutants of Pst DC3000 are severely reduced in virulence when inoculated onto the leaf surface of wild-type Columbia-0 plants, but this defect was rescued almost fully in fls2 mutant plants. Although bacteria are thought to carry multiple microbe-associated molecular patterns, stomata of fls2 plants are completely unresponsive to COR-deficient mutant Pst DC3000 bacteria. The responses of fls2 plants were similar to those of the Arabidopsis G-protein alpha subunit1-3 mutant, which is defective in abscisic acid-regulated stomatal closure, but were distinct from those of the Arabidopsis non-expressor of PR genes1 mutant, which is defective in salicylic acid-dependent stomatal closure and apoplast defense. Epistasis analyses show that salicylic acid signaling acts upstream of abscisic acid signaling in bacterium-triggered stomatal closure. Taken together, these results suggest a particularly important role of FLS2-mediated resistance to COR-deficient mutant Pst DC3000 bacteria, and nonredundant roles of COR and T3SS effector proteins in the suppression of FLS2-mediated resistance in the Arabidopsis-Pst DC3000 interaction.Stomata are microscopic pores formed by pairs of guard cells in the epidermis of terrestrial plants; they are essential for CO2 and water exchange with the environment. Plants regulate the stomatal aperture in response to changing abiotic environmental conditions (e.g. light, humidity, CO2 concentration) to optimize CO2 uptake and water transpiration. The molecular mechanisms underlying the stomatal regulation in response to abiotic signals are a subject of intense studies. Research in this area has uncovered many signaling components, indicating that stomatal guard cells have one of the most dynamic regulatory networks in plants (Schroeder et al., 2001; Shimazaki et al., 2007; Neill et al., 2008; Wang and Song, 2008).Stomatal openings are also a major route of pathogen entry into the plant (Melotto et al., 2006). Accordingly, guard cells have developed mechanisms to regulate stomatal aperture in response to pathogens. Melotto and colleagues found that the bacterial pathogen Pseudomonas syringae pv tomato (Pst) strain DC3000 induces stomatal closure in Arabidopsis (Arabidopsis thaliana) within 1 h post inoculation. However, after 3 to 4 h, stomata reopen (Melotto et al., 2006). The ability of Pst DC3000 to reopen stomata is dependent on the polyketide toxin coronatine (COR), a virulence factor that had previously been shown to be important for bacterial multiplication within the mesophyll space, disease symptom development, and induction of systemic susceptibility of infected plants (Mittal and Davis, 1995; Bender et al., 1999; Budde and Ullrich, 2000; Brooks et al., 2004; Cui et al., 2005; Melotto et al., 2008b). Stomatal reopening by Pst DC3000 was also shown to be dependent on the RPM1-INTERACTING PROTEIN4 in Arabidopsis (Liu et al., 2009). Recently, another bacterial pathogen, Xanthomonas campestris pv campestris, was shown to cause stomatal closure and subsequent reopening during infection (Gudesblat et al., 2009). In this case, a virulence factor of smaller than 2 kD was identified, but the molecular identity of this virulence factor is not yet known. In fungal pathogens, examples of virulence factors that inhibit stomatal closure include fusicoccin (Turner and Graniti, 1969; Assmann and Schwartz, 1992; Kinoshita and Shimazaki, 2001) and oxalic acid (Guimaraes and Stotz, 2004), although their role in pathogen invasion has not been established.Stomatal guard cells also respond to purified microbe-associated molecular patterns (MAMPs), such as chitosan, a polymer of β-1,4-glucosamine residues derived from fungal chitin (Lee et al., 1999; Amborabe et al., 2008), flg22, a 22-amino acid peptide derived from bacterial flagellin (Melotto et al., 2006; Cho et al., 2008; Desikan et al., 2008; Zhang et al., 2008), and bacterial lipopolysaccharides (LPSs; Melotto et al., 2006; Cho et al., 2008). Peptidoglycan, derived from Gram-positive bacteria, is shown to be able to induce plant innate immune responses (Gust et al., 2007; Erbs et al., 2008). However, peptidoglycan has not yet been shown to trigger stomatal responses. MAMPs are recognized by plant pattern-recognition receptors, such as Arabidopsis proteins FLAGELLIN-SENSING2 (FLS2) that recognizes bacterial flagellin (Gómez-Gómez and Boller, 2000), EF-TU RECEPTOR (EFR) that recognizes bacterial elongation factor TU (Zipfel et al., 2006), and CHITIN ELICITOR RECEPTOR KINASE1 (CERK1) that perceives an unknown MAMP from Pst DC3000 (Gimenez-Ibanez et al., 2009a, 2009b). In the case of flg22-induced stomatal closure, FLS2 is required (Melotto et al., 2006). Stomata from fls2 mutant plants, however, still respond to purified LPS (Melotto et al., 2006), illustrating both specificity in MAMP recognition by guard cells and the capacity of guard cells to recognize multiple MAMPs (Melotto et al., 2006). However, it has not been formally proven that the perception of any individual MAMPs actually contributes to stomatal closure induced by live bacteria, as bacteria produce many other factors in the context of an infection.Studies using purified MAMPs have shown that stomatal closure in response to biotic signals requires the phytohormone abscisic acid (ABA), the guard cell-specific OPEN STOMATA1 (OST1) kinase, the production of reactive oxygen species and nitric oxide, the heterotrimeric G protein, and the regulation of K+ channels—all of which are hallmarks of abiotic signal-induced stomatal closure (Melotto et al., 2006; Neill et al., 2008; Zhang et al., 2008). These findings suggest that the guard cell signal transductions in response to biotic and abiotic signals share common steps. Besides shared signaling components, however, MAMP-triggered stomatal closure also requires the plant defense hormone salicylic acid (SA; Melotto et al., 2006). At present, it is not clear whether SA per se or a downstream signaling component, such as the NON-EXPRESSOR OF PR GENES1 (NPR1), is required for stomatal closure. Nor do we understand the epistatic relationship between SA and ABA signaling in the regulation of bacterium/MAMP-triggered stomatal closure.In this study, we conducted experiments to further characterize stomatal regulation during Pst DC3000 infection of Arabidopsis plants. In particular, we sought to determine (1) whether the perception of well-documented MAMPs indeed contributes to stomatal closure in response to live bacteria, (2) the roles of the heterotrimeric G protein (involved in ABA signaling) and NPR1 (involved in SA signaling) in stomatal response during bacterial infection, and (3) the relationship between SA signaling and ABA signaling in regulating bacterium-triggered stomatal closure. These experiments revealed a critical role of FLS2 in mediating disease resistance against COR-deficient mutant Pst DC3000 bacteria.  相似文献   

8.
Mitogen-activated protein kinases (MAPKs) play pivotal roles in development and environmental interactions in eukaryotes. Here, we studied the function of a MAPK, NaMPK4, in the wild tobacco species Nicotiana attenuata. The NaMPK4-silenced N. attenuata (irNaMPK4) attained somewhat smaller stature, delayed senescence, and greatly enhanced stomatal conductance and photosynthetic rate, especially during late developmental stages. All these changes were associated with highly increased seed production. Using leaf epidermal peels, we demonstrate that guard cell closure in irNaMPK4 was strongly impaired in response to abscisic acid and hydrogen peroxide, and consistently, irNaMPK4 plants transpired more water and wilted sooner than did wild-type plants when they were deprived of water. We show that NaMPK4 plays an important role in the guard cell-mediated defense against a surface-deposited bacterial pathogen, Pseudomonas syringae pv tomato (Pst) DC3000; in contrast, when bacteria directly entered leaves by pressure infiltration, NaMPK4 was found to be less important in the resistance to apoplast-located Pst DC3000. Moreover, we show that salicylic acid was not involved in the defense against PstDC3000 in wild-type and irNaMPK4 plants once it had entered leaf tissue. Finally, we provide evidence that NaMPK4 functions differently from AtMPK4 and AtMPK11 in Arabidopsis (Arabidopsis thaliana), despite their sequence similarities, suggesting a complex functional divergence of MAPKs in different plant lineages. This work highlights the multifaceted functions of NaMPK4 in guard cells and underscores its role in mediating various ecologically important traits.  相似文献   

9.
10.
For an efficient defense response against pathogens, plants must coordinate rapid genetic reprogramming to produce an incompatible interaction. Nitrate Trasnporter2 (NRT2) gene family members are sentinels of nitrate availability. In this study, we present an additional role for NRT2.1 linked to plant resistance against pathogens. This gene antagonizes the priming of plant defenses against the bacterial pathogen Pseudomonas syringae pv tomato DC3000 (Pst). The nrt2 mutant (which is deficient in two genes, NRT2.1 and NRT2.2) displays reduced susceptibility to this bacterium. We demonstrate that modifying environmental conditions that stimulate the derepression of the NRT2.1 gene influences resistance to Pst independently of the total level of endogenous nitrogen. Additionally, hormonal homeostasis seemed to be affected in nrt2, which displays priming of salicylic acid signaling and concomitant irregular functioning of the jasmonic acid and abscisic acid pathways upon infection. Effector-triggered susceptibility and hormonal perturbation by the bacterium seem to be altered in nrt2, probably due to reduced sensitivity to the bacterial phytotoxin coronatine. The main genetic and metabolic targets of coronatine in Arabidopsis (Arabidopsis thaliana) remain largely unstimulated in nrt2 mutants. In addition, a P. syringae strain defective in coronatine synthesis showed the same virulence toward nrt2 as the coronatine-producing strain. Taken together, the reduced susceptibility of nrt2 mutants seems to be a combination of priming of salicylic acid-dependent defenses and reduced sensitivity to the bacterial effector coronatine. These results suggest additional functions for NRT2.1 that may influence plant disease resistance by down-regulating biotic stress defense mechanisms and favoring abiotic stress responses.  相似文献   

11.
12.
Abscisic acid (ABA) integrates the water status of a plant and causes stomatal closure. Physiological mechanisms remain poorly understood, however, because guard cells flanking stomata are small and contain only attomol quantities of ABA. Here, pooled extracts of dissected guard cells of Vicia faba L. were immunoassayed for ABA at sub‐fmol sensitivity. A pulse of water stress was imposed by submerging the roots in a solution of PEG. The water potentials of root and leaf declined during 20 min of water stress but recovered after stress relief. During stress, the ABA concentration in the root apoplast increased, but that in the leaf apoplast remained low. The ABA concentration in the guard‐cell apoplast increased during stress, providing evidence for intra‐leaf ABA redistribution and leaf apoplastic heterogeneity. Subsequently, the ABA concentration of the leaf apoplast increased, consistent with ABA import via the xylem. Throughout, the ABA contents of the guard‐cell apoplast, but not the guard‐cell symplast, were convincingly correlated with stomatal aperture size, identifying an external locus for ABA perception under these conditions. Apparently, ABA accumulates in the guard‐cell apoplast by evaporation from the guard‐cell wall, so the ABA signal in the xylem is amplified maximally at high transpiration rates. Thus, stomata will display apparently higher sensitivity to leaf apoplastic ABA if stomata are widely open in a relatively dry atmosphere.  相似文献   

13.
An elicitor chitosan (CHT) induces stomatal closure but the mechanism remains to be clarified. A phytohormone salicylic acid (SA) is crucial for elicitor-induced defense signaling in plants. Here we investigated whether endogenous SA is required for CHT signaling in guard cells. In the SA-deficient nahG mutant, treatment of CHT did not induce either apoplastic reactive oxygen species (ROS) production or stomatal closure but co-treatment of CHT and SA induced both apoplastic ROS production and stomatal closure, indicating the involvement of endogenous SA in CHT-induced apoplastic ROS production and CHT-induced stomatal closure. Furthermore, CHT induced transient cytosolic free calcium concentration increments in the nahG mutant in the presence of exogenous SA but not in the absence of exogenous SA. These results provide evidence that endogenous SA is a crucial element in CHT-induced stomatal closure.  相似文献   

14.
Stomata play an important role in plant innate immunity by limiting pathogen entry into leaves but molecular mechanisms regulating stomatal closure upon pathogen perception are not well understood. Here we show that the Arabidopsis thaliana L-type lectin receptor kinase-V.5 (LecRK-V.5) negatively regulates stomatal immunity. Loss of LecRK-V.5 function increased resistance to surface inoculation with virulent bacteria Pseudomonas syringae pv tomato DC3000. Levels of resistance were not affected after infiltration-inoculation, suggesting that LecRK-V.5 functions at an early defense stage. By contrast, lines overexpressing LecRK-V.5 were more susceptible to Pst DC3000. Enhanced resistance in lecrk-V.5 mutants was correlated with constitutive stomatal closure, while increased susceptibility phenotypes in overexpression lines were associated with early stomatal reopening. Lines overexpressing LecRK-V.5 also demonstrated a defective stomatal closure after pathogen-associated molecular pattern (PAMP) treatments. LecRK-V.5 is rapidly expressed in stomatal guard cells after bacterial inoculation or treatment with the bacterial PAMP flagellin. In addition, lecrk-V.5 mutants guard cells exhibited constitutive accumulation of reactive oxygen species (ROS) and inhibition of ROS production opened stomata of lecrk-V.5. LecRK-V.5 is also shown to interfere with abscisic acid-mediated stomatal closure signaling upstream of ROS production. These results provide genetic evidences that LecRK-V.5 negatively regulates stomatal immunity upstream of ROS biosynthesis. Our data reveal that plants have evolved mechanisms to reverse bacteria-mediated stomatal closure to prevent long-term effect on CO2 uptake and photosynthesis.  相似文献   

15.
16.
Evaporation of water from the guard cell wall concentrates apoplastic solutes. We hypothesize that this phenomenon provides two mechanisms for responding to high transpiration rates. First, apoplastic abscisic acid is concentrated in the guard cell wall. Second, by accumulating in the guard cell wall, apoplastic sucrose (Suc) provides a direct osmotic feedback to guard cells. As a means of testing this second hypothesized mechanism, the guard cell Suc contents at a higher transpiration rate (60% relative humidity [RH]) were compared with those at a lower transpiration rate (90% RH) in broad bean (Vicia faba), an apoplastic phloem loader. In control plants (constant 60% RH), the guard cell apoplast Suc content increased from 97 +/- 81 femtomol (fmol) guard cell pair(-1) to 701 +/- 142 fmol guard cell pair(-1) between daybreak and midday. This increase is equivalent to approximately 150 mM external, which is sufficient to decrease stomatal aperture size. In plants that were shifted to 90% RH before daybreak, the guard cell apoplast Suc content did not increase during the day. In accordance, in plants that were shifted to 90% RH at midday, the guard cell apoplast Suc content declined to the daybreak value. Under all conditions, the guard cell symplast Suc content increased during the photoperiod, but the guard cell symplast Suc content was higher (836 +/- 33 fmol guard cell pair(-1)) in plants that were shifted to 90% RH. These results indicate that a high transpiration rate may result in a high guard cell apoplast Suc concentration, which diminishes stomatal aperture size.  相似文献   

17.
Apoplastic phloem loaders have an apoplastic step in the movement of the translocated sugar, prototypically sucrose, from the mesophyll to the companion cell-sieve tube element complex. In these plants, leaf apoplastic sucrose becomes concentrated in the guard cell wall to nominally 150 mM by transpiration during the photoperiod. This concentration of external sucrose is sufficient to diminish stomatal aperture size in an isolated system and to regulate expression of certain genes. In contrast to apoplastic phloem loaders and at the other extreme, strict symplastic phloem loaders lack an apoplastic step in phloem loading and mostly transport raffinose family oligosaccharides (RFOs), which are at low concentrations in the leaf apoplast. Here, the effects of the phloem-loading mechanism and associated phenomena on the immediate environment of guard cells are reported. As a first step, carbohydrate analyses of phloem exudates confirmed basil (Ocimum basilicum L. cv. Minimum) as a symplastic phloem-loading species. Then, aspects of stomatal physiology of basil were characterized to establish this plant as a symplastic phloem-loading model species for guard cell research. [(14)C]Mannitol fed via the cut petiole accumulated around guard cells, indicating a continuous leaf apoplast. The (RFO+sucrose+hexoses) concentrations in the leaf apoplast were low, <0.3 mM. Neither RFOs (<10 mM), sucrose, nor hexoses (all, P >0.2) were detectable in the guard cell wall. Thus, differences in phloem-loading mechanisms predict differences in the in planta regulatory environment of guard cells.  相似文献   

18.
Due to their different lifestyles, effective defence against biotrophic pathogens normally leads to increased susceptibility to necrotrophs, and vice versa. Solving this trade‐off is a major challenge for obtaining broad‐spectrum resistance in crops and requires uncoupling the antagonism between the jasmonate (JA) and salicylate (SA) defence pathways. Pseudomonas syringae pv. tomato (Pto) DC3000, the causal agent of tomato bacterial speck disease, produces coronatine (COR) that stimulates stomata opening and facilitates bacterial leaf colonization. In Arabidopsis, stomata response to COR requires the COR co‐receptor AtJAZ2, and dominant AtJAZ2Δjas repressors resistant to proteasomal degradation prevent stomatal opening by COR. Here, we report the generation of a tomato variety resistant to the bacterial speck disease caused by PtoDC3000 without compromising resistance to necrotrophs. We identified the functional ortholog of AtJAZ2 in tomato, found that preferentially accumulates in stomata and proved that SlJAZ2 is a major co‐receptor of COR in stomatal guard cells. SlJAZ2 was edited using CRISPR/Cas9 to generate dominant JAZ2 repressors lacking the C‐terminal Jas domain (SlJAZ2Δjas). SlJAZ2Δjas prevented stomatal reopening by COR and provided resistance to PtoDC3000. Water transpiration rate and resistance to the necrotrophic fungal pathogen Botrytis cinerea, causal agent of the tomato gray mold, remained unaltered in Sljaz2Δjas plants. Our results solve the defence trade‐off in a crop, by spatially uncoupling the SA‐JA hormonal antagonism at the stomata, entry gates of specific microbes such as PtoDC3000. Moreover, our results also constitute a novel CRISPR/Cas‐based strategy for crop protection that could be readily implemented in the field.  相似文献   

19.
Riboflavin (vitamin B2) participates in a variety of redox processes that affect plant defense responses. Previously we have shown that riboflavin induces pathogen resistance in the absence of hypersensitive cell death (HCD) in plants. Herein, we report that riboflavin induces priming of defense responses in Arabidopsis thaliana toward infection by virulent Pseudomonas syringae pv. Tomato DC3000 (Pst). Induced resistance was mechanistically connected with the expression of defense response genes and cellular defense events, including H2O2 burst, HCD, and callose deposition in the plant. Riboflavin treatment and inoculation of plants with Pst were neither active but both synergized to induce defense responses. The priming process needed NPR1 (essential regulator of systemic acquired resistance) and maintenance of H2O2 burst but was independent of salicylic acid, jasmonic acid, ethylene, and abscisic acid. Our results suggest that the role of riboflavin in priming defenses is subject to a signaling process distinct from the known pathways of hormone signal transduction.  相似文献   

20.
Carbon dioxide uptake and water vapour release in plants occur through stomata, which are formed by guard cells. These cells respond to light intensity, CO2 and water availability, and plant hormones. The predicted increase in the atmospheric concentration of CO2 is expected to have a profound effect on our ecosystem. However, many aspects of CO2-dependent stomatal movements are still not understood. Here we show that the ABC transporter AtABCB14 modulates stomatal closure on transition to elevated CO2. Stomatal closure induced by high CO2 levels was accelerated in plants lacking AtABCB14. Apoplastic malate has been suggested to be one of the factors mediating the stomatal response to CO2 (Refs 4,5) and indeed, exogenously applied malate induced a similar AtABCB14-dependent response as high CO2 levels. In isolated epidermal strips that contained only guard cells, malate-dependent stomatal closure was faster in plants lacking the AtABCB14 and slower in AtABCB14-overexpressing plants, than in wild-type plants, indicating that AtABCB14 catalyses the transport of malate from the apoplast into guard cells. Indeed, when AtABCB14 was heterologously expressed in Escherichia coli and HeLa cells, increases in malate transport activity were observed. We therefore suggest that AtABCB14 modulates stomatal movement by transporting malate from the apoplast into guard cells, thereby increasing their osmotic pressure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号