首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The reduction of Cr(VI), Fe(III), and U(VI) was studied using three recently isolated environmental Cellulomonas sp. (WS01, WS18, and ES5) and a known Cellulomonas strain ( Cellulomonas flavigena ATCC 482) under anaerobic, non-growth conditions. In all cases, these cultures were observed to reduce Cr(VI), Fe(III), and U(VI). In 100 h, with lactate as electron donor, the Cellulomonas isolates (500 mg/l total cell protein) reduced nitrilotriacetic acid chelated Fe(III) [Fe(III)-NTA] from 5 mM to less than 2.2 mM, Cr(VI) from 0.2 mM to less than 0.001 mM, and U(VI) from 0.2 mM to less than 0.12 mM. All Cellulomonas isolates also reduced Cr(VI), Fe(III), and U(VI) in the absence of lactate, while no metal reduction was observed in either the cell-free or heat-killed cell controls. This is the first report of Cellulomonas sp. reducing Fe(III) and U(VI). Further, this is the first report of Cellulomonas spp. coupling the oxidation of lactate, or other unknown electron donors in the absence of lactate, to the reduction of Cr(VI), Fe(III), and U(VI).  相似文献   

2.
Chromate (Cr(VI)) reduction studies were performed in bench scale flow columns using the fermentative subsurface isolate Cellulomonas sp. strain ES6. In these tests, columns packed with either quartz sand or hydrous ferric oxide (HFO)-coated quartz sand, were inoculated with strain ES6 and fed nutrients to stimulate growth before nutrient-free Cr(VI) solutions were injected. Results show that in columns containing quartz sand, a continuous inflow of 2 mg/L Cr(VI) was reduced to below detection limits in the effluent for durations of up to 5.7 residence times after nutrient injection was discontinued proving the ability of strain ES6 to reduce chromate in the absence of an external electron donor. In the HFO-containing columns, Cr(VI) reduction was significantly prolonged and effluent Cr(VI) concentrations remained below detectable levels for periods of up to 66 residence times after nutrient injection was discontinued. Fe was detected in the effluent of the HFO-containing columns throughout the period of Cr(VI) removal indicating that the insoluble Fe(III) bearing solids were being continuously reduced to form soluble Fe(II) resulting in prolonged abiotic Cr(VI) reduction. Thus, growth of Cellulomonas within the soil columns resulted in formation of permeable reactive barriers that could reduce Cr(VI) and Fe(III) for extended periods even in the absence of external electron donors. Other bioremediation systems employing Fe(II)-mediated reactions require a continuous presence of external nutrients to regenerate Fe(II). After depletion of nutrients, contaminant removal within these systems occurs by reaction with surface-associated Fe(II) that can rapidly become inaccessible due to formation of crystalline Fe-minerals or other precipitates. The ability of fermentative organisms like Cellulomonas to reduce metals without continuous nutrient supply in the subsurface offers a viable and economical alternative technology for in situ remediation of Cr(VI)-contaminated groundwater through formation of permeable reactive biobarriers (PRBB).  相似文献   

3.
In time course experiments, bacterial community compositions were compared between a sulfidogenic and two nonsulfidogenic Cr(VI)-reducing consortia enriched from metal-contaminated sediments. The consortia were subjected to 0 and 0.85 mM or 1.35 mM Cr(VI), and Cr(VI) reduction, growth, and denaturing gradient gel electrophoresis profiles of PCR products of small-subunit (16S) ribosomal genes were compared. Results showed that although Cr(VI) was completely reduced by the three consortia, Cr(VI) inhibited cell growth, with sulfate-reducing bacteria being particularly sensitive to Cr(VI) toxicity relative to other bacteria in the consortia.  相似文献   

4.
Cr(VI) reduction by sulfidogenic and nonsulfidogenic microbial consortia   总被引:1,自引:0,他引:1  
In time course experiments, bacterial community compositions were compared between a sulfidogenic and two nonsulfidogenic Cr(VI)-reducing consortia enriched from metal-contaminated sediments. The consortia were subjected to 0 and 0.85 mM or 1.35 mM Cr(VI), and Cr(VI) reduction, growth, and denaturing gradient gel electrophoresis profiles of PCR products of small-subunit (16S) ribosomal genes were compared. Results showed that although Cr(VI) was completely reduced by the three consortia, Cr(VI) inhibited cell growth, with sulfate-reducing bacteria being particularly sensitive to Cr(VI) toxicity relative to other bacteria in the consortia.  相似文献   

5.
The reduction of hexavalent chromium, Cr(VI), to trivalent chromium, Cr(III), can be an important aspect of remediation processes at contaminated sites. Cellulomonas species are found at several Cr(VI) contaminated and uncontaminated locations at the Department of Energy site in Hanford, Washington. Members of this genus have demonstrated the ability to effectively reduce Cr(VI) to Cr(III) fermentatively and therefore play a potential role in Cr(VI) remediation at this site. Batch studies were conducted with Cellulomonas sp. strain ES6 to assess the influence of various carbon sources, iron minerals, and electron shuttling compounds on Cr(VI) reduction rates as these chemical species are likely to be present in, or added to, the environment during in situ bioremediation. Results indicated that the type of carbon source as well as the type of electron shuttle present influenced Cr(VI) reduction rates. Molasses stimulated Cr(VI) reduction more effectively than pure sucrose, presumably due to presence of more easily utilizable sugars, electron shuttling compounds or compounds with direct Cr(VI) reduction capabilities. Cr(VI) reduction rates increased with increasing concentration of anthraquinone-2,6-disulfonate (AQDS) regardless of the carbon source. The presence of iron minerals and their concentrations did not significantly influence Cr(VI) reduction rates. However, strain ES6 or AQDS could directly reduce surface-associated Fe(III) to Fe(II), which was capable of reducing Cr(VI) at a near instantaneous rate. These results suggest the rate limiting step in these systems was the transfer of electrons from strain ES6 to the intermediate or terminal electron acceptor whether that was Cr(VI), Fe(III), or AQDS.  相似文献   

6.
Chromium-resistant bacteria (CRB) isolated from soils can be used to reduce toxic Cr(VI) from contaminated environments. This study assessed in vitro reduction of hexavalent Cr using a cell-free extract (CFE) of CRB isolated from soil contaminated with dichromate. One isolate, ES 29, that substantially reduced Cr(VI) was identified as a Bacillus species by 16S rRNA gene-sequence homology. The isolate reduced Cr(VI) under aerobic conditions, using NADH as an electron donor and produced a soluble Cr(VI)-reducing enzyme stimulated by copper (Cu2+). The CFE of the bacterial isolate reduced 50% of Cr(VI) in 6 h. The Cr(VI)-reduction activity of the CFE had a Km of 7.09 microM and a Vmax of 0.171 micromol min(-1) mg(-1) protein. Mercury inhibited the enzyme, but not competitively, with a Vmax of 0.143 micromol min(-1) mg(-1) protein, a Km of 7.07 microM and a Ki of 1.58 microM. This study characterizes the enzymatic reduction of Cr(VI) by Bacillus sp. ES 29 which can be used for the bioremediation of chromate.  相似文献   

7.
AIM: To evaluate Thermus scotoductus SA-01's ability to reduce Cr(VI) aerobically. METHODS AND RESULTS: T. scotoductus SA-01 is able to reduce Cr(VI) aerobically when grown in a complex organic medium containing Cr(VI) concentrations up to 0.5 mmol l(-1). Suspension of T. scotoductus SA-01 cells also reduced Cr(VI) aerobically under nongrowth conditions using a variety of electron donors as well as in the absence of an exogenous electron donor. The optimum temperature and pH for Cr(VI) reduction under nongrowth conditions were found to be 80 degrees C and 7, respectively. It was also found that the Cr(VI) reduction was catalysed by a cytoplasmic, constitutively expressed enzyme. CONCLUSIONS: Apart from SA-01's ability to reduce Cr(VI) through a strictly anaerobic membrane-bound mechanism (unpublished data), it also has a second enzyme localized in the cytoplasm that can reduce Cr(VI) aerobically. As this enzyme is constitutively expressed and not induced by Cr(VI), it remains to be determined whether it has any other physiological functions. SIGNIFICANCE AND IMPACT OF THE Study: This is the first report of a Thermus species able to reduce Cr(VI) aerobically and extends the knowledge of parameters associated with Cr(VI) reduction. Employing thermophiles in bioremediation using industrial bioreactors would cancel the need for expensive cooling systems.  相似文献   

8.
Desulfovibrio vulgaris Hildenborough is a well-studied sulfate reducer that can reduce heavy metals and radionuclides [e.g., Cr(VI) and U(VI)]. Cultures grown in a defined medium had a lag period of approximately 30 h when exposed to 0.05 mM Cr(VI). Substrate analyses revealed that although Cr(VI) was reduced within the first 5 h, growth was not observed for an additional 20 h. The growth lag could be explained by a decline in cell viability; however, during this time small amounts of lactate were still utilized without sulfate reduction or acetate formation. Approximately 40 h after Cr exposure (0.05 mM), sulfate reduction occurred concurrently with the accumulation of acetate. Similar amounts of hydrogen were produced by Cr-exposed cells compared to control cells, and lactate was not converted to glycogen during non-growth conditions. D. vulgaris cells treated with a reducing agent and then exposed to Cr(VI) still experienced a growth lag, but the addition of ascorbate at the time of Cr(VI) addition prevented the lag period. In addition, cells grown on pyruvate displayed more tolerance to Cr(VI) compared to lactate-grown cells. These results indicated that D. vulgaris utilized lactate during Cr(VI) exposure without the reduction of sulfate or production of acetate, and that ascorbate and pyruvate could protect D. vulgaris cells from Cr(VI)/Cr(III) toxicity. J.D. Wall and M.W. Fields are both affiliated to the Virtual Institute of Microbial Stress and Survival (). M.E. Clark and S.B. Thieman contributed equally to this work.  相似文献   

9.
Hexavalent chromium is one of the most widely distributed environmental contaminants. Given the carcinogenic and mutagenic consequences of Cr(VI) exposure, the release of Cr(VI) into the environment has long been a major concern. While many reports of microbial Cr(VI) reduction are in circulation, very few have demonstrated Cr(VI) reduction under alkaline conditions. Since Cr(VI) exhibits higher mobility in alkaline soils relative to pH neutral soils, and since Cr contamination of alkaline soils is associated with a number of industrial activities, microbial Cr(VI) reduction under alkaline conditions requires attention. Soda lakes are the most stable alkaline environments on earth, and contain a wide diversity of alkaliphilic organisms. In this study, a bacterial isolate belonging to the Halomonas genus was obtained from Soap Lake, a chemically stratified alkaline lake located in central Washington State. The ability of this isolate to reduce Cr(VI) and Fe(III) was assessed under alkaline (pH = 9), anoxic, non-growth conditions with acetate as an electron donor. Metal reduction rates were quantified using Monod kinetics. In addition, Cr(VI) reduction experiments were carried out in the presence of Fe(III) to evaluate the possible enhancement of Cr(VI) reduction rates through electron shuttling mechanisms. While Fe(III) reduction rates were slow compared to previously reported rates, Cr(VI) reduction rates fell within range of previously reported rates.  相似文献   

10.
Studies were conducted to evaluate carbon and energy sources suitable to support hexavalent chromium (Cr(VI)) reduction by a bacterial consortium enriched from dichromate-contaminated aquifer sediments. The consortium was cultured under denitrifying conditions in a minimal, synthetic groundwater medium that was amended with various individual potential carbon and energy sources. The effects of these individual carbon and energy sources on Cr(VI) reduction and growth were measured. The consortium was found to readily reduce Cr(VI) with sucrose, acetate, L-asparagine, hydrogen plus carbon dioxide, ethanol, glycerol, glycolate, propylene glycol, or D-xylose as a carbon and energy source. Minimal Cr(VI) reduction was observed when the consortium was cultured with citrate, 2-ketoglutarate, L-lactate, pyruvate, succinate, or thiosulfate plus carbon dioxide as a carbon and energy source when compared with abiotic controls. The consortium grew on all of the above carbon and energy sources, with the highest cell densities reached using D-xylose and sucrose, demonstrating that the consortium is metabolically diverse and can reduce Cr(VI) using a variety of different carbon and energy sources. The results suggest that the potential exists for the enrichment of Cr(VI)-reducing microbial populations in situ by the addition of a sucrose-containing feedstock such as molasses, which is an economical and readily available carbon and energy source.  相似文献   

11.
Twenty-one yeast-like microorganisms were isolated from tannery effluents and from a nickel–copper mine in Argentina. They were tested for their Cu(II), Ni(II), Cd(II) and Cr(VI) tolerance in qualitative assays on solid medium. Three isolates were selected for their multiple tolerance to the different heavy metals and highest tolerance to Cr(VI). According to morphological and physiological analysis and 26S rDNA D1/D2 domain sequences the isolates were characterized as: Lecythophora sp. NGV-1, Candida sp. NGV-9 and Aureobasidium pullulans VR-8. Resistance of the three strains to high Cr(VI) concentrations and their ability to remove Cr(VI) were assessed using YNB-glucose medium supplemented with 0.5 and 1 mM Cr(VI). Chromate removal activity was estimated by measuring remaining Cr(VI) concentration in the supernatant using the colorimetric 1,5-diphenylcarbazide method and total chromium was determined by flame atomic absorption spectroscopy. The results indicate that the initial Cr(VI) concentration negatively influenced growth and the specific growth rate but stimulated the metabolic activity of the three strains; resistance to Cr(VI) by these strains was mainly due to reduction of Cr(VI) rather than chromium bioaccumulation. This study showed the potential ability of these strains as tools for bioremediation of Cr(VI) from contaminated sites.  相似文献   

12.
絮凝酵母SPSC01为酿酒酵母Saccharomyces cerevisiae和粟酒裂殖酵母Schizosaccharomyces pombe的融合菌株,用其吸附水溶液中的重金属Cr(VI),可以大大降低生物吸附的固液分离成本。为了探讨SPSC01菌体絮凝蛋白对Cr(VI) 还原吸附的影响,对SPSC01与其亲本菌株的吸附行为进行了比较。结果表明,SPSC01和其具有絮凝性状的亲本S. pombe的Cr(VI) 去除速率基本同步,远优于无絮凝性状的亲本S. cerevisiae;达到吸附平衡时,S. pombe、SPSC01和S. cerevisiae对总Cr去除率分别达68.8%、48.6%和37.5%;从而证明了絮凝有利于Cr(VI) 的还原、吸附,絮凝蛋白在Cr(VI) 的还原吸附过程中起促进作用。通过化学屏蔽方法和傅立叶变换红外光谱 (FTIR) 分析,对SPSC01菌体表面吸附Cr(VI) 的机理进行了研究,结果表明SPSC01菌体表面吸附Cr(VI) 起主要作用的基团是氨基、羧基和酰胺基。  相似文献   

13.
Aims: To characterize the bacterial consortia and isolates selected for their role in hexavalent chromium removal by adsorption and reduction. Methods and Results: Bacterial consortia from industrial wastes revealed significant Cr(VI) removal after 15 days when incubated in medium M9 at pH 6·5 and 8·0. The results suggested chromium reduction. The bacterial consortia diversity (T‐RFLP based on 16S rRNA gene) indicated a highest number of operational taxonomic units in an alkaline carbonate medium mimicking in situ conditions. However, incubations under such conditions revealed low Cr(VI) removal. Genomic libraries were obtained for the consortia exhibiting optimal Cr(VI) removal (M9 medium at pH 6·5 and 8·0). They revealed the dominance of 16S rRNA gene sequences related to the genera Pseudomonas/Stenotrophomonas or Enterobacter/Halomonas, respectively. Isolates related to Pseudomonas fluorescens and Enterobacter aerogenes were efficient in Cr(VI) reduction and adsorption to the biomass. Conclusions: Cr(VI) reduction was better at neutral pH rather than under in situ conditions (alkaline pH with carbonate). Isolated strains exhibited significant capacity for Cr(VI) reduction and adsorption. Significance and Impact of Study: Bacterial communities from chromium‐contaminated industrial wastes as well as isolates were able to remove Cr(VI). The results suggest a good potential for bioremediation of industrial wastes when optimal conditions are applied.  相似文献   

14.
Cr(VI) reduction was observed during tests with Shewanella oneidensis MR-1 (previously named S. putrefaciens MR-1) while being grown with nitrate or fumarate as electron acceptor and lactate as electron donor. From the onset of anoxic growth on fumarate, we measured a gradual and progressive increase in the specific Cr(VI) reduction rate with incubation time until a maximum was reached at late exponential/early stationary phase. Under denitrifying conditions, the specific Cr(VI) reduction rate was inhibited by nitrite, which is produced during nitrate reduction. However, once nitrite was consumed, the specific reduction rate increased until a maximum was reached, again during the late exponential/early stationary phase. Thus, under both fumarate- and nitrate-reducing conditions, an increase in the specific Cr(VI) reduction rate was observed as the microorganisms transition from oxic to anoxic growth conditions, presumably as a result of induction of enzyme systems capable of reducing Cr(VI). Although Cr(VI) reduction has been studied in MR-1 and in other facultative bacteria under both oxic and anoxic conditions, a transition in specific reduction rates based on physiological conditions during growth is a novel finding. Such physiological responses provide information required for optimizing the operation of in situ systems for remediating groundwater contaminated with heavy metals and radionuclides, especially those that are characterized by temporal variations in oxygen content. Moreover, such information may point the way to a better understanding of the cellular processes used by soil bacteria to accomplish Cr(VI) reduction.  相似文献   

15.
Bacillus sp. ES 29 (ATCC: BAA-696) is an efficient chromate reducing bacterium. We evaluated hexavalent chromium (Cr[VI]) reduction by immobilized intact cells and the cell-free enzyme extracts of Bacillus sp. ES 29 in a bioreactor system. Influences of different flow rates (3 to 14 mL h-1), Cr(VI) concentration (2 to 8 mg L-1), and immobilization support materials (Celite, amberlite, and Ca-alginate) on Cr(VI) reduction were examined. Both immobilized intact cells and the cell-free extract of Bacillus sp. ES 29 displayed substantial Cr(VI) reduction. Increasing flow rates from 3 to 6 mL h-1 did not affect the rate of Cr(VI) reduction, but above 6 mL h-1, the Cr(VI) reducing capacity of the immobilized intact cells and cell-free extract of Bacillus sp. ES 29 decreased. With both intact cells and the cell-free extracts, the rate of Cr(VI) reduction was inversely related to the concentration. Intact cells immobilized to Celite displayed the highest rate (k = 0.443 at 3 mL h-1) of Cr(VI) reduction. For the immobilized cell-free extract, maximal reduction (k = 0.689 at 3 mL h-1) was observed with Ca-alginate. Using initial Cr(VI) concentrations of 2 to 8 mg L-1 at flow rates of 3 to 6 mL h-1 both immobilized intact cells and the cell-free extracts reduced 84 to 98% of the influent Cr(VI). Results indicate that immobilized cells and the cell-free extracts of Bacillus sp. ES 29 could be used for large-scale removal of Cr(VI) from contaminated water and waste streams in containment systems.  相似文献   

16.
Environmental contamination by hexavalent chromium, Cr(VI), presents a serious public health problem. This study assessed the reduction of Cr(VI) by intact cells and a cell-free extract (CFE) of an actinomycete, Arthrobacter crystallopoietes (strain ES 32), isolated from soil contaminated with dichromate. Both intact cells and CFE of A. crystallopoietes, displayed substantial reduction of Cr(VI). Intact cells reduced about 90% of the Cr(VI) added within 12 h and Cr(VI) was almost completely reduced after 24 h. The K M and V max of Cr(VI) bioreduction by intact cells were 2.61 μM and 0.0142 μmol/min/mg protein, respectively. Cell-free chromate reductase of the A. crystallopoietes (ES 32) reduced hexavalent chromium at a K M of 1.78 μM and a V max of 0.096 μmol/min/mg protein. The rate constant (k) of chromate reduction was inversely related to Cr(VI) concentration and the half-life (t 1/2) of Cr(VI) reduction increased with increasing concentration. A. crystallopoietes produced a periplasmic chromate reductase that was stimulated by NADH. Results indicate that A. crystallopoietes ES 32 can be used to detoxify Cr(VI) in polluted sites, particularly in stressed environments.  相似文献   

17.
Bacillus sp. ES 29 (ATCC: BAA-696) is an efficient chromate reducing bacterium. We evaluated hexavalent chromium (Cr[VI]) reduction by immobilized intact cells and the cell-free enzyme extracts of Bacillus sp. ES 29 in a bioreactor system. Influences of different flow rates (3 to 14 mL h?1), Cr(VI) concentration (2 to 8 mg L?1), and immobilization support materials (Celite, amberlite, and Ca-alginate) on Cr(VI) reduction were examined. Both immobilized intact cells and the cell-free extract of Bacillus sp. ES 29 displayed substantial Cr(VI) reduction. Increasing flow rates from 3 to 6 mL h?1 did not affect the rate of Cr(VI) reduction, but above 6 mL h?1, the Cr(VI) reducing capacity of the immobilized intact cells and cell-free extract of Bacillus sp. ES 29 decreased. With both intact cells and the cell-free extracts, the rate of Cr(VI) reduction was inversely related to the concentration. Intact cells immobilized to Celite displayed the highest rate (k = 0.443 at 3 mL h?1) of Cr(VI) reduction. For the immobilized cell-free extract, maximal reduction (k = 0.689 at 3 mL h?1) was observed with Ca-alginate. Using initial Cr(VI) concentrations of 2 to 8 mg L?1 at flow rates of 3 to 6 mL h?1 both immobilized intact cells and the cell-free extracts reduced 84 to 98% of the influent Cr(VI). Results indicate that immobilized cells and the cell-free extracts of Bacillus sp. ES 29 could be used for large-scale removal of Cr(VI) from contaminated water and waste streams in containment systems.  相似文献   

18.
Microbially reduced iron minerals can reductively transform a variety of contaminants including heavy metals, radionuclides, chlorinated aliphatics, and nitroaromatics. A number of Cellulomonas spp. strains, including strain ES6, isolated from aquifer samples obtained at the U.S. Department of Energy’s Hanford site in Washington, have been shown to be capable of reducing Cr(VI), TNT, natural organic matter, and soluble ferric iron [Fe(III)]. This research investigated the ability of Cellulomonas sp. strain ES6 to reduce solid phase and dissolved Fe(III) utilizing different carbon sources and various electron shuttling compounds. Results suggest that Fe(III) reduction by and growth of strain ES6 was dependent upon the type of electron donor, the form of iron present, and the presence of synthetic or natural organic matter, such as anthraquinone-2,6-disulfonate (AQDS) or humic substances. This research suggests that Cellulomonas sp. strain ES6 could play a significant role in metal reduction in the Hanford subsurface and that the choice of carbon source and organic matter addition can allow for independent control of growth and iron reduction activity.  相似文献   

19.
Chromate-reducing microorganisms with the ability of reducing toxic chromate [Cr(VI)] into insoluble trivalent chromium [Cr(III)] are very useful in treatment of Cr(VI)-contaminated water. In this study, a novel chromate-reducing bacterium was isolated from Mn/Cr-contaminated soil. Based on morphological, physiological/biochemical characteristics and 16S rRNA gene sequence analyses, this strain was identified as Intrasporangium sp. strain Q5-1. This bacterium has high Cr(VI) resistance with a MIC of 17 mmol l−1 and is able to reduce Cr(VI) aerobically. The best condition of Cr(VI) reduction for Q5-1 is pH 8.0 at 37°C. Strain Q5-1 is also able to reduce Cr(VI) in resting (non-growth) conditions using a variety of carbon sources as well as in the absence of a carbon source. Acetate (1 mmol l−1) is the most efficient carbon source for stimulating Cr(VI) reduction. In order to apply strain Q5-1 to remove Cr(VI) from wastewater, the bacterial cells were immobilized with different matrices. Q5-1 cells embedded with compounding beads containing 4% PVA, 3% sodium alginate, 1.5% active carbon and 3% diatomite showed a similar Cr(VI) reduction rates to that of free cells. In addition, the immobilized Q5-1 cells have the advantages over free cells in being more stable, easier to re-use and minimal clogging in continuous systems. This study provides potential applications of a novel immobilized chromate-reducing bacterium for Cr(VI) bioremediation.  相似文献   

20.
An Arthrobacter sp. and a Bacillus sp., isolated from a long-term tannery waste contaminated soil, were examined for their tolerance to hexavalent chromium [Cr(VI)] and their ability to reduce Cr(VI) to Cr(III), a detoxification process in cell suspensions and cell extracts. Both bacteria tolerated Cr(VI) at 100 mg/ml on a minimal salts agar medium supplemented with 0.5% glucose, but only Arthrobacter could grow in liquid medium at this concentration. Arthrobacter sp. could reduce Cr(VI) up to 50 μg/ml, while Bacillus sp. was not able to reduce Cr(VI) beyond 20 μg/ml. Arthrobacter sp. was distinctly superior to the Bacillus sp. in terms of their Cr(VI)-reducing ability and resistance to Cr(VI). Assays with permeabilized (treated with toluene or Triton X 100) cells and crude extracts demonstrated that the Cr(VI) reduction was mainly associated with the soluble protein fraction of the cell. Arthrobacter sp. has a great potential for bioremediation of Cr(VI)-containing waste. Received: 13 June 2002 / Accepted: 13 September 2002  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号