首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 47 毫秒
1.
2.
3.
The murine cytomegalovirus protein pp89, which is encoded by gene ieI, is a nonstructural regulatory protein expressed in the immediate-early phase of the viral replication cycle and located mainly in the nucleus of infected cells. Protection of BALB/c (H-2d) mice against a lethal murine cytomegalovirus challenge infection is achieved by vaccination with a recombinant vaccinia virus, MCMV-ieI-VAC, expressing pp89 as the only murine cytomegalovirus gene product. The protection is entirely mediated by T lymphocytes of the CD8+ subset. In the present report, we analyzed the molecular basis of the recognition of pp89 by BALB/c CD8+ cytolytic T lymphocytes. A series of internal and terminal deletion mutants of gene ieI was constructed and cloned in vaccinia virus, and the antigenicity and immunogenicity of the fragments of pp89 expressed by the recombinants were studied. A region of only one-sixth of the protein, from amino acids 154 to 249 and encoded by the fourth exon of gene ieI, was sufficient for both the recognition in vitro of the protein by pp89-specific cytotoxic T lymphocytes and the induction in vivo of pp89-specific cytotoxic T lymphocytes. By using synthetic peptides, the sequence between residues 161 and 179, which is located within the defined domain, was identified as an epitope presented to BALB/C cytotoxic T lymphocytes by the class I major histocompatibility antigen Ld.  相似文献   

4.
5.
To further characterize the gene structure of the proto-oncogene c-src and the mechanism for the genesis of the v-src sequence in Rous sarcoma virus, we have analyzed genomic and cDNA copies of the chicken c-src gene. From a cDNA library of chicken embryo fibroblasts, we isolated and sequenced several overlapping cDNA clones covering the full length of the 4-kb c-src mRNA. The cDNA sequence contains a 1.84-kb sequence downstream from the 1.6-kb pp60c-src coding region. An open reading frame of 217 amino acids, called sdr (src downstream region), was found 105 nucleotides from the termination codon for pp60c-src. Within the 3' noncoding region, a 39-bp sequence corresponding to the 3' end of the RSV v-src was detected 660 bases downstream of the pp60c-src termination codon. The presence of this sequence in the c-src mRNA exon supports a model involving an RNA intermediate during transduction of the c-src sequence. The 5' region of the c-src cDNA was determined by analyzing several cDNA clones generated by conventional cloning methods and by polymerase chain reaction. Sequences of these chicken embryo fibroblast clones plus two c-src cDNA clones isolated from a brain cDNA library show that there is considerable heterogeneity in sequences upstream from the c-src coding sequence. Within this region, which contains at least 300 nucleotides upstream of the translational initiation site in exon 2, there exist at least two exons in each cDNA which fall into five cDNA classes. Four unique 5' exon sequences, designated exons UE1, UE2, UEX, and UEY, were observed. All of them are spliced to the previously characterized c-src exons 1 and 2 with the exception of type 2 cDNA. In type 2, the exon 1 is spliced to a novel downstream exon, designated exon 1a, which maps in the region of the c-src DNA defined previously as intron 1. Exon UE1 is rich in G+C content and is mapped at 7.8 kb upstream from exon 1. This exon is also present in the two cDNA clones from the brain cDNA library. Exon UE2 is located at 8.5 kb upstream from exon 1. The precise locations of exons UEX and UEY have not been determined, but both are more than 12 kb upstream from exon 1. The existence and exon arrangements of these 5' cDNAs were further confirmed by RNase protection assays and polymerase chain reactions using specific primers. Our findings indicate that the heterogeneity in the 5' sequences of the c-src mRNAs results from differential splicing and perhaps use of distinct initiation sites. All of these RNAs have the potential of coding for pp60c-src, since their 5' exons are all eventually joined to exon 2.  相似文献   

6.
7.
8.
The yeast nuclear gene PET111 is required specifically for translation of the mitochondrion-coded mRNA for cytochrome c oxidase subunit II. We have determined the nucleotide sequence of a 3-kilobase segment of DNA that carries PET111. The sequence contains a single long open reading frame that predicts a basic protein of 718 amino acids. The PET111 gene product is a mitochondrial protein, since a hybrid protein which includes the amino-terminal 154 amino acids of PET111 fused to beta-galactosidase is specifically associated with mitochondria. PET111 is translated from a 2.9-kilobase mRNA which, interestingly, has an extended 5'-leader sequence containing four short open reading frames upstream of the long open reading frame. These open reading frames exhibit an interesting pattern of overlap with each other and with the PET111 reading frame.  相似文献   

9.
Most eukaryotic cells encode principally a 2.5-kilobase (kb) transforming growth factor (TGF)-beta 1 mRNA. However, we have found two major TGF-beta 1 RNA species, 3.5 and 2.5 kb long, in porcine tissues. The 3.5-kb species has a longer 3'-untranslated sequence generated by the selection of an alternate polyadenylation site. There is a 117-nucleotide sequence within this unique 3' region, which is similar to the PRE-1 repetitive sequence of unknown function, reported earlier in the porcine genome. We have also cloned and characterized an alternately spliced mRNA species specific for the TGF-beta 1 gene, in which exons IV and V of the corresponding human TGF-beta 1 gene are deleted. The nucleotide sequence of this cDNA clone predicts a putative precursor protein of 256 amino acids; the N-terminal 211 amino acids of this putative protein are identical to the TGF-beta 1 precursor protein (exons I, II, and III of the human TGF-beta 1 gene), but the C-terminal 45 amino acids are distinct, due to a frameshift in the translation of exons VI and VII. In addition we provide data for the existence of other mRNA species generated in a tissue-specific manner either by alternate splicing or by heterogeneous 5' leader sequences.  相似文献   

10.
11.
While the c-src locus is expressed as a 4.0-kilobase (kb) mRNA coding for pp60c-src in various chicken tissues, including embryonic muscle, it is expressed as a novel 3.0-kb mRNA in adult skeletal muscle. We have analyzed the primary structure of this alternatively transcribed and spliced c-src mRNA. The sequence revealed three open reading frames, with the previously defined c-src exons 1 through 5 or 6 comprising the third, on the 3' untranslated region of this 3-kb mRNA. The exons coding for the tyrosine kinase domain of pp60c-src were excluded. On the 5' side, 2 kb of sequence upstream from the previously defined exon 1 of the c-src gene was included in this mRNA. The start site for the 3-kb mRNA probably lies downstream of that for the 4-kb mRNA. The first reading frame of the 3.0-kb mRNA, called sur (for src upstream region), encoded a 24-kilodalton (kDa) protein product rich in cysteine and proline residues. In vitro analysis indicated that the 24-kDa sur protein was membrane associated. Antibodies to sur protein detected in vivo a 24-kDa muscle-specific protein which was developmentally regulated and corresponded to the switch from the 4-kb to the 3-kb c-src mRNA. A striking kinetic pattern of appearance of sur protein and disappearance of pp60c-src suggests that the expression of these two proteins is inversely related.  相似文献   

12.
13.
14.
15.
16.
17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号