首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Insulin-like growth factor binding protein-3 (IGFBP-3) is a multi-functional protein known to induce apoptosis of various cancer cells in an insulin-like growth factor (IGF)-dependent and IGF-independent manner. In our previous study, we found that IGFBP-3 induced apoptosis through the activation of caspases in 786-O cells. In this study, we further examined that whether IGFBP-3 induced apoptosis through the induction of cell cycle arrest in 786-O, A549 and MCF-7 cells. Our results showed that overexpressed IGFBP-3 resulted in typical apoptotic ultrastructures in A549 cells under transmission electron microscope. The result of flow cytometry analysis indicated that IGFBP-3 arrested the cell cycle at G1-S phase in 786-O, A549 and MCF-7 cells. In A549 cells, quantitative real-time PCR and Western blot analysis showed a significant change in the expression of cell cycle-regulated proteins—a decrease in cyclin E1 expression, an increase in p21 expression. These results indicate a possible mechanism for G1 cell cycle arrest by IGFBP-3. Taken together, cyclin E1 and p21 may play important roles in the IGFBP-3-inducing G1 cell cycle arrest and apoptosis in several human cancer cells.  相似文献   

3.
4.
Neuronal apoptosis is considered to play a significant role in several neuropathological conditions. However, the molecular mechanisms underlying neuronal apoptosis are poorly understood. Insulin-like growth factor (IGF) signalling is considered to be an important regulator of neuronal differentiation, survival and apoptosis. We have examined the expression of two members of the IGF system, insulin-like growth factor binding protein 5 (IGFBP-5) and the type-1 IGF receptor (IGF1R), during apoptosis of rat cerebellar granule cells (CGCs) in vitro. We describe a prominent downregulation of IGFBP-5 mRNA and protein expression. We also show that IGF-I increases IGFBP-5 expression in CGCs and that the downregulation of IGFBP-5 mRNA can be suppressed by inhibiting mRNA synthesis with actinomycin D. The expression of IGF1R mRNA showed a transient upregulation during potassium chloride (KCl) deprivation induced apoptosis, in contrast to the IGF1R protein level, which was downregulated during KCl deprivation. Our results provide insight into the expression of IGF-related genes during neuronal apoptosis, and indicate that they mediate a protective response to the withdrawal of trophic stimulation. It seems that the expression of IGFBP-5 and IGF1R is regulated to maximize the availability of IGF and the activity of IGF-triggered survival signalling.  相似文献   

5.
The six members of the insulin-like growth factor-binding protein family (IGFBP-1-6) are important components of the IGF (insulin-like growth factor) axis. In this capacity, they serve to regulate the activity of both IGF-I and -II polypeptide growth factors. The IGFBPs are able to enhance or inhibit the activity of IGFs in a cell- and tissue-specific manner. One of these proteins, IGFBP-5, also has an important role in controlling cell survival, differentiation and apoptosis. In this review, we report on the structural and functional features of the protein which are important for these effects. We also examine the regulation of IGFBP-5 expression and comment on its potential role in tumour biology, with special reference to work with breast cancer cells.  相似文献   

6.
We have shown previously that the Epstein-Barr virus nuclear antigen-1 (EBNA1) can act as a transforming suppressor in the HER2/neu-overexpressing ovarian cancer cells. In the present study, by using flow cytometric analysis, we demonstrate that EBNA1 could prolong G(2)/M phase and sensitize to Taxol-induced apoptosis in the EBNA1-expressing ovarian cancer cell stable transfectants. In addition, EBNA1 could also significantly increase topoisomerase IIalpha protein expression, indicating that the up-regulation of topoisomerase IIalpha may be one of the mechanisms by which EBNA1 enhances the sensitivity of ovarian cancer cells to topoisomerase II-targeting anticancer drugs, such as VP-16 and Adriamycin. These data suggest that EBNA1 not only prolongs cell cycle at G(2)/M phase and up-regulates topoisomerase IIalpha expression in HER2/neu-overexpressing ovarian cancer cells, but also increases cellular apoptosis through sensitization of cancer cells to topoisomerase II-directing anticancer drugs.  相似文献   

7.
Interest in the role of the insulin-like growth factor (IGF) axis in growth control and carcinogenesis has recently been increased by the finding of elevated serum insulin-like growth factor I (IGF-I) levels in association with three of the most prevalent cancers in the United States: prostate cancer, colorectal cancer, and lung cancer. IGFs serve as endocrine, autocrine, and paracrine stimulators of mitogenesis, survival, and cellular transformation. These actions are mediated through the type 1 IGF-receptor (IGF-1R), a tyrosine kinase that resembles the insulin receptor. The availability of free IGF for interaction with the IGF-1R is modulated by the insulin-like growth factor-binding proteins (IGFBPs). IGFBPs, especially IGFBP-3, also have IGF-independent effects on cell growth. IGF-independent growth inhibition by IGFBP-3 is believed to occur through IGFBP-3-specific cell surface association proteins or receptors and involves nuclear translocation. IGFBP-3-mediated apoptosis is controlled by numerous cell cycle regulators in both normal and disease processes. IGFBP activity is also regulated by IGFBP proteases, which affect the relative affinities of IGFBPs, IGFs and IGF-1R. Perturbations in each level of the IGF axis have been implicated in cancer formation and progression in various cell types.  相似文献   

8.
We report that transfection of insulin-like growth factor-binding protein-3 (IGFBP-3) cDNA in human breast cancer cell lines expressing either mutant p53 (T47D) or wild-type p53 (MCF-7) induces apoptosis. IGFBP-3 also increases the ratio of pro-apoptotic to anti-apoptotic members of the Bcl-2 family. In MCF-7, an increase in Bad and Bax protein expression and a decrease in Bcl-x(L) protein and Bcl-2 protein and mRNA were observed. In T47D, Bax and Bad proteins were up-regulated; Bcl-2 protein is undetectable in these cells. As T47D expresses mutant p53 protein, these modulations of pro-apoptotic proteins and induction of apoptosis are independent of p53. The effect of IGFBP-3 on the response of T47D to ionizing radiation (IR) was examined. These cells do not G(1) arrest in response to IR and are relatively radioresistant. Transfection of IGFBP-3 increased the radiosensitivity of T47D and increased IR-induced apoptosis but did not effect a rapid G(1) arrest. IR also caused a much greater increase in Bax protein in IGFBP-3 transfectants compared with vector controls. Thus, IGFBP-3 increases the expression of pro-apoptotic proteins and apoptosis both basally and in response to IR, suggesting it may be a p53-independent effector of apoptosis in breast cancer cells via its modulation of the Bax:Bcl-2 protein ratio.  相似文献   

9.
Proteolytic modification of insulin-like growth factor binding proteins (IGFBPs) plays an important physiological role in regulating insulin-like growth factor (IGF) bioavailability. Recently, we demonstrated that matrix metalloproteinase-7 (MMP-7)/Matrilysin produced by various cancer cells catalyzes the proteolysis of IGFBP-3 in vitro and regulates IGF bioavailability, resulting in an anti-apoptotic effect against anchorage-independent culture. In the present study, we investigated whether MMP-7 contributes to proteolysis of the other five IGFBPs, IGFBP-1, IGFBP-2, IGFBP-4, IGFBP-5, and IGFBP-6, and whether this results in phosphorylation of the IGF type 1 receptor (IGF-1R). MMP-7 cleaved all six IGFBPs, resulting in IGF-mediated IGF-1R phosphorylation, which was inhibited by EDTA treatment. These results suggest that MMP-7 derived from cancer cells can regulate IGF bioavailability in the microenvironment surrounding the tumor, where various kinds of IGF/IGFBP complexes are found, thereby favoring cancer cell growth and survival during the processes of invasion and metastasis.  相似文献   

10.
The insulin-like growth factor (IGF)-independent effects of insulin-like growth factor binding protein-3 (IGFBP-3) to effect cellular apoptosis have now been described in various cellular systems. IGFBP-3 mediates transforming growth factor-beta-induced apoptosis. Other growth-inhibitory and apoptosis-inducing agents such as tumor necrosis factor-alpha (TNF-alpha) and the tumor suppressor gene p53 also induce IGFBP-3. In this report, we demonstrate the role of IGFBP-3 as a mediator of apoptosis induced by TNF-alpha and elucidate the process involved in its signaling mechanism. Treatment of PC-3 cells with TNF-alpha resulted in the induction of IGFBP-3 expression in a dose- and time-dependent fashion and also induced apoptosis. TNF-alpha-induced apoptosis was prevented by cotreatment with IGFBP-3 neutralizing antibodies or IGFBP-3-specific antisense thiolated oligonucleotides. Both IGFBP-3 and TNF-alpha treatment increased the levels of the inactive, serine phosphorylated form of the survival protein Bcl-2. The effect of TNF-alpha on Bcl-2 serine phosphorylation was blocked by IGFBP-3 antisense oligomers. These findings confirm that IGFBP-3 is essential for TNF-alpha-induced apoptosis in PC-3 cells and that this IGFBP-3 effect includes the inactivation of Bcl-2 through serine phosphorylation.  相似文献   

11.
Progression of prostate cancer is facilitated by growth factors that activate critical signaling cascades thereby promote prostate cancer cell growth, survival, and migration. To investigate the effect of quercetin on insulin-like growth factor signaling and apoptosis in androgen independent prostate cancer cells (PC-3), IGF-IR, PI-3K, p-Akt, Akt, cyclin D1, Bad, cytochrome c, PARP, caspases-9 and 10 protein levels were assessed by western blot analysis. Mitochondrial membrane potency was detected by rhodamine-123 staining. Quercetin induced caspase-3 activity assay was performed for activation of apoptosis. Further, RT-PCR was also performed for Bad, IGF-I, II, IR, and IGFBP-3 mRNA expression. Quercetin significantly increases the proapoptotic mRNA levels of Bad, IGFBP-3 and protein levels of Bad, cytochrome C, cleaved caspase-9, caspase-10, cleaved PARP and caspase-3 activity in PC-3 cells. IGF-IRβ, PI3K, p-Akt, and cyclin D1 protein expression and mRNA levels of IGF-I, II and IGF-IR were decreased significantly. Further, treatment with PI3K inhibitor (LY294002) and quercetin showed decreased p-Akt levels. Apoptosis is confirmed by loss of mitochondrial membrane potential in quercetin treated PC-3 cells. This study suggests that quercetin decreases the survival of androgen independent prostate cancer cells by modulating the expression of insulin-like growth factors (IGF) system components, signaling molecules and induces apoptosis, which could be very useful for the androgen independent prostate cancer treatment.  相似文献   

12.
The insulin-like growth factor (IGF) system is linked to CNS pathological states. The functions of IGFs are modulated by a family of binding proteins termed insulin-like growth factor binding proteins (IGFBPs). Here, we demonstrate that IGFBP-6 may be associated with neuronal apoptosis in the processes of intracerebral hemorrhage (ICH). We obtained a significant upregulation of IGFBP-6 in neurons adjacent to the hematoma following ICH with the results of Western blot, immunohistochemistry, and immunofluorescence. Increasing IGFBP-6 level was found to be accompanied by the upregulation of Bax, Bcl-2, and active caspase-3. Besides, IGFBP-6 co-localized well with active caspase-3 in neurons, indicating its potential role in neuronal apoptosis. Knocking down IGFBP-6 by RNA-interference in PC12 cells reduced active caspase-3 expression. Thus, IGFBP-6 may play a role in promoting the brain secondary damage following ICH.  相似文献   

13.
O Ali  P Cohen  K-W Lee 《Hormones et métabolisme》2003,35(11-12):726-733
The Insulin-like Growth Factor (IGF) signaling system plays a central role in cellular growth, differentiation and proliferation. IGFBP-3 is the most abundant IGF binding protein in human serum and has been shown to be a growth inhibitory, apoptosis-inducing molecule, capable of acting via IGF-dependent and IGF-independent mechanisms. Over the last decade, several clinical studies have proposed that individuals with IGFBP-3 levels in the upper range of normal may have a decreased risk for certain common cancers. This includes evidence of a protective effect against breast cancer, prostate cancer, colorectal cancer, and lung cancer. In addition, a series of in vitro studies and animal experiments point towards an important role for IGFBP-3 in the regulation of cell growth and apoptosis. In this brief review, we discuss the biological role of IGFBP-3 and summarize the epidemiological and experimental evidence suggesting a role for IGFBP-3 as an anti-cancer molecule.  相似文献   

14.
Insulin-like growth factors (IGFs) in the circulation are predominantly sequestered into ternary complexes comprising IGF, IGF-binding protein-3 (IGFBP-3), and the acid-labile subunit (ALS). Besides its role in regulating IGF bioavailability in the circulation, IGFBP-3 has both IGF-dependent and IGF-independent actions on cell proliferation. As part of our studies into the structure-function relationships of the multifunctional IGFBP-3, we have evaluated the efficiency of an adenovirus-mediated expression system for rapid, medium-scale production of functional, glycosylated IGFBP-3. Replication-deficient adenovirus containing human IGFBP-3 cDNA was generated using standard techniques. Secreted, recombinant IGFBP-3 (IGFBP-3(Ad)) was purified from the culture medium of virus-infected cells by IGF-I affinity chromatography followed by reverse-phase HPLC. When analyzed by SDS-PAGE, IGFBP-3(Ad) was similar in size (43- to 45-kDa glycoform doublet) to IGFBP-3(Pl) derived from plasma. In addition, IGFBP-3(Ad) was detected by immunoblot using an antibody specific for human IGFBP-3 and by ligand blot using radiolabeled IGF-I. IGFBP-3(Ad) had similar affinities for IGF-I and ALS and an approximately 25% decreased affinity for IGF-II compared to IGFBP-3(Pl). IGFBP-3(Ad) showed no significant difference in its susceptibility to an IGFBP-3 protease present in medium conditioned by MCF-7 breast cancer cells compared to IGFBP-3(Pl), but appeared more resistant to the IGFBP-3 protease present in pregnancy serum. IGFBP-3(Ad) also exhibited increased binding to T47D cells which may be related to the glycosylation state of the protein.  相似文献   

15.

Background

Human olfactomedin 4 (OLFM4) gene is a secreted glycoprotein more commonly known as the anti-apoptotic molecule GW112. OLFM4 is found to be frequently up-regulated in many types of human tumors including gastric cancer and it was believed to play significant role in the progression of gastric cancer. Although the function of OLFM4 has been indicated in many studies, recent evidence strongly suggests a cell or tissue type-dependent role of OLFM4 in cell growth and apoptosis. The aim of this study is to examine the role of gastric cancer-specific expression of OLFM4 in cell growth and apoptosis resistance.

Methods

OLFM4 expression was eliminated by RNA interference in SGC-7901 and MKN45 cells. Cell proliferation, anchorage-independent growth, cell cycle and apoptosis were characterized in vitro. Tumorigenicity was analyzed in vivo. The apoptosis and caspase-3 activation in response to hydrogen peroxide (H2O2) or tumor necrosis factor-alpha (TNF α) were assessed in the presence or absence of caspase inhibitor Z-VAD-fmk.

Results

The elimination of OLFM4 protein by RNA interference in SGC-7901 and MKN45 cells significantly inhibits tumorigenicity both in vitro and in vivo by induction of cell G1 arrest (all P < 0.01). OLFM4 knockdown did not trigger obvious cell apoptosis but increased H2O2 or TNF α-induced apoptosis and caspase-3 activity (all P < 0.01). Treatment of Z-VAD-fmk attenuated caspase-3 activity and significantly reversed the H2O2 or TNF α-induced apoptosis in OLFM4 knockdown cells (all P < 0.01).

Conclusion

Our study suggests that depletion of OLFM4 significantly inhibits tumorigenicity of the gastric cancer SGC-7901 and MKN45 cells. Blocking OLFM4 expression can sensitize gastric cancer cells to H2O2 or TNF α treatment by increasing caspase-3 dependent apoptosis. A combination strategy based on OLFM4 inhibition and anticancer drugs treatment may provide therapeutic potential in gastric cancer intervention.  相似文献   

16.
The 1,25 dihydroxyvitamin D3 [1,25(OH)2D3]-induced differentiation of osteoblasts comprises the sequential induction of cell cycle arrest at G0/G1 and the expression of bone matrix proteins. Reports differ on the effects of IGF binding protein (IGFBP)-5 on bone cell growth and osteoblastic function. IGFBP-5 can be growth stimulatory or inhibitory and can enhance or impair osteoblast function. In previous studies, we have shown that IGFBP-5 localizes to the nucleus and interacts with the retinoid receptors. We now show that IGFBP-5 interacts with nuclear vitamin D receptor (VDR) and blocks retinoid X receptor (RXR):VDR heterodimerization. VDR and IGFBP-5 were shown to colocalize to the nuclei of MG-63 and U2-OS cells and coimmunoprecipitate in nuclear extracts from these cells. Induction of osteocalcin promoter activity and alkaline phosphatase activity by 1,25(OH)2D3 were significantly enhanced when IGFBP-5 was down-regulated in U2-OS cells. Moreover, we found IGFBP-5 increased basal alkaline phosphatase activity and collagen alpha1 type 1 expression, and that 1,25(OH)2D3 was unable to further induce the expression of these bone differentiation markers in MG-63 cells. Expression of IGFBP-5 inhibited MG-63 cell growth and caused cell cycle arrest at G0/G1 and G2/M. Furthermore, IGFBP-5 reduced the effects of 1,25(OH)2D3 in blocking cell cycle progression at G0/G1 and decreased the expression of cyclin D1. These results demonstrate that IGFBP-5 can interact with VDR to prevent RXR:VDR heterodimerization and suggest that IGFBP-5 may attenuate the 1,25(OH)2D3-induced expression of bone differentiation markers while having a modest effect on the 1,25(OH)2D3-mediated inhibition of cell cycle progression in bone cells.  相似文献   

17.
Oxygen (O(2)) species are involved in a large variety of pulmonary diseases. Among the various cell types that compose the lung, the epithelial cells of the alveolar structure appear to be a major target for oxidant injury. Despite their importance in the repair processes, the mechanisms which regulate the replication of the stem cells of the alveolar epithelium, the type 2 cells, remain poorly understood. Based on the results of several studies which have documented the involvement of the insulin-like growth factor (IGF) system in lung epithelial cell replication, and which have also suggested a role for IGF binding proteins (IGFBPs) in the control of cell proliferation, the aim of the present work was to determine whether IGFBPs could be involved in the modulation of growth of human lung epithelial cells exposed to oxidants. Experiments were performed using a human lung adenocarcinoma cell line (A549) which was exposed for various durations to hyperoxia (95% O(2)). We observed a rapid and reversible growth arrest of the cells after only 24 h of O(2) exposure. When oxidant injury was prolonged, growth arrest was followed by induction of apoptosis with activation of the Fas pathway. These effects were associated with an increased expression of IGFBP-2 and IGFBP-3. In addition, study of localization of these proteins revealed distinct patterns of distribution. IGFBP-3 was mainly present in the extracellular compartment. In comparison, the fraction of IGFBP-2 secreted was less abundant whereas the IGFBP-2 fraction in the intracellular compartment appeared stronger. In addition, analysis of the subcellular localization provided data indicating the presence of IGFBP-2 in the nucleus. Taken together these data support a role for IGFBP-2 and IGFBP-3 in the processes of growth arrest and apoptosis in lung epithelial cells upon oxidant exposure. They also suggest that distinct mechanisms may link IGFBP-2 and IGFBP-3 to the key regulators of the cell cycle.  相似文献   

18.
Glucocorticoids inhibit the proliferation, but induce the differentiation, of bone marrow stromal cells into osteoblast-like cells. The mechanisms, however, are still conjectural. Since insulin-like growth factors (IGFs) have profound effects on osteoblast growth and differentiation, it is possible that glucocorticoids exert their effects on bone marrow stromal cells in part via regulation of IGFs. Therefore, we analyzed the effects of dexamethasone (Dex) on the expression of IGF I and IGF II in cultured preosteoblastic normal human bone marrow stromal cells (HBMSC). Whereas Dex decreased the concentration of IGF I in the conditioned medium since early in the treatment, the concentration of IGF II was increased progressively as culture period lengthened. As the activities of IGF I and IGF II are regulated by the IGF binding proteins (IGFBPs), we analyzed the effects of Dex on the expression of IGFBPs. Dex increased IGFBP-2 in a time-dependent manner. The increase in IGFBP-2, however, was only to the same extent as that of IGF II at most, depending on the length of treatment. Therefore, the increase in IGFBP-2 would dampen, but not eliminate, the increased IGF II activities. By contrast, Dex decreased IGFBP-3 levels, the latter increasing the bioavailability of IGF II. Although IGFBP-4 mRNA levels were stimulated by Dex, IGFBP-4 concentration in the conditioned medium was unchanged as measured by RIA. IGFBP-5 and IGFBP-6 mRNA levels were decreased by Dex in a time-dependent fashion. IGFBP-5 protein level was also decreased 1–4 days after Dex treatment. IGFBP-1 mRNA was not detectable in HBMSC. These accumulated data indicate that Dex regulates IGF I and IGF II and their binding proteins differentially in normal human bone marrow stromal cells. The progressive increase in IGF II may contribute to Dex-induced cell differentiation. J. Cell. Biochem. 71:449–458, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

19.
Chemotherapy is essential to most patients with gastric cancer and the anticancer drug, irinotecan (CPT-11), and its metabolite, SN-38, an inhibitor of DNA topoisomerase I, are first-line chemotherapies for gastric cancer. Quercetin, a flavonoid that is widely found in various vegetables and fruits, has the ability to potentiate the efficacy of anticancer drugs. The purpose of this study was to investigate the therapeutic effect of quercetin combined with irinotecan/SN-38 in the AGS human gastric cancer cell line in vitro and in vivo. The in vitro study evaluated the efficacy of high-dose SN-38 and quercetin combined with low-dose SN-38 on cell viability, apoptosis, and β-catenin expression. Results showed that cell viability and the percentage of apoptosis in combined treatments with quercetin and SN-38 were comparable to treatment with high-dose SN-38 alone. AGS cells treated with a high dose of SN-38 exhibited up-regulation of β-catenin protein expression, whereas quercetin-treated cells (either quercetin alone or combined with low-dose SN-38) exhibited lower protein levels of β-catenin. In the AGS xenograft mouse model, gene expression of cyclooxygenase-2 and epithelial-mesenchymal transition-related markers, such as Twist1 and ITGβ6, were lower in combined treatments with quercetin and low-dose irinotecan than high-dose irinotecan alone. Furthermore, the concentration of angiogenesis-associated factors (vascular endothelial growth factor (VEGF)-A and VEGF-receptor 2) and percentage of Tie2-expressing monocytes was significantly down-regulated in combined treatments with quercetin and irinotecan. These results suggest that quercetin may enhance the efficacy of irinotecan/SN-38 in the human AGS cell line.  相似文献   

20.
Insulin-like growth factor (IGF)-binding protein-3 (IGFBP-3) can stimulate apoptosis and inhibit cell proliferation directly and independently of binding IGFs or indirectly by forming complexes with IGF-I and IGF-II that prevent them from activating the IGF-I receptor to stimulate cell survival and proliferation. To date, IGF-independent actions only have been demonstrated in a limited number of cells that do not synthesize or respond to IGFs. To assess the general importance of IGF-independent mechanisms, we have generated human IGFBP-3 mutants that cannot bind IGF-I or IGF-II by substituting alanine for six residues in the proposed IGF binding site, Ile(56)/Tyr(57)/Arg(75)/Leu(77)/Leu(80)/Leu(81), and expressing the 6m-hIGFBP-3 mutant construct in Chinese hamster ovary cells. Binding of both IGF-I and IGF-II to 6m-hIGFBP-3 was reduced >80-fold. The nonbinding 6m-hIGFBP-3 mutant still was able to inhibit DNA synthesis in a mink lung epithelial cell line in which inhibition by wild-type hIGFBP-3 previously had been shown to be exclusively IGF-independent. 6m-hIGFBP-3 only can act by IGF-independent mechanisms since it is unable to form complexes with the IGFs that inhibit their action. We next compared the ability of wild-type and 6m-hIGFBP-3 to stimulate apoptosis in serum-deprived PC-3 human prostate cancer cells. PC-3 cells are known to synthesize and respond to IGF-II, so that IGFBP-3 could potentially act by either IGF-dependent or IGF-independent mechanisms. In fact, 6m-hIGFBP-3 stimulated PC-3 cell death and stimulated apoptosis-induced DNA fragmentation to the same extent and with the same concentration dependence as wild-type hIGFBP-3. These results indicate that IGF-independent mechanisms are major contributors to IGFBP-3-induced apoptosis in PC-3 cells and may play a wider role in the antiproliferative and antitumorigenic actions of IGFBP-3.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号