首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 171 毫秒
1.
中度嗜盐菌在生物技术中的应用   总被引:10,自引:0,他引:10  
生存于盐环境下的中度嗜盐菌在生物技术方面具有很多潜在的应用价值。其中,中度嗜盐菌在盐发酵食品加工业和食品添加剂中已经被广泛应用;由中度嗜盐菌分泌的胞外酶如淀粉酶、脂肪酶等能够在高盐环境下继续保持较高的活力;中度嗜盐菌细胞内积累的多种类相容性溶质也可以作为生物大分子稳定剂以及抗冻剂等;其它如其产生的生物表面活性剂、多聚糖类物质能够在石油回收和生物修复中进行应用等。  相似文献   

2.
嗜盐菌耐盐机制相关基因的研究进展   总被引:6,自引:1,他引:5  
嗜盐微生物能够在高盐环境中生存,其耐盐机制一直是微生物学家研究的热点。目前嗜盐微生物耐盐机制的研究主要集中在细胞吸K+排Na+作用、胞内积累小分子相容性溶质及嗜盐酶的氨基酸组成特性三个方面。文章从基因水平综述了嗜盐菌的耐盐机制,并对其在高盐废水处理上的应用进行讨论与展望。  相似文献   

3.
嗜盐菌的嗜盐机制   总被引:20,自引:0,他引:20  
嗜盐菌是生活在高盐环境中的细菌。它们的细胞结构和生理机能特殊,要求有高盐浓度维持其生存;同时,它们的细胞膜结构和细胞内的溶质,都能适应高盐环境。  相似文献   

4.
嗜盐微生物   总被引:27,自引:1,他引:26  
刘铁汉  周培瑾   《微生物学通报》1999,26(3):232-232
高盐环境通常是指那些盐浓度高于海水的环境.在这些环境中能够生存的微生物可划分为三类:一“类是能耐受一定浓度的盐溶液,但在无盐存在条件下生长最好的菌称为耐盐菌.第二类是一定浓度的盐为菌体生长所必需,且在一定浓度的盐溶液中生长最好,称为嗜盐菌.在盐浓度从零至饱和的盐溶液中均能生长,在一定浓度的盐溶液中生长最好的特殊类群称为多能盐生苗。依据嗜盐浓度的不同,嗜盐菌又可分为轻度嗜盐菌(最适盐浓度0.2—0.smol/L)、中度嗜盐菌(最适盐浓度0.5—2.omol/L)和极端嗜盐菌(最适盐浓度>3mol/U,其中部分极端嗜…  相似文献   

5.
四氢嘧啶类化合物是嗜盐以及耐盐菌胞内合成的一类能够抵御外界高盐胁迫的相容性溶质,概述了四氢嘧啶及其衍生物的理化特征以及在嗜盐微生物中抵御外界高渗透压的作用机理,主要阐述了四氢嘧啶类相容性溶质的生物合成途径、膜运输机理、分泌释放机制、高密度发酵生产等方面在细胞、分子水平上的最新研究进展以及前景展望。并且综述了四氢嘧啶类在精细化工、生物医药及生物制造等行业的应用研究以及发展前景,探讨了未来的研究方向。  相似文献   

6.
为了揭示细胞对盐胁迫渗透适应的分子机制,以新鉴定的中度嗜盐芽孢杆菌Bacillussp.I121为实验材料,分析了该嗜盐菌质膜上的盐胁迫响应蛋白.为此,通过蓝色温和凝胶双向电泳(BN/SDS-PAGE)对纯化的质膜组分进行了差异蛋白质组学研究.经MALDI-TOF/TOF质谱分析,鉴定了8个盐胁迫响应蛋白.盐胁迫诱导上调表达的蛋白质包括ABC型转运蛋白、3-磷酸甘油透性酶、嘧啶核苷转运蛋白和甲酸脱氢酶,下调表达的蛋白质包括琥珀酸脱氢酶(succinate dehydrogenase)铁硫亚基、黄素蛋白亚基、细胞色素b556亚基以及分子伴侣DnaJ的同源蛋白;酶活力测定结果表明胁迫条件下上述蛋白质的活性变化与表达量变化相一致.这些蛋白质中绝大多数属于高度疏水的跨膜蛋白,主要负责物质跨膜运输及能量代谢.上述结果表明,中度嗜盐菌Bacillus sp.I121可通过加快跨膜物质运输,同时抑制TCA循环完成盐胁迫条件下相容性溶质脯氨酸和四氢嘧啶的合成与积累.也进一步证明,蓝色温和凝胶双向电泳不仅可用于线粒体、叶绿体中蛋白质复合物的分析,也同样适用于细胞质膜上高度疏水蛋白复合物的比较研究.  相似文献   

7.
【背景】四氢嘧啶类物质在高温、冷冻和干燥等逆境条件下,对酶、蛋白质、核酸及整个细胞具有良好的保护作用,已经应用于酶制剂、生物医药及护肤品等相关领域。目前此类物质只能依赖中度嗜盐菌采用细菌泌乳工艺进行商业化生产,因此四氢嘧啶类高产菌株及其发酵技术的研究日益受到国内外研究者关注。【目的】分离获得高产合成四氢嘧啶类相容性溶质的中度嗜盐细菌,研究渗透压冲击对其胞内四氢嘧啶合成与释放的影响,探索细菌泌乳法制备四氢嘧啶的可行性。【方法】采用涂布平板法分离中度嗜盐菌,对分离菌株进行形态、生理生化和16S rRNA基因序列分析,鉴定其种属;采用高效液相色谱法(HPLC)和质谱法(MS)分析四氢嘧啶类物质,细菌泌乳法制备四氢嘧啶类物质。【结果】从盐池土样中分离到一株以四氢嘧啶类物质为主要相容性溶质的中度嗜盐菌Y,鉴定为盐单胞菌(Halomonas sp.)Y。盐单胞菌Y能在NaCl质量浓度为10-250 g/L的培养基中生长,最适生长的NaCl浓度为100 g/L;HPLC-MS测试结果证明盐单胞菌Y可同时合成四氢嘧啶和羟基四氢嘧啶2种相容性溶质,在最适生长的盐浓度下其合成量分别达175.5 mg/g和47.9 mg/g;在NaCl质量浓度为0-30 g/L的低渗溶液中胞内四氢嘧啶类物质经5 min即可达到最大释放率,而细菌泌乳工艺中最适合诱导四氢嘧啶释放的低渗溶液为质量浓度为10 g/L的NaCl溶液;采用细菌泌乳工艺制备四氢嘧啶,经连续11轮的高渗/低渗冲击,四氢嘧啶总合成量为6.0 g/L,总释放量为5.7 g/L,平均释放率为64.5%,底物转化率为128.9 mg/g。【结论】盐单胞菌Y是一株较高产合成四氢嘧啶类的中度嗜盐菌,能够耐受反复的渗透压冲击,采用细菌泌乳工艺显著提高了四氢嘧啶的制备效率。  相似文献   

8.
从草地土壤中分离到一株中度嗜盐菌I15,经过16S rDNA(GenBank登录号为DQ010162)序列分析、形态学和生理生化特征分析,该菌株初步鉴定为Virgibacillus marismortui。I15能在0%~25%NaCl的培养基中生长,最适生长NaCl浓度为10%,最适生长温度为30℃,最适pH为7.5~8.0。在高盐条件下,I15细胞内主要的相容性溶质为四氢嘧啶,在15%NaCl培养基中其含量达到1.608mmol/(g\5cdw),占到相容性溶质总摩尔含量的89.6%。渗透冲击试验表明I15细胞内四氢嘧啶在低渗冲击时能够快速分泌到细胞外,在高渗冲击冲剂时能够较快地重新合成。  相似文献   

9.
张山  胡萌  何永志  董志扬 《微生物学报》2021,61(8):2250-2263
极端环境微生物定义了生命的边界。为了适应各种极端环境,极端环境微生物通过合成许多独特的活性化合物来保护自己。四氢嘧啶就是其中一种代表性的保护性物质。它最早是从极端嗜盐菌中发现的,作为调节细胞渗透压的一类相容性溶质,可以帮助微生物适应高盐等恶劣环境。研究发现四氢嘧啶不仅是一种重要的渗透压调节剂,还是一种高效的生物保护剂,可以帮助蛋白、核酸、生物膜乃至整个细胞对抗高温、干燥、冷冻和辐射等多种逆境。因此,四氢嘧啶在生物保护、生物医药和生物科技等众多领域展现出广阔的商业化应用前景。随着合成生物学和代谢工程技术的快速发展,传统的嗜盐菌四氢嘧啶生产方法已逐步被产率更高、环境更友好的生物工程菌及技术所取代。本文围绕四氢嘧啶的微生物合成及其应用研究进行综述,为后续四氢嘧啶的开发和应用提供重要参考。  相似文献   

10.
中度嗜盐菌Bacillus alcalophilus DTY1分离自晋西北黄土高原盐碱土壤, 能够产生耐盐相关的相容性溶质四氢嘧啶。为了研究四氢嘧啶的功能, 克隆了DTY1菌株四氢嘧啶合成基因簇ectABC。ectA、ectB和ectC分别编码169、428和132个氨基酸的肽链, 分别与B. halodurans C-125中的二氨基丁酸乙酰基转移酶(EctA)、二氨基丁酸氨基转移酶(EctB)、四氢嘧啶合成酶(EctC)同源性达59%、81%和81%。将携带该基因簇的4.0 kb片段转入蜡质芽孢杆菌B. cereus Z后, 芽孢杆菌的耐盐度显著提高。HPLC检测发现, 在1.0% NaCl浓度下, 转化菌B. cereus Z-E菌株生成70.1 mg/g四氢嘧啶, 而在5.0%的NaCl浓度下四氢嘧啶的产量高达118.6 mg/g, 显著高于B. alcalophilus DTY1的四氢嘧啶产量。而且随着盐浓度的提高, 四氢嘧啶的合成量也随之提高。由此证明四氢嘧啶参与中度嗜盐菌重要的渗透调节, ectABC的表达受盐诱导。  相似文献   

11.
Accumulation of compatible solutes, by uptake or de novo synthesis, enables bacteria to reduce the difference between osmotic potentials of the cell cytoplasm and the extracellular environment. To examine this process in the halophilic and halotolerant methanogenic archaebacteria, 14 strains were tested for the accumulation of compatible solutes in response to growth in various extracellular concentrations of NaCl. In external NaCl concentrations of 0.7 to 3.4 M, the halophilic methanogens accumulated K+ ion and low-molecular-weight organic compounds. beta-Glutamate was detected in two halotolerant strains that grew below 1.5 M NaCl. Two unusual beta-amino acids, N epsilon-acetyl-beta-lysine and beta-glutamine (3-aminoglutaramic acid), as well as L-alpha-glutamate were compatible solutes among all of these strains. De novo synthesis of glycine betaine was also detected in several strains of moderately and extremely halophilic methanogens. The zwitterionic compounds (beta-glutamine, N epsilon-acetyl-beta-lysine, and glycine betaine) and potassium were the predominant compatible solutes among the moderately and extremely halophilic methanogens. This is the first report of beta-glutamine as a compatible solute and de novo biosynthesis of glycine betaine in the methanogenic archaebacteria.  相似文献   

12.
Biology of Moderately Halophilic Aerobic Bacteria   总被引:32,自引:0,他引:32       下载免费PDF全文
The moderately halophilic heterotrophic aerobic bacteria form a diverse group of microorganisms. The property of halophilism is widespread within the bacterial domain. Bacterial halophiles are abundant in environments such as salt lakes, saline soils, and salted food products. Most species keep their intracellular ionic concentrations at low levels while synthesizing or accumulating organic solutes to provide osmotic equilibrium of the cytoplasm with the surrounding medium. Complex mechanisms of adjustment of the intracellular environments and the properties of the cytoplasmic membrane enable rapid adaptation to changes in the salt concentration of the environment. Approaches to the study of genetic processes have recently been developed for several moderate halophiles, opening the way toward an understanding of haloadaptation at the molecular level. The new information obtained is also expected to contribute to the development of novel biotechnological uses for these organisms.  相似文献   

13.
Bioenergetic aspects of halophilism.   总被引:12,自引:0,他引:12  
Examination of microbial diversity in environments of increasing salt concentrations indicates that certain types of dissimilatory metabolism do not occur at the highest salinities. Examples are methanogenesis for H2 + CO2 or from acetate, dissimilatory sulfate reduction with oxidation of acetate, and autotrophic nitrification. Occurrence of the different metabolic types is correlated with the free-energy change associated with the dissimilatory reactions. Life at high salt concentrations is energetically expensive. Most bacteria and also the methanogenic Archaea produce high intracellular concentrations of organic osmotic solutes at a high energetic cost. All halophilic microorganisms expend large amounts of energy to maintain steep gradients of NA+ and K+ concentrations across their cytoplasmic membrane. The energetic cost of salt adaptation probably dictates what types of metabolism can support life at the highest salt concentrations. Use of KCl as an intracellular solute, while requiring far-reaching adaptations of the intracellular machinery, is energetically more favorable than production of organic-compatible solutes. This may explain why the anaerobic halophilic fermentative bacteria (order Haloanaerobiales) use this strategy and also why halophilic homoacetogenic bacteria that produce acetate from H2 + CO2 exist whereas methanogens that use the same substrates in a reaction with a similar free-energy yield do not.  相似文献   

14.
Salinivibrio costicola subsp. yaniae is a moderately halophilic bacterium which can grow over a wide range of salinity. In response to external osmotic stress (1-3 M NaCl), S. costicola subsp. yaniae can accumulate ectoine, glycine betaine, and glutamate as compatible solutes. We used suicide plasmids pSUP101 to introduce transposon Tn1732 into S. costicola subsp. yaniae via Escherichia coli SM10 mediated by conjugation. One Tn1732-induced mutant, MU1, which was very sensitive to the external salt concentration, was isolated. Mutant MU1 did not grow above 1.5 M NaCl and did not synthesize ectoine, but accumulated Ngamma-acetyldiaminobutyrate, an ectoine precursor, as confirmed by (1)H-NMR analysis. From these data, we concluded that ectoine performs a key role in osmotic adaptation towards high salinity environments in strain S. costicola subsp. yaniae.  相似文献   

15.
Halotolerant and halophilic microorganisms can grow in (hyper)saline environments, but only halophiles specifically require salt. Genotypic and phenotypic adaptations are displayed by halophiles; the halotolerants adapt phenotypically, but it is not established whether they show genotypic adaptation. This paper reviews the various strategies of haloadaptation of membrane proteins and lipids by halotolerant and halophilic microorganisms. Moderate halophiles and halotolerants adapt their membrane lipid composition by increasing the proportion of anionic lipids, often phosphatidylglycerol and/or glycolipids, which in the moderately halophilic bacteriumVibrio costicola appears to be part of an osmoregulatory response to minimize membrane stress at high salinities. Extreme halophiles possess typical archaebacterial ether lipids, which are genotypically adapted by having additional substitutions with negatively-charged residues such as sulfate. In contrast to the lipids, it is less clear whether membrane proteins are haloadapted, although they may be more acidic; very few depend on salt for their activity.  相似文献   

16.
Microorganisms that adapt to moderate and high salt environments use a variety of solutes, organic and inorganic, to counter external osmotic pressure. The organic solutes can be zwitterionic, noncharged, or anionic (along with an inorganic cation such as K+). The range of solutes, their diverse biosynthetic pathways, and physical properties of the solutes that effect molecular stability are reviewed.  相似文献   

17.
Bioenergetic Aspects of Halophilism   总被引:22,自引:0,他引:22       下载免费PDF全文
Examinination of microbial diversity in environments of increasing salt concentrations indicates that certain types of dissimilatory metabolism do not occur at the highest salinities. Examples are methanogenesis for H2 + CO2 or from acetate, dissimilatory sulfate reduction with oxidation of acetate, and autotrophic nitrification. Occurrence of the different metabolic types is correlated with the free-energy change associated with the dissimilatory reactions. Life at high salt concentrations is energetically expensive. Most bacteria and also the methanogenic archaea produce high intracellular concentrations of organic osmotic solutes at a high energetic cost. All halophilic microorganisms expend large amounts of energy to maintain steep gradients of NA+ and K+ concentrations across their cytoplasmic membrane. The energetic cost of salt adaptation probably dictates what types of metabolism can support life at the highest salt concentrations. Use of KCl as an intracellular solute, while requiring far-reaching adaptations of the intracellular machinery, is energetically more favorable than production of organic-compatible solutes. This may explain why the anaerobic halophilic fermentative bacteria (order Haloanaerobiales) use this strategy and also why halophilic homoacetogenic bacteria that produce acetate from H2 + CO2 exist whereas methanogens that use the same substrates in a reaction with a similar free-energy yield do not.  相似文献   

18.
Biodegradation of organic pollutants by halophilic bacteria and archaea   总被引:2,自引:0,他引:2  
Hypersaline environments are important for both surface extension and ecological significance. As all other ecosystems, they are impacted by pollution. However, little information is available on the biodegradation of organic pollutants by halophilic microorganisms in such environments. In addition, it is estimated that 5% of industrial effluents are saline and hypersaline. Conventional nonextremophilic microorganisms are unable to efficiently perform the removal of organic pollutants at high salt concentrations. Halophilic microorganisms are metabolically different and are adapted to extreme salinity; these microorganisms are good candidates for the bioremediation of hypersaline environments and treatment of saline effluents. This literature survey indicates that both the moderately halophilic bacteria and the extremely halophilic archaea have a broader catabolic versatility and capability than previously thought. A diversity of contaminating compounds is susceptible to be degraded by halotolerant and halophile bacteria. Nevertheless, significant research efforts are still necessary in order to estimate the true potential of these microorganisms to be applied in environmental processes and in the remediation of contaminated hypersaline ecosystems. This effort should be also focused on basic research to understand the overall degradation mechanism, to identify the enzymes involved in the degradation process and the metabolism regulation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号