首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Yang K  Wills EG  Baines JD 《Journal of virology》2011,85(22):11972-11980
Herpesvirus genomic DNA is cleaved from concatemers that accumulate in infected cell nuclei. Genomic DNA is inserted into preassembled capsids through a unique portal vertex. Extensive analyses of viral mutants have indicated that intact capsids, the portal vertex, and all components of a tripartite terminase enzyme are required to both cleave and package viral DNA, suggesting that DNA cleavage and packaging are inextricably linked. Because the processes have not been functionally separable, it has been difficult to parse the roles of individual proteins in the DNA cleavage/packaging reaction. In the present study, a virus bearing the deletion of codons 400 to 420 of U(L)15, encoding a terminase component, was analyzed. This virus, designated vJB27, failed to replicate on noncomplementing cells but cleaved concatemeric DNA to ca. 35 to 98% of wild-type levels. No DNA cleavage was detected in cells infected with a U(L)15-null virus or a virus lacking U(L)15 codons 383 to 385, comprising a motif proposed to couple ATP hydrolysis to DNA translocation. The amount of vJB27 DNA protected from DNase I digestion was reduced compared to the wild-type virus by 6.5- to 200-fold, depending on the DNA fragment analyzed, thus indicating a profound defect in DNA packaging. Capsids containing viral DNA were not detected in vJB27-infected cells, as determined by electron microscopy. These data suggest that pU(L)15 plays an essential role in DNA translocation into the capsid and indicate that this function is separable from its role in DNA cleavage.  相似文献   

2.
The maturation of pseudorabies virus DNA from the replicative concatemeric form to molecules of genome length was examined using nine DNA+ temperature-sensitive mutants of pseudorabies virus, each belonging to a different complementation group. At the nonpermissive temperature, cells infected with each of the mutants synthesized concatemeric DNA. Cleavage of the concatemeric DNA to genome-length viral DNA was defective in all the DNA+ ts mutants tested, indicating that several viral gene products are involved in the DNA maturation process. In none of the ts mutant-infected cells were capsids with electron-dense cores (containing DNA) formed. Empty capsids with electron-translucent cores were, however, formed in cells infected with six of the nine temperature-sensitive mutants; in cells infected with three of the mutants, no capsid assembly occurred. Because these three mutants are deficient both in maturation of DNA and in the assembly of viral capsids, we conclude that maturation of viral DNA is dependent upon the assembly of capsids. In cells infected with two of the mutants (tsN and tsIE13), normal maturation of viral DNA occurred after shiftdown of the cells to the permissive temperature in the presence of cycloheximide, indicating that the temperature-sensitive proteins involved in DNA maturation became functional after shiftdown. Furthermore, because cycloheximide reduces maturation of DNA in wild-type-infected cells but not in cells infected with these two mutants, we conclude that a protein(s) necessary for the maturation of concatemeric DNA, which is present in limiting amounts during the normal course of infection, accumulated in the mutant-infected cells at the nonpermissive temperature. Concomitant with cleavage of concatemeric DNA, full capsids with electron-dense cores appeared after shiftdown of tsN-infected cells to the permissive temperature, indicating that there may be a correlation between maturation of DNA and formation of full capsids. The number of empty and full capsids (containing electron-dense cores) present in tsN-infected cells incubated at the nonpermissive temperature, as well as after shiftdown to the permissive temperature in the presence of cycloheximide, was determined by electron microscopy and by sedimentation analysis in sucrose gradients. After shiftdown to the permissive temperature in the presence of cycloheximide, the number of empty capsids present in tsN-infected cells decreased with a concomitant accumulation of full capsids, indicating that empty capsids are precursors to full capsids.  相似文献   

3.
In pseudorabies virus (PrV), an open reading frame that partially overlaps the gene for the essential glycoprotein gII has been shown to encode a protein homologous to the ICP18.5 polypeptide of herpes simplex virus type 1 (N. Pederson and L. Enquist, Nucleic Acids Res. 17:3597, 1989). To study the function of this protein during the viral replicative cycle, a PrV mutant which carries a beta-galactosidase expression cassette interrupting the ICP18.5(PrV) gene was constructed. This mutant could be propagated only on cell lines that were able to provide ICP18.5(PrV) in trans after transformation with a corresponding genomic PrV DNA fragment. Detailed analysis showed that inactivation of the ICP18.5(PrV) gene did not impair infection of noncomplementing cells, nor did it impair early or late gene expression, as shown by immunoprecipitation of glycoproteins gII, gIII, and gp50. Surface localization of glycoproteins as demonstrated by fluorescence-activated cell sorting analyses was also not affected. Southern blot hybridizations, however, showed that cleavage of replicative concatemeric viral DNA did not occur in noncomplementing cells infected by the ICP18.5 mutant PrV. In addition, electron microscopic analysis revealed an accumulation of empty capsids in the nucleus of mutant-infected noncomplementing cells. We conclude that the ICP18.5(PrV) protein is necessary for viral replication and plays an essential role in the process of mature capsid formation.  相似文献   

4.
Homologs of the UL17 gene of the alphaherpesvirus herpes simplex virus 1 (HSV-1) are conserved in all three subfamilies of herpesviruses. However, only the HSV-1 protein has so far been characterized in any detail. To analyze UL17 of pseudorabies virus (PrV) the complete 597-amino-acid protein was expressed in Escherichia coli and used for rabbit immunization. The antiserum recognized a 64-kDa protein in PrV-infected cell lysates and purified virions, identifying PrV UL17 as a structural virion component. In indirect immunofluorescence analyses of PrV-infected cells the protein was predominantly found in the nucleus. In electron microscopic studies after immunogold labeling of negatively stained purified virion preparations, UL17-specific label was detected on single, mostly damaged capsids, whereas complete virions and the majority of capsids were free of label. In ultrathin sections of infected cells, label was primarily found dispersed around scaffold-containing B-capsids, whereas on DNA-filled C-capsids it was located in the center. Empty intranuclear A-capsids were free of label, as were extracellular capsid-less L-particles. Functional characterization of PrV-DeltaUL17F, a deletion mutant lacking codons 23 to 444, demonstrated that cleavage of viral DNA into unit-length genomes was inhibited in the absence of UL17. In electron microscopic analyses of PrV-DeltaUL17F-infected RK13 cells, DNA-containing capsids were not detected, while numerous capsidless L-particles were observed. In summary, our data indicate that the PrV UL17 protein is an internal nucleocapsid protein necessary for DNA cleavage and packaging but suggest that the protein is not a prominent part of the tegument.  相似文献   

5.
Alphaherpesvirus genomes exhibit a generally collinear gene arrangement, and most of their genes are conserved among the different members of the subfamily. Among the exceptions is the UL3.5 gene of pseudorabies virus (PrV) for which positional homologs have been detected in the genomes of varicella-zoster virus, equine herpesvirus 1, and bovine herpesvirus 1 but not in the genomes of herpes simplex virus types 1 and 2. To identify and characterize the predicted 224 amino acid UL3.5 protein of PrV, a rabbit antiserum was prepared against a UL3.5 fusion protein expressed in Escherichia coli. In Western blot (immunoblot) analyses the antiserum detected a 30-kDa protein in the cytoplasm of PrV infected cells which was absent from purified virions. For functional analysis, UL3.5-expressing cell lines were established and virus mutants were isolated after the rescue of defective, glycoprotein B-negative PrV by insertion of the complementing glycoprotein B-encoding gene of bovine herpesvirus 1 at two sites within the UL3.5 locus. A PrV mutant carrying the insertion at codon 159 and expressing a truncated UL3.5 protein was still capable of efficient productive replication in noncomplementing cells. In contrast, a PrV mutant carrying the insertion at codon 10 of the UL3.5 gene did not express detectable UL3.5 protein and exhibited a dramatic growth deficiency on non-complementing cells with regard to plaque formation and one-step replication. Electron microscopical studies showed an accumulation of unenveloped capsids in the vicinity of the Golgi apparatus. This defect could be compensated by propagation on complementing UL3.5-expressing cell lines. Our results thus demonstrate that the PrV UL3.5 gene encodes a nonstructural protein which plays an important role in virus replication, presumably during virus egress. The functionally relevant domains appear to be located within the N-terminal part of the UL3.5 protein which also comprises the region exhibiting the highest level of homology between the predicted UL3.5 homologous proteins of other alphaherpesviruses.  相似文献   

6.
The UL3.5 and UL48 genes, which are conserved in most alphaherpesvirus genomes, are important for maturation of pseudorabies virus (PrV) particles in the cytoplasm of infected cells (W. Fuchs, B. G. Klupp, H. J. Rziha, and T. C. Mettenleiter, J. Virol. 70:3517-3527, 1996; W. Fuchs, H. Granzow, B. G. Klupp, M. Kopp and T. C. Mettenleiter, J. Virol. 76:6729-6742, 2002). In bovine herpesvirus 1 (BoHV-1), the homologous gene products pUL3.5 and pUL48 have been demonstrated to interact physically (N. Lam and G. Letchworth, J. Virol. 74:2876-2884, 2000). Moreover, BoHV-1 pUL3.5 partially complemented a pUL3.5 defect in PrV (W. Fuchs, H. Granzow, and T. C. Mettenleiter, J. Virol. 71:8886-8892, 1997). By using coimmunoprecipitation and yeast two-hybrid studies, we observed a similar interaction between pUL3.5 and pUL48 of PrV, as well as a heterologous interaction between the PrV and BoHV-1 gene products. The relevant domain could be confined to the first 43 amino acids of PrV pUL3.5. Unlike its BoHV-1 homologue, PrV pUL3.5 is processed by proteolytic cleavage, and only an abundant 14-kDa fragment consisting of amino acids 1 to >or=116 could be detected by peptide mass fingerprint analysis of purified wild-type PrV particles, which also contain the pUL48 tegument component. To determine the biological relevance of the protein-protein interaction, pUL3.5-, pUL48-, and double-negative PrV mutants were analyzed in parallel. All deletion mutants were replication competent but exhibited significantly reduced plaque sizes and virus titers in cultured rabbit kidney cells compared to wild-type and rescued viruses, which correlated with a delayed neuroinvasion in intranasally infected mice. Remarkably, the defects of the double-negative mutant were similar to those of pUL48-negative virus. Electron microscopy of cells infected with either deletion mutant revealed the retention of naked nucleocapsids in the cytoplasm and the absence of mature virus particles. In summary, our studies for the first time demonstrate the relevance of the pUL3.5-pUL48 interaction for secondary envelopment of an alphaherpesvirus, give a molecular basis for the observed trans-complementation between the PrV and BHV-1 pUL3.5 homologs, yield conclusive evidence for the incorporation of a proteolytically processed pUL3.5 into PrV virions, and demonstrate the importance of both proteins for neuroinvasion and neurovirulence of PrV.  相似文献   

7.
Adsorption of mutants of pseudorabies virus (PrV) lacking glycoprotein gIII is slower and less efficient than is that of wild-type virus (C. Schreurs, T. C. Mettenleiter, F. Zuckermann, N. Snugg, and T. Ben-Porat, J. Virol. 62:2251-2257, 1988). To ascertain the functions of gIII in the early interactions of PrV with its host cells, we compared the effect on wild-type virus and gIII- mutants of antibodies specific for various PrV proteins. Although adsorption of wild-type virus was inhibited by polyvalent antisera against PrV as well as by sera against gIII and gp50 (but not sera against gII), adsorption of the gIII- mutants was not inhibited by any of these antisera. These results suggest that, in contrast to adsorption of wild-type PrV, the initial interactions of the gIII- mutants with their host cells are not mediated by specific viral proteins. Furthermore, competition experiments showed that wild-type Prv and the gIII- mutants do not compete for attachment to the same cellular components. These findings show that the initial attachment of PrV to its host cells can occur by a least two different modes--one mediated by glycoprotein gIII and the other unspecific. gIII- mutants not only did not adsorb as readily to cells as did wild-type virus but also did not penetrate cells as rapidly as did wild-type virus after having adsorbed. Antibodies against gIII did not inhibit the penetration of adsorbed virus (wild type or gIII-), whereas antibodies against gII and gp50 did. It is unlikely, therefore, that gIII functions directly in virus penetration. Our results support the premises that efficient adsorption of PrV to host cell components is mediated either directly or indirectly by gIII (or a complex of viral proteins for which the presence of gIII is functionally essential) and that this pathway of adsorption promotes the interactions of other viral membrane proteins with the appropriate cellular proteins, leading to the rapid penetration of the virus into the cells. The slower penetration of the gIII- mutants than of wild-type PrV appears to be related to the slower and less efficient alternative mode of adsorption of PrV that occurs in the absence of glycoprotein gIII.  相似文献   

8.
Pseudorabies virus has a class 2 genome in which the S component is found in two orientations relative to the L component. The L component is bracketed by sequences that are partially homologous; it is found mainly in one orientation, but a small proportion is inverted (J. M. DeMarchi, Z. Lu, G. Rall, S. Kuperschmidt, and T. Ben-Porat, J. Virol. 64:4968-4977, 1990). We have ascertained the role of the patchy homologous sequences bracketing the L component in its inversion. A viral mutant, vYa, from which the sequences at the right end of the L component were deleted was constructed. Despite the absence of homologous sequences bracketing the L component in vYa, its L component inverted to an extent similar to that of the L component in the wild-type virus. These results show the following. (i) The low-frequency inversion of the L component of PrV is not mediated by homologous sequences bracketing this component. (ii) Cleavage of concatemeric DNA at the internal junction between the S and L components is responsible for the appearance of the minority of genomes with an inverted L component in populations of pseudorabies virus. (iii) The signals present near or at the end of the S component are sufficient to allow low-frequency cleavage of concatemeric DNA; the sequences at the end of the L component are not essential for cleavage, although they enhance it considerably.  相似文献   

9.
Pulsed-field gel electrophoresis was used to screen temperature-sensitive mutants of vaccinia virus for the ability to convert replicated viral DNA into mature linear 185-kilobase hairpin-terminated genomes. Of 30 mutually noncomplementing mutants tested, 5 displayed a temperature-sensitive defect in the resolution of the telomere fusion configuration within concatemeric replicative intermediates, resulting in a failure to convert such intermediates to the linear monomeric genome. Adjacent genomic units in the concatemeric arrays generated in these mutants were arranged in both tandem and inverted orientations. The observation that four of the five mutants had a severe general defect in the synthesis of the late class of viral proteins suggests that at least one late protein is directly required to resolve the telomere fusion intermediate to hairpin termini. The identification of such telomere resolution proteins should be facilitated by genetic and molecular characterization of resolution-defective mutants, such as C63, in which late protein synthesis is not severely affected.  相似文献   

10.
The conserved membrane-associated tegument protein pUL11 and envelope glycoprotein M (gM) are involved in secondary envelopment of herpesvirus nucleocapsids in the cytoplasm. Although deletion of either gene had only moderate effects on replication of the related alphaherpesviruses herpes simplex virus type 1 (HSV-1) and pseudorabies virus (PrV) in cell culture, simultaneous deletion of both genes resulted in a severe impairment in virion morphogenesis of PrV coinciding with the formation of huge inclusions in the cytoplasm containing nucleocapsids embedded in tegument (M. Kopp, H. Granzow, W. Fuchs, B. G. Klupp, and T. C. Mettenleiter, J. Virol. 78:3024-3034, 2004). To test whether a similar phenotype occurs in HSV-1, a gM and pUL11 double deletion mutant was generated based on a newly established bacterial artificial chromosome clone of HSV-1 strain KOS. Since gM-negative HSV-1 has not been thoroughly investigated ultrastructurally and different phenotypes have been ascribed to pUL11-negative HSV-1, single gene deletion mutants were also constructed and analyzed. On monkey kidney (Vero) cells, deletion of either pUL11 or gM resulted in ca.-fivefold-reduced titers and 40- to 50%-reduced plaque diameters compared to those of wild-type HSV-1 KOS, while on rabbit kidney (RK13) cells the defects were more pronounced, resulting in ca.-50-fold titer and 70% plaque size reduction for either mutant. Electron microscopy revealed that in the absence of either pUL11 or gM virion formation in the cytoplasm was inhibited, whereas nuclear stages were not visibly affected, which is in line with the phenotypes of corresponding PrV mutants. Simultaneous deletion of pUL11 and gM led to additive growth defects and, in RK13 cells, to the formation of large intracytoplasmic inclusions of capsids and tegument material, comparable to those in PrV-ΔUL11/gM-infected RK13 cells. The defects of HSV-1ΔUL11 and HSV-1ΔUL11/gM could be partially corrected in trans by pUL11 of PrV. Thus, our data indicate that PrV and HSV-1 pUL11 and gM exhibit similar functions in cytoplasmic steps of virion assembly.  相似文献   

11.
Homologs of the UL25 gene product of herpes simplex virus (HSV) have been identified in all three subfamilies of the Herpesviridae. However, their exact function during viral replication is not yet known. Whereas earlier studies indicated that the UL25 protein of HSV-1 is not required for cleavage of newly replicated viral DNA but is necessary for stable encapsidation (A. R. McNab, P. Desai, S. Person, L. Roof, D. R. Thompson, W. W. Newcomb, J. C. Brown, and F. L. Homa, J. Virol. 72:1060-1070, 1998), viral DNA packaging has recently been demonstrated to occur in the absence of UL25, although at significantly decreased levels compared to wild-type HSV-1 (N. Stow, J. Virol. 75:10755-10765 2001). To clarify the functional role of UL25 we analyzed the homologous protein of the alphaherpesvirus pseudorabies virus (PrV). PrV UL25 was found to be essential for viral replication, as a mutant virus lacking the UL25 protein required UL25-expressing cells for productive propagation. In the absence of the UL25 protein, newly replicated PrV DNA was cleaved and DNA-containing C-type capsids were detected in infected cell nuclei. However, although capsids were frequently found in close association with the inner nuclear membrane, nuclear egress was not observed. Consequently, no capsids were found in the cytoplasm, resulting in an inhibition of virion morphogenesis. In contrast, the formation of capsidless enveloped tegument structures (L particles) in the cytoplasm was readily observed. Thus, our data demonstrate that the PrV UL25 protein is not essential for cleavage and encapsidation of viral genomes, although both processes occur more efficiently in the presence of the protein. However, the presence of the PrV UL25 protein is a prerequisite for nuclear egress. By immunoelectron microscopy, we detected UL25-specific label on DNA-containing C capsids but not on other intranuclear immature or defective capsid forms. Thus, the PrV UL25 protein may represent the hitherto missing trigger that allows primary envelopment preferably of DNA-filled C capsids.  相似文献   

12.
Glycoprotein M (gM), the product of the UL10 gene of pseudorabies virus (PrV), is one of the few nonessential glycoproteins conserved throughout the Herpesviridae. In contrast to wild-type PrV strains, the UL10 gene product of the attenuated PrV vaccine strain Bartha (PrV-Ba) is not modified by N-glycans due to a mutation in the DNA sequence encoding the consensus N-glycosylation motif. To assay function of the UL10 protein in PrV-Ba, a UL10-deletion mutant (PrV-Ba-UL10(-)) was isolated. Surprisingly, in contrast to gM-deleted wild-type PrV, PrV-Ba-UL10(-) was severely impaired in plaque formation, inducing only foci of very few infected RK13, Vero, and PSEK cells and tiny plaques on MDBK cells. Since this effect was significantly more dramatic than in wild-type PrV, additional mutations known to be present in PrV-Ba were analyzed for their contribution to this phenotype. trans-complementation of the mutated PrV-Ba UL21 or gC protein by the wild-type version had no influence on the observed phenotype. In contrast, complementation of the gE/gI deletion rescued the phenotype. The synergistic effect of deletions in gE/gI and gM on plaque size was verified by construction of a gE/I/M triple mutant derived from wild-type PrV which exhibited the same phenotype. The dramatic effect of deletion of gM on plaque size in a gE/I- virus background was mainly attributable to a function of gM, and not of the gM/gN complex, as shown by analysis of a gE/I/N triple mutant. Interestingly, despite the strong effect on plaque size, penetration was not significantly impaired. In noncomplementing cells infected with the gE/I/M triple mutant, electron microscopy showed absence of secondary envelopment in the cytoplasm but occurrence of intracytoplasmic accumulations of nucleocapsids in association with electron dense material, presumably tegument proteins. These structures were not observed after infection of cells expressing either gE/I or gM. We suggest that gE/I and gM are required for late stages in virion morphogenesis prior to final envelopment in the cytoplasm.  相似文献   

13.
H Ezoe  R B Fatt    S Mak 《Journal of virology》1981,40(1):20-27
A group of mutants (cyt mutants) with much reduced oncogenicity was isolated from the highly oncogenic human adenovirus type 12 (Takemori et al., Virology 36: 575-586, 1968). These mutants induce extensive cellular destruction during lytic infection of human cells and produce low yields of virions. We report here that human KB cells infected with cyt mutants synthesized a reduced amount of viral DNA as compared with cells infected with the parental virus. Furthermore, the newly synthesized viral and cellular DNAs were extensively degraded in mutant-infected cells. Viral DNA was first synthesized as complete genome size, and most of it was degraded to subgenomic size within 6 h after synthesis. This virus-induced DNA degradation function, as well as the low yield of virions, was prevented by co-infection with the parental virus.  相似文献   

14.
The genome of pseudorabies virus (PrV) encodes at least seven glycoproteins. The glycoprotein complex gII consists of three related polypeptides, two of them derived by proteolytic cleavage from a common precursor and linked via disulfide bonds. It is homologous to herpes simplex virus (HSV) gB and is therefore thought to be essential for PrV replication, as is gB for HSV replication. To isolate PrV mutants deficient in gII expression, we established cell lines that stably carry the PrV gII gene. Line N7, of Vero cell origin, contains the gII gene under its own promoter and expresses gII after transactivation by herpesviral functions after infection. MDBK-derived line MT3 contains the gII gene under control of the mouse metallothionein promoter. However, it has essentially lost inducibility and constitutively produces high amounts of correctly processed glycoprotein gII. We used a beta-galactosidase expression cassette inserted into a partially deleted cloned copy of the gII gene for cotransfection with PrV DNA. gII- PrV mutants were isolated from viral progeny by taking advantage of their blue-plaque phenotype when incubated under an agarose overlay containing a chromogenic substrate. Analysis of these mutants proved that gII is indeed essential for PrV replication, since the gII- mutants grew normally on gII-complementing cells but were unable to produce plaques on noncomplementing cells. Surprisingly the PrV gII- mutants were also able to grow on a cell line constitutively expressing the gB-homologous glycoprotein gI from bovine herpesvirus 1 (BHV-1) to the same extent as on cells expressing PrV gII. gII- PrV propagated on cells expressing BHV-1 gI became susceptible to neutralization by anti-BHV-1 gI monoclonal antibodies. We also found that BHV-1 gI is present in the envelope of purified gII- pseudorabies virions grown on cells expressing BHV-1 gI, as judged by radioimmunoprecipitation and immunoelectron microscopy. These results prove that BHV-1 gI is integrated into the PrV envelope and can functionally replace glycoprotein gII of PrV.  相似文献   

15.
The genome of pseudorabies virus (PrV) consists of two components--a noninvertible long (L) and an invertible short (S) component. The S component is bracketed by inverted repeats. In some variant strains of PrV (which have a selective growth advantage in certain cell lines), a sequence normally present at the left end of the L component has been translocated to the right end of the L component next to the inverted repeat. Consequently, these strains have acquired a genome with an L component that is bracketed by inverted repeats and that also inverts. We have determined the restriction maps and have analyzed the nucleotide sequences of those parts of the genome of three strains with invertible L components that contain the translocated segment of DNA. The results were as follows. The translocated fragments were derived in all cases from the extreme left end of the L component only. The sizes of the translocated fragments were similar, ranging from 1.3 to 1.4 kilobase pairs. The junction between the L and S components in these strains was the same as that in standard viral concatemeric DNA. The translocation of sequences from the left end of the genome next to the inverted repeats was always accompanied by a deletion of sequences from the right end of the L component. The sizes of the deleted fragments varied considerably, ranging from 0.8 to 2.3 kilobase pairs. Sequence homology at the points of recombination, i.e., at the junction between the right end and the left end of the L component, existed sometimes but not always. A model depicting how a virus with a class 2 genome (such as PrV) may acquire a genome with characteristics of a class 3 genome (such as herpes simplex virus) is presented.  相似文献   

16.
Two mutants were constructed to explore the functions of the sequences at the end of the S terminus of pseudorabies virus (PrV). In mutant vYa, 17 bp from the internal inverted repeat, as well as adjacent sequences from the L component, were deleted. In mutant v135/9, 143 bp from the internal inverted repeat (including sequences with homology to the pac-1 site of herpes simplex virus), as well as adjacent sequences from the L component, were deleted. Our aim in constructing these mutants was to ascertain whether equalization of the terminal regions of the S component would occur, whether genome termini that lack either the terminal 17 or 143 bp would be generated as a result of equalization of the repeats (thereby identifying the terminal nucleotides that may include cleavage signals), and whether inversion of the S component would occur (thereby ascertaining the importance of the deleted sequences in this process). The results obtained show the following (i) The removal of the terminal 17 or 143 bp of the internal S component, including the sequences with homology to the pac-1 site, does not affect the inversion of the Us. (ii) The equalization of both the vYa and the v135/9 inverted repeats occurs at high frequency, the terminal repeats being converted and becoming similar to the mutated internal inverted repeat. (iii) Mutants in which the 17 terminal base pairs (vYa) have been replaced by unrelated sequences are viable. However, the 143 terminal base pairs appear to be essential to virus survival; concatemeric v135/9 DNA with equalized, mutant-type, inverted repeats accumulates, but mature virions with such equalized repeats are not generated at high frequency. Since concatemeric DNA missing the 143 bp at both ends of the S component is not cleaved, the terminal 143 bp that include the sequences with homology to the pac-1 site are necessary for efficient cleavage. (iv) v135/9 intracellular DNA is composed mainly of arrays in which one S component (with two equalized inverted repeats both having the deletion) is bracketed by two L components in opposite orientations and in which two L components are in head-to-head alignment.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

17.
The UL28 protein of herpes simplex virus type 1 (HSV-1) is one of seven viral proteins required for the cleavage and packaging of viral DNA. Previous results indicated that UL28 interacts with UL15 and UL33 to form a protein complex (terminase) that is presumed to cleave concatemeric DNA into genome lengths. In order to define the functional domains of UL28 that are important for DNA cleavage/packaging, we constructed a series of HSV-1 mutants with linker insertion and nonsense mutations in UL28. Insertions that blocked DNA cleavage and packaging were found to be located in two regions of UL28: the first between amino acids 200 to 400 and the second between amino acids 600 to 740. Insertions located in the N terminus or in a region located between amino acids 400 and 600 did not affect virus replication. Insertions in the carboxyl terminus of the UL28 protein were found to interfere with the interaction of UL28 with UL33. In contrast, all of the UL28 insertion mutants were found to interact with UL15 but the interaction was reduced with mutants that failed to react with UL33. Together, these observations were consistent with previous conclusions that UL15 and UL33 interact directly with UL28 but interact only indirectly with each other. Revertant viruses that formed plaques on Vero cells were detected for one of the lethal UL28 insertion mutants. DNA sequence analysis, in combination with genetic complementation assays, demonstrated that a second-site mutation in the UL15 gene restored the ability of the revertant to cleave and package viral DNA. The isolation of an intergenic suppressor mutant provides direct genetic evidence of an association between the UL28 and UL15 proteins and demonstrates that this association is essential for DNA cleavage and packaging.  相似文献   

18.
alpha-Amanitin-resistant vaccinia virus mutants were isolated after serial viral passages in BSC-40 cells that were carried out in the presence of inhibitory levels (6 micrograms/ml) of alpha-amanitin. One such mutant, alpha-27, was highly refractory (greater than 95%) to alpha-amanitin-mediated inhibition and was selected for further study. In the absence of drug, the phenotypes of alpha-27 and wild-type vaccinia virus were indistinguishable with respect to growth kinetics. DNA synthesis, protein synthesis, and morphogenesis. Infections in the presence of alpha-amanitin revealed two striking differences, however. First, wild-type virus was unable to catalyze proteolytic processing of the two major capsid proteins VP62 and VP60, whereas alpha-27 was most efficient at this process. Second, wild-type viral morphogenesis within the infected cells was arrested by alpha-amanitin at an apparently analogous step to that previously described for enucleated cells. This observation was supported by the ability of alpha-27 virus to replicate in enucleated BSC-40 cells. Restriction enzyme analyses of alpha-27 versus wild-type genomes revealed that a XhoI cleavage site was altered in the alpha-27 DNA molecule, suggesting a possible location for the alpha-amanitin resistance locus.  相似文献   

19.
The pseudorabies virus (PrV) homolog of the tegument protein encoded by the UL48 gene of herpes simplex virus type 1 (HSV-1) was identified by using a monospecific rabbit antiserum against a bacterial fusion protein. UL48-related polypeptides of 53, 55, and 57 kDa were detected in Western blots of infected cells and purified virions. Immunofluorescence studies demonstrated that the PrV UL48 protein is predominantly localized in the cytoplasm but is also found in the nuclei of infected cells. Moreover, it is a constituent of extracellular virus particles but is absent from primary enveloped perinuclear virions. In noncomplementing cells, a UL48-negative PrV mutant (PrV-DeltaUL48) exhibited delayed growth and significantly reduced plaque sizes and virus titers, deficiencies which were corrected in UL48-expressing cells. RNA analyses indicated that, like its HSV-1 homolog, the PrV UL48 protein is involved in regulation of immediate-early gene expression. However, the most salient effect of the UL48 gene deletion was a severe defect in virion morphogenesis. Late after infection, electron microscopy of cells infected with PrV-DeltaUL48 revealed retention of newly formed nucleocapsids in the cytoplasm, whereas enveloped intracytoplasmic or extracellular complete virions were only rarely observed. In contrast, capsidless particles were produced and released in great amounts. Remarkably, the intracytoplasmic capsids were labeled with antibodies against the UL36 and UL37 tegument proteins, whereas the capsidless particles were labeled with antisera directed against the UL46, UL47, and UL49 tegument proteins. These findings suggested that the UL48 protein is involved in linking capsid and future envelope-associated tegument proteins during virion formation. Thus, like its HSV-1 homolog, the UL48 protein of PrV functions in at least two different steps of the viral life cycle. The drastic inhibition of virion formation in the absence of the PrV UL48 protein indicates that it plays an important role in virion morphogenesis prior to secondary envelopment of intracytoplasmic nucleocapsids. However, the UL48 gene of PrV is not absolutely essential, and concomitant deletion of the adjacent tegument protein gene UL49 also did not abolish virus replication in cell culture.  相似文献   

20.
The large tegument protein encoded by the UL36 gene of pseudorabies virus (PrV) physically interacts with the product of the adjacent UL37 gene (B. G. Klupp, W. Fuchs, H. Granzow, R. Nixdorf, and T. C. Mettenleiter, J. Virol. 76:3065-3071, 2002). To analyze UL36 function, two PrV recombinants were generated by mutagenesis of an infectious PrV full-length clone in Escherichia coli: PrV-DeltaUL36F exhibited a deletion of virtually the complete UL36 coding region, whereas PrV-UL36BSF contained two in-frame deletions of 238 codons spanning the predicted UL37 binding domain. Coimmunoprecipitation experiments confirmed that the mutated gene product of PrV-UL36BSF did not interact with the UL37 protein. Like the previously described PrV-DeltaUL37 (B. G. Klupp, H. Granzow, and T. C. Mettenleiter, J. Virol. 75:8927-8936, 2001) but in contrast to PrV-DeltaUL36F, PrV-UL36BSF was able to replicate in rabbit kidney (RK13) cells, although maximum virus titers were reduced ca. 50-fold and plaque diameters were reduced by ca. 45% compared to wild-type PrV. PrV-DeltaUL36F was able to productively replicate after repair of the deleted gene or in a trans-complementing cell line. Electron microscopy of infected RK13 cells revealed that PrV-UL36BSF and phenotypically complemented PrV-DeltaUL36F were capable of nucleocapsid formation and egress from the nucleus by primary envelopment and deenvelopment at the nuclear membrane. However, reenvelopment of nucleocapsids in the cytoplasm was blocked. Only virus-like particles without capsids were released efficiently from cells. Interestingly, cytoplasmic nucleocapsids of PrV-UL36BSF but not of PrV-DeltaUL36F were found in large ordered structures similar to those which had previously been observed with PrV-DeltaUL37. In summary, our results demonstrate that the interaction between the UL36 and UL37 proteins is important but not strictly essential for the formation of secondary enveloped, infectious PrV particles. Furthermore, UL36 possesses an essential function during virus replication which is independent of its ability to bind the UL37 protein.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号