首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 702 毫秒
1.

Background

Prostate cancer is currently the most frequently diagnosed malignancy in men and the second leading cause of cancer-related deaths in industrialized countries. Worldwide, an increase in prostate cancer incidence is expected due to an increased life-expectancy, aging of the population and improved diagnosis. Although the specific underlying mechanisms of prostate carcinogenesis remain unknown, prostate cancer is thought to result from a combination of genetic and environmental factors altering key cellular processes. To elucidate these complex interactions and to contribute to the understanding of prostate cancer progression and metastasis, analysis of large scale gene expression studies using bioinformatics approaches is used to decipher regulation of core processes.

Methodology/Principal Findings

In this study, a standardized quality control procedure and statistical analysis (http://www.arrayanalysis.org/) were applied to multiple prostate cancer datasets retrieved from the ArrayExpress data repository and pathway analysis using PathVisio (http://www.pathvisio.org/) was performed. The results led to the identification of three core biological processes that are strongly affected during prostate carcinogenesis: cholesterol biosynthesis, the process of epithelial-to-mesenchymal transition and an increased metabolic activity.

Conclusions

This study illustrates how a standardized bioinformatics evaluation of existing microarray data and subsequent pathway analysis can quickly and cost-effectively provide essential information about important molecular pathways and cellular processes involved in prostate cancer development and disease progression. The presented results may assist in biomarker profiling and the development of novel treatment approaches.  相似文献   

2.

Background

RNA-seq has spurred important gene fusion discoveries in a number of different cancers, including lung, prostate, breast, brain, thyroid and bladder carcinomas. Gene fusion discovery can potentially lead to the development of novel treatments that target the underlying genetic abnormalities.

Results

In this study, we provide comprehensive view of gene fusion landscape in 185 glioblastoma multiforme patients from two independent cohorts. Fusions occur in approximately 30-50% of GBM patient samples. In the Ivy Center cohort of 24 patients, 33% of samples harbored fusions that were validated by qPCR and Sanger sequencing. We were able to identify high-confidence gene fusions from RNA-seq data in 53% of the samples in a TCGA cohort of 161 patients. We identified 13 cases (8%) with fusions retaining a tyrosine kinase domain in the TCGA cohort and one case in the Ivy Center cohort. Ours is the first study to describe recurrent fusions involving non-coding genes. Genomic locations 7p11 and 12q14-15 harbor majority of the fusions. Fusions on 7p11 are formed in focally amplified EGFR locus whereas 12q14-15 fusions are formed by complex genomic rearrangements. All the fusions detected in this study can be further visualized and analyzed using our website: http://ivygap.swedish.org/fusions.

Conclusions

Our study highlights the prevalence of gene fusions as one of the major genomic abnormalities in GBM. The majority of the fusions are private fusions, and a minority of these recur with low frequency. A small subset of patients with fusions of receptor tyrosine kinases can benefit from existing FDA approved drugs and drugs available in various clinical trials. Due to the low frequency and rarity of clinically relevant fusions, RNA-seq of GBM patient samples will be a vital tool for the identification of patient-specific fusions that can drive personalized therapy.

Electronic supplementary material

The online version of this article (doi:10.1186/1471-2164-14-818) contains supplementary material, which is available to authorized users.  相似文献   

3.
Aerobic glycolysis is a metabolic pathway utilized by human cancer cells and also by yeast cells when they ferment glucose to ethanol. Both cancer cells and yeast cells are inhibited by the presence of low concentrations of 2-deoxyglucose (2DG). Genetic screens in yeast used resistance to 2-deoxyglucose to identify a small set of genes that function in regulating glucose metabolism. A recent high throughput screen for 2-deoxyglucose resistance identified a much larger set of seemingly unrelated genes. Here, we demonstrate that these newly identified genes do not in fact confer significant resistance to 2-deoxyglucose. Further, we show that the relative toxicity of 2-deoxyglucose is carbon source dependent, as is the resistance conferred by gene deletions. Snf1 kinase, the AMP-activated protein kinase of yeast, is required for 2-deoxyglucose resistance in cells growing on glucose. Mutations in the SNF1 gene that reduce kinase activity render cells hypersensitive to 2-deoxyglucose, while an activating mutation in SNF1 confers 2-deoxyglucose resistance. Snf1 kinase activated by 2-deoxyglucose does not phosphorylate the Mig1 protein, a known Snf1 substrate during glucose limitation. Thus, different stimuli elicit distinct responses from the Snf1 kinase.  相似文献   

4.
eIF5A is an essential and evolutionary conserved translation elongation factor, which has recently been proposed to be required for the translation of proteins with consecutive prolines. The binding of eIF5A to ribosomes occurs upon its activation by hypusination, a modification that requires spermidine, an essential factor for mammalian fertility that also promotes yeast mating. We show that in response to pheromone, hypusinated eIF5A is required for shmoo formation, localization of polarisome components, induction of cell fusion proteins, and actin assembly in yeast. We also show that eIF5A is required for the translation of Bni1, a proline-rich formin involved in polarized growth during shmoo formation. Our data indicate that translation of the polyproline motifs in Bni1 is eIF5A dependent and this translation dependency is lost upon deletion of the polyprolines. Moreover, an exogenous increase in Bni1 protein levels partially restores the defect in shmoo formation seen in eIF5A mutants. Overall, our results identify eIF5A as a novel and essential regulator of yeast mating through formin translation. Since eIF5A and polyproline formins are conserved across species, our results also suggest that eIF5A-dependent translation of formins could regulate polarized growth in such processes as fertility and cancer in higher eukaryotes.  相似文献   

5.
Computationally identifying effective biomarkers for cancers from gene expression profiles is an important and challenging task. The challenge lies in the complicated pathogenesis of cancers that often involve the dysfunction of many genes and regulatory interactions. Thus, sophisticated classification model is in pressing need. In this study, we proposed an efficient approach, called ellipsoidFN (ellipsoid Feature Net), to model the disease complexity by ellipsoids and seek a set of heterogeneous biomarkers. Our approach achieves a non-linear classification scheme for the mixed samples by the ellipsoid concept, and at the same time uses a linear programming framework to efficiently select biomarkers from high-dimensional space. ellipsoidFN reduces the redundancy and improves the complementariness between the identified biomarkers, thus significantly enhancing the distinctiveness between cancers and normal samples, and even between cancer types. Numerical evaluation on real prostate cancer, breast cancer and leukemia gene expression datasets suggested that ellipsoidFN outperforms the state-of-the-art biomarker identification methods, and it can serve as a useful tool for cancer biomarker identification in the future. The Matlab code of ellipsoidFN is freely available from http://doc.aporc.org/wiki/EllipsoidFN.  相似文献   

6.
Flow cytometry bioinformatics is the application of bioinformatics to flow cytometry data, which involves storing, retrieving, organizing, and analyzing flow cytometry data using extensive computational resources and tools. Flow cytometry bioinformatics requires extensive use of and contributes to the development of techniques from computational statistics and machine learning. Flow cytometry and related methods allow the quantification of multiple independent biomarkers on large numbers of single cells. The rapid growth in the multidimensionality and throughput of flow cytometry data, particularly in the 2000s, has led to the creation of a variety of computational analysis methods, data standards, and public databases for the sharing of results. Computational methods exist to assist in the preprocessing of flow cytometry data, identifying cell populations within it, matching those cell populations across samples, and performing diagnosis and discovery using the results of previous steps. For preprocessing, this includes compensating for spectral overlap, transforming data onto scales conducive to visualization and analysis, assessing data for quality, and normalizing data across samples and experiments. For population identification, tools are available to aid traditional manual identification of populations in two-dimensional scatter plots (gating), to use dimensionality reduction to aid gating, and to find populations automatically in higher dimensional space in a variety of ways. It is also possible to characterize data in more comprehensive ways, such as the density-guided binary space partitioning technique known as probability binning, or by combinatorial gating. Finally, diagnosis using flow cytometry data can be aided by supervised learning techniques, and discovery of new cell types of biological importance by high-throughput statistical methods, as part of pipelines incorporating all of the aforementioned methods. Open standards, data, and software are also key parts of flow cytometry bioinformatics. Data standards include the widely adopted Flow Cytometry Standard (FCS) defining how data from cytometers should be stored, but also several new standards under development by the International Society for Advancement of Cytometry (ISAC) to aid in storing more detailed information about experimental design and analytical steps. Open data is slowly growing with the opening of the CytoBank database in 2010 and FlowRepository in 2012, both of which allow users to freely distribute their data, and the latter of which has been recommended as the preferred repository for MIFlowCyt-compliant data by ISAC. Open software is most widely available in the form of a suite of Bioconductor packages, but is also available for web execution on the GenePattern platform.
This is a “Topic Page” article for PLOS Computational Biology.
  相似文献   

7.
The Caenorhabditis elegans somatic gonad develops from a four-cell primordium into a mature organ that differs dramatically between the sexes in overall morphology (two arms in hermaphrodites and one in males) and in the cell types comprising it. Gonadal development in C. elegans is well studied, but regulation of sexual differentiation, especially later in gonadal development, remains poorly elucidated. To identify genes involved in this process, we performed a genome-wide RNAi screen using sex-specifically expressed gonadal GFP reporters. This screen identified several phenotypic classes, including ∼70 genes whose depletion feminized male gonadal cells. Among the genes required for male cell fate specification are Wnt/β-catenin pathway members, cell cycle regulators, and genes required for mitotic spindle function and cytokinesis. We find that a Wnt/β-catenin pathway independent of extracellular Wnt ligand is essential for asymmetric cell divisions and male differentiation during gonadal development in larvae. We also find that the cell cycle regulators cdk-1 and cyb-3 and the spindle/cytokinesis regulator zen-4 are required for Wnt/β-catenin pathway activity in the developing gonad. After sex is determined in the gonadal primordium the global sex determination pathway is dispensable for gonadal sexual fate, suggesting that male cell fates are promoted and maintained independently of the global pathway during this period.THE Caenorhabditis elegans gonad derives from a simple primordium of four cells that coalesces during embryogenesis and contains two somatic gonad precursors (SGPs), Z1 and Z4, flanking two germline precursors, Z2 and Z3 (Kimble and Hirsh 1979). The SGPs undergo very different developmental programs in each sex, involving sexually dimorphic cell lineages and migrations and sex-specific cellular differentiation. The result is a two-armed bilaterally symmetrical gonad in the adult hermaphrodite or a single-armed asymmetric gonad in the adult male. The high degree of sexual dimorphism of the mature organ and variety of cellular events that occur sex specifically during its development make the C. elegans gonad an outstanding model for sex-specific organogenesis.Development of the somatic gonad occurs in two phases. The early phase defines the gonadal axes and establishes the precursors of the major gonadal cell types. This takes place during the first larval stage (L1), beginning shortly after hatching with the first division of the SGPs. In both sexes SGP division is asymmetric in terms of both the sizes and the fates of the daughter cells, and establishes the proximal/distal axis of the gonad (Hirsh et al. 1976; Kimble and Hirsh 1979). The global sex determination pathway establishes the future sex of the gonad around the time of hatching (Klass et al. 1976; Nelson et al. 1978), and sexual dimorphism is already apparent when the SGPs divide: the size asymmetry of the SGP daughters is much more pronounced in males than hermaphrodites. In both sexes the asymmetry of the first SGP division requires a Wnt/β-catenin pathway. Mutations compromising this pathway cause a “symmetrical sisters” phenotype in which both daughters adopt the same fate (Miskowski et al. 2001; Siegfried and Kimble 2002; Phillips and Kimble 2009). Sex specificity is imposed on the SGPs by the global sex determining gene tra-1 (Hodgkin 1987) and the gonad-specific sex determining gene fkh-6 (Chang et al. 2004). These genes play opposing roles in SGP sex determination, with tra-1 feminizing and fkh-6 masculinizing the somatic gonad, and they also act redundantly to promote mitotic proliferation of the SGP lineage (Chang et al. 2004). SGP sex determination is linked to cell cycle progression by cyclin D, which is required to overcome repression of fkh-6 expression in the SGPs by E2F (Tilmann and Kimble 2005).The later phase of gonadal development involves the elongation of the gonad, together with cellular proliferation and differentiation, and lasts from L2 to adulthood. During L2 the somatic cells enlarge and leader cells (distal tip cells in the hermaphrodite, linker cell in the male) begin long-range migrations that extend the gonad. During L3, somatic gonad cell division resumes in both sexes, leading to the formation of differentiated somatic cell types by the end of L3 or beginning of L4. Gonadal morphogenesis is completed and gametogenesis begins during L4 (Kimble and Hirsh 1979).Although SGP division and much of hermaphrodite gonadal development have been well studied (Hubbard and Greenstein 2000), sexual cell fate specification in the somatic gonad is more poorly understood, particularly after the L1 stage. Despite the importance of fkh-6 in promoting male differentiation, it is expressed in males only during early L1 and null mutants have incomplete gonadal sex reversal. We have therefore performed a genome-wide RNAi screen to identify additional genes required after hatching for gonadal development in each sex. Among the advantages of this approach is the ability to identify gonadal regulators that also are essential for embryonic development. To our knowledge this is the first functional genomic study of gonadal sex differentiation.The screen identified many genes whose depletion disrupts gonadogenesis in each sex and nearly 70 genes whose depletion causes gonadal feminization in males. Prominent among this latter class were components of a Wnt/β-catenin pathway, cell cycle regulators, and genes involved in mitotic spindle function and cytokinesis. We find that Wnt/β-catenin activity continues in both sexes after SGP division and is required for male cell fate commitment in the gonad. We also find that the cyclin-dependent kinase cdk-1 and its cognate cyclin cyb-3 as well as the mitotic spindle regulator zen-4 are required for gonadal Wnt/β-catenin pathway activity, providing a potential new link between the cell cycle, asymmetric division, and sexual differentiation. The feminization caused by depletion of Wnt/β-catenin pathway components or cdk-1 is independent of the global sex determination pathway, suggesting that sexual fates in the male gonad remain plastic after the primary sex determination decision.  相似文献   

8.
Short interfering RNAs (siRNAs) are a class of regulatory effectors that enforce gene silencing through formation of RNA duplexes. Although progress has been made in identifying the capabilities of siRNAs in silencing foreign RNA and transposable elements, siRNA functions in endogenous gene regulation have remained mysterious. In certain organisms, siRNA biosynthesis involves novel enzymes that act as RNA-directed RNA polymerases (RdRPs). Here we analyze the function of a Caenorhabditis elegans RdRP, RRF-3, during spermatogenesis. We found that loss of RRF-3 function resulted in pleiotropic defects in sperm development and that sperm defects led to embryonic lethality. Notably, sperm nuclei in mutants of either rrf-3 or another component of the siRNA pathway, eri-1, were frequently surrounded by ectopic microtubule structures, with spindle abnormalities in a subset of the resulting embryos. Through high-throughput small RNA sequencing, we identified a population of cellular mRNAs from spermatogenic cells that appear to serve as templates for antisense siRNA synthesis. This set of genes includes the majority of genes known to have enriched expression during spermatogenesis, as well as many genes not previously known to be expressed during spermatogenesis. In a subset of these genes, we found that RRF-3 was required for effective siRNA accumulation. These and other data suggest a working model in which a major role of the RRF-3/ERI pathway is to generate siRNAs that set patterns of gene expression through feedback repression of a set of critical targets during spermatogenesis.REPRESSION of gene expression by small RNAs of ∼20–30 nt in length is important for many aspects of multicellular eukaryotic development. A variety of classes of small RNA with distinct structural features, modes of biogenesis, and biological functions have been identified (reviewed in Hutvagner and Simard 2008). We are particularly interested in a class of small RNAs, called endogenous short interfering RNAs (siRNAs), that are similar to intermediates in exogenously triggered RNA interference (RNAi) in their perfect complementarity to mRNA targets. High-throughput sequencing technology has provided a valuable tool for characterization of endogenous siRNA populations from many diverse sources, including mouse embryonic stem cells (Babiarz et al. 2008), Drosophila heads (Ghildiyal et al. 2008), and Arabidopsis pollen (Slotkin et al. 2009). These siRNAs have been proposed to function in the regulation of both cellular processes and genome defense through downregulation of gene expression. Caenorhabditis elegans, like plants and fungi, utilizes RNA-copying enzymes called RNA-directed RNA polymerases (RdRPs) as part of the RNAi machinery (Smardon et al. 2000; Sijen et al. 2001). While two of the C. elegans RdRPs are nonessential (RRF-1 and RRF-2), mutations in either of the remaining two (EGO-1 or RRF-3) lead to fertility defects (Smardon et al. 2000; Simmer et al. 2002). RRF-3 is functionally distinct from EGO-1 in that the RRF-3 requirement in fertility is temperature dependent. In addition, RRF-3 activity has an inhibitory effect on exogenously triggered RNAi (resulting in an ERI, or enhanced RNAi, mutant phenotype in rrf-3 mutants). Mutants lacking either RRF-3 or another ERI factor, ERI-1, have been used as experimental tools because of their enhanced sensitivity in RNAi-based screens. One proposed mechanism for the enhancement in RNAi in rrf-3 and eri mutants has been a competition for cofactors between the exogenously triggered RNAi pathway and an endogenous RNAi pathway. Consistent with this hypothesis, siRNAs corresponding to several genes have been shown by Northern analysis to depend upon RRF-3 and other ERI factors for their accumulation (Duchaine et al. 2006; Lee et al. 2006; Yigit et al. 2006). Global microarray analyses have also been undertaken to identify messenger RNAs whose expression is affected by RRF-3 and ERI-1 (Lee et al. 2006; Asikainen et al. 2007).A functional significance of the RRF-3/ERI pathway has been inferred by the inability of rrf-3, eri-1, eri-3, and eri-5 mutant strains to propagate at a high growth temperature (Simmer et al. 2002; Duchaine et al. 2006). Rather than producing temperature-sensitive mutant protein effects, RRF-3 and other ERI proteins are thought to act in a temperature-sensitive process, as evidenced by the predicted truncated and presumed nonfunctional protein fragments that would result from the available deletion alleles and by their shared temperature-sensitive phenotypes. rrf-3 mutant animals have been observed to exhibit X-chromosome missegregation (Simmer et al. 2002) and an unusual persistence of a chromatin mark on the X chromosome during male spermatogenesis (Maine et al. 2005). X-chromosome missegregation and defective spermatogenesis have been referred to in previous studies of eri-1 (Kennedy et al. 2004) and eri-3 and eri-5 (Duchaine et al. 2006). Furthermore, eri-3 mutant sterility can be rescued by insemination with wild-type sperm (Duchaine et al. 2006).Here we investigated the role of RRF-3 during spermatogenesis. We found defects evident at multiple stages, including after fertilization, where defects in rrf-3 mutant sperm can produce subsequent nonviable embryos. By using high-throughput sequencing, we characterized a large population of siRNAs present in spermatogenic cells and found a strong enrichment for antisense siRNAs from genes with known mRNA expression during spermatogenesis. While the majority of siRNA production during spermatogenesis does not require RRF-3, we found a set of genes for which siRNA production was dependent upon RRF-3. Existing data indicate increased expression for these genes in rrf-3 and/or eri-1 mutants. Taken together, our analyses suggest a working model in which the RRF-3/ERI pathway generates siRNAs that downregulate specific genes during spermatogenesis, with this regulation playing a key role in generating functional sperm.  相似文献   

9.
We have developed a novel machine-learning approach, MutPred Splice, for the identification of coding region substitutions that disrupt pre-mRNA splicing. Applying MutPred Splice to human disease-causing exonic mutations suggests that 16% of mutations causing inherited disease and 10 to 14% of somatic mutations in cancer may disrupt pre-mRNA splicing. For inherited disease, the main mechanism responsible for the splicing defect is splice site loss, whereas for cancer the predominant mechanism of splicing disruption is predicted to be exon skipping via loss of exonic splicing enhancers or gain of exonic splicing silencer elements. MutPred Splice is available at http://mutdb.org/mutpredsplice.  相似文献   

10.
Granulicella mallensis MP5ACTX8T is a novel species of the genus Granulicella in subdivision 1of Acidobacteria. G. mallensis is of ecological interest being a member of the dominant soil bacterial community active at low temperatures and nutrient limiting conditions in Arctic alpine tundra. G. mallensis is a cold-adapted acidophile and a versatile heterotroph that hydrolyzes a suite of sugars and complex polysaccharides. Genome analysis revealed metabolic versatility with genes involved in metabolism and transport of carbohydrates. These include gene modules encoding the carbohydrate-active enzyme (CAZyme) family involved in breakdown, utilization and biosynthesis of diverse structural and storage polysaccharides including plant based carbon polymers. The genome of Granulicella mallensis MP5ACTX8T consists of a single replicon of 6,237,577 base pairs (bp) with 4,907 protein-coding genes and 53 RNA genes.  相似文献   

11.
Despite the importance of clathrin-mediated endocytosis (CME) for cell biology, it is unclear if all components of the machinery have been discovered and many regulatory aspects remain poorly understood. Here, using Saccharomyces cerevisiae and a fluorescence microscopy screening approach we identify previously unknown regulatory factors of the endocytic machinery. We further studied the top scoring protein identified in the screen, Ubx3, a member of the conserved ubiquitin regulatory X (UBX) protein family. In vivo and in vitro approaches demonstrate that Ubx3 is a new coat component. Ubx3-GFP has typical endocytic coat protein dynamics with a patch lifetime of 45 ± 3 sec. Ubx3 contains a W-box that mediates physical interaction with clathrin and Ubx3-GFP patch lifetime depends on clathrin. Deletion of the UBX3 gene caused defects in the uptake of Lucifer Yellow and the methionine transporter Mup1 demonstrating that Ubx3 is needed for efficient endocytosis. Further, the UBX domain is required both for localization and function of Ubx3 at endocytic sites. Mechanistically, Ubx3 regulates dynamics and patch lifetime of the early arriving protein Ede1 but not later arriving coat proteins or actin assembly. Conversely, Ede1 regulates the patch lifetime of Ubx3. Ubx3 likely regulates CME via the AAA-ATPase Cdc48, a ubiquitin-editing complex. Our results uncovered new components of the CME machinery that regulate this fundamental process.  相似文献   

12.
Genomic instability is a common feature found in cancer cells . Accordingly, many tumor suppressor genes identified in familiar cancer syndromes are involved in the maintenance of the stability of the genome during every cell division and are commonly referred to as caretakers. Inactivating mutations and epigenetic silencing of caretakers are thought to be the most important mechanisms that explain cancer-related genome instability. However, little is known of whether transient inactivation of caretaker proteins could trigger genome instability and, if so, what types of instability would occur. In this work, we show that a brief and reversible inactivation, during just one cell cycle, of the key phosphatase Cdc14 in the model organism Saccharomyces cerevisiae is enough to result in diploid cells with multiple gross chromosomal rearrangements and changes in ploidy. Interestingly, we observed that such transient loss yields a characteristic fingerprint whereby trisomies are often found in small-sized chromosomes, and gross chromosome rearrangements, often associated with concomitant loss of heterozygosity, are detected mainly on the ribosomal DNA-bearing chromosome XII. Taking into account the key role of Cdc14 in preventing anaphase bridges, resetting replication origins, and controlling spindle dynamics in a well-defined window within anaphase, we speculate that the transient loss of Cdc14 activity causes cells to go through a single mitotic catastrophe with irreversible consequences for the genome stability of the progeny.  相似文献   

13.
The unc-17 gene encodes the vesicular acetylcholine transporter (VAChT) in Caenorhabditis elegans. unc-17 reduction-of-function mutants are small, slow growing, and uncoordinated. Several independent unc-17 alleles are associated with a glycine-to-arginine substitution (G347R), which introduces a positive charge in the ninth transmembrane domain (TMD) of UNC-17. To identify proteins that interact with UNC-17/VAChT, we screened for mutations that suppress the uncoordinated phenotype of UNC-17(G347R) mutants. We identified several dominant allele-specific suppressors, including mutations in the sup-1 locus. The sup-1 gene encodes a single-pass transmembrane protein that is expressed in a subset of neurons and in body muscles. Two independent suppressor alleles of sup-1 are associated with a glycine-to-glutamic acid substitution (G84E), resulting in a negative charge in the SUP-1 TMD. A sup-1 null mutant has no obvious deficits in cholinergic neurotransmission and does not suppress unc-17 mutant phenotypes. Bimolecular fluorescence complementation (BiFC) analysis demonstrated close association of SUP-1 and UNC-17 in synapse-rich regions of the cholinergic nervous system, including the nerve ring and dorsal nerve cords. These observations suggest that UNC-17 and SUP-1 are in close proximity at synapses. We propose that electrostatic interactions between the UNC-17(G347R) and SUP-1(G84E) TMDs alter the conformation of the mutant UNC-17 protein, thereby restoring UNC-17 function; this is similar to the interaction between UNC-17/VAChT and synaptobrevin.  相似文献   

14.
Over the past 35 years, developmental geneticists have made impressive progress toward an understanding of how genes specify morphology and function, particularly as they relate to the specification of each physical component of an organism. In the last 20 years, male courtship behavior in Drosophila melanogaster has emerged as a robust model system for the study of genetic specification of behavior. Courtship behavior is both complex and innate, and a single gene, fruitless (fru), is both necessary and sufficient for all aspects of the courtship ritual. Typically, loss of male-specific Fruitless protein function results in male flies that perform the courtship ritual incorrectly, slowly, or not at all. Here we describe a novel requirement for fru: we have identified a group of cells in which male Fru proteins are required to reduce the speed of courtship initiation. In addition, we have identified a gene, Trapped in endoderm 1 (Tre1), which is required in these cells for normal courtship and mating behavior. Tre1 encodes a G-protein-coupled receptor required for establishment of cell polarity and cell migration and has previously not been shown to be involved in courtship behavior. We describe the results of feminization of the Tre1-expressing neurons, as well as the effects on courtship behavior of mutation of Tre1. In addition, we show that Tre1 is expressed in a sexually dimorphic pattern in the central and peripheral nervous systems and investigate the role of the Tre1 cells in mate identification.  相似文献   

15.
Homologous recombination is associated with the dynamic assembly and disassembly of DNA–protein complexes. Assembly of a nucleoprotein filament comprising ssDNA and the RecA homolog, Rad51, is a key step required for homology search during recombination. The budding yeast Srs2 DNA translocase is known to dismantle Rad51 filament in vitro. However, there is limited evidence to support the dismantling activity of Srs2 in vivo. Here, we show that Srs2 indeed disrupts Rad51-containing complexes from chromosomes during meiosis. Overexpression of Srs2 during the meiotic prophase impairs meiotic recombination and removes Rad51 from meiotic chromosomes. This dismantling activity is specific for Rad51, as Srs2 Overexpression does not remove Dmc1 (a meiosis-specific Rad51 homolog), Rad52 (a Rad51 mediator), or replication protein A (RPA; a single-stranded DNA-binding protein). Rather, RPA replaces Rad51 under these conditions. A mutant Srs2 lacking helicase activity cannot remove Rad51 from meiotic chromosomes. Interestingly, the Rad51-binding domain of Srs2, which is critical for Rad51-dismantling activity in vitro, is not essential for this activity in vivo. Our results suggest that a precise level of Srs2, in the form of the Srs2 translocase, is required to appropriately regulate the Rad51 nucleoprotein filament dynamics during meiosis.  相似文献   

16.
The polarization of post-mitotic neurons is poorly understood. Preexisting spatially asymmetric cues, distributed within the neuron or as extracellular gradients, could be required for neurons to polarize. Alternatively, neurons might have the intrinsic ability to polarize without any preestablished asymmetric cues. In Caenorhabditis elegans, the UNC-40 (DCC) receptor mediates responses to the extracellular UNC-6 (netrin) guidance cue. For the HSN neuron, an UNC-6 ventral-dorsal gradient asymmetrically localizes UNC-40 to the ventral HSN surface. There an axon forms, which is ventrally directed by UNC-6. In the absence of UNC-6, UNC-40 is equally distributed and the HSN axon travels anteriorly in response to other cues. However, we find that a single amino acid change in the UNC-40 ectodomain causes randomly oriented asymmetric UNC-40 localization and a wandering axon phenotype. With UNC-6, there is normal UNC-40 localization and axon migration. A single UNC-6 amino acid substitution enhances the mutant phenotypes, whereas UNC-6 second-site amino acid substitutions suppress the phenotypes. We propose that UNC-40 mediates multiple signals to polarize and orient asymmetry. One signal triggers the intrinsic ability of HSN to polarize and causes randomly oriented asymmetry. Concurrently, another signal biases the orientation of the asymmetry relative to the UNC-6 gradient. The UNC-40 ectodomain mutation activates the polarization signal, whereas different forms of the UNC-6 ligand produce UNC-40 conformational changes that allow or prohibit the orientation signal.A major challenge for developmental neuroscience has been to understand how axons are able to detect and follow molecular gradients of different extracellular guidance cues. Attractive guidance cues are proposed to stimulate cytoplasmic signaling pathways that promote actin polymerization (Huber et al. 2003). Thus the direction of axon outgrowth is directly linked to the extracellular gradient of the guidance cue; i.e., there is greater extension on the side of the neuron that is closest to the source of the cue. Netrins are bifunctional guidance cues that are attractive to some axons but repulsive to others. Studies have shown that the axon response to netrin is determined by the composition of netrin receptors on the cell surface and the internal state of the growth cone (Round and Stein 2007). The UNC-6 (netrin) guidance cue in Caenorhabditis elegans interacts with the UNC-40 (DCC) receptor to mediate attraction (Hedgecock et al. 1990; Ishii et al. 1992; Chan et al. 1996). The AVM and HSN neurons are useful for studying UNC-40-mediated responses to UNC-6. The cell bodies of these neurons are situated on the lateral body wall and send a single axon ventrally during larval development.In AVM and HSN, a signaling module comprising UNC-6, UNC-40, phosphoinositide 3-kinase (PI3K), Rac, and MIG-10 (lamellipodin) is thought to transmit the directional information provided by the graded distribution of extracellular guidance cues to the internal cellular machinery that promotes directed outgrowth (Adler et al. 2006; Chang et al. 2006; Quinn et al. 2006, 2008). MIG-10 appears to provide an important link because this family of proteins can interact with proteins that promote actin polymerization, and it is associated with asymmetric concentrations of f-actin and microtubules in turning growth cones (Krause et al. 2004; Quinn et al. 2008). MIG-10 is observed as asymmetrically localized to the ventral site of axon outgrowth in developing HSN neurons. This MIG-10 localization is sensitive to the source of UNC-6. Normally, the source of UNC-6 is ventral; in the absence of UNC-6, there is an equal distribution of MIG-10 along the cell surface, whereas ectopic UNC-6 expression from dorsal muscles causes dorsal MIG-10 localization (Adler et al. 2006). The UNC-40 receptor is also asymmetrically localized in HSN, and this localization is also dependent on UNC-6 (Adler et al. 2006). UNC-40 signaling activates Rac GTPase, and MIG-10 interacts specifically with the activated Rac (Quinn et al. 2008). Therefore, the asymmetric activation of Rac through UNC-40 recruits asymmetric MIG-10 localization.By activating or directing components to the surface nearest the UNC-6 source, the asymmetric distribution of UNC-6 could polarize the neuron. However, an alternative idea is suggested from studies of chemotaxing cells. This model predicts that chemoattractant signaling involves two different elements: one that activates the intrinsic ability of cells to generate asymmetry and another that biases the orientation of the asymmetry (Wedlich-Soldner and Li 2003). The polarization signal does not depend on the spatial information provided by the chemoattractant gradient, whereas the orientation signal does. The asymmetric localization of the UNC-40 and MIG-10 signaling complex is suggestive of the segregation of signaling components into separate “front” and “rear” regions during chemotactic cell migration (Weiner 2002; Mortimer et al. 2008). It is hypothesized that this segregation is accomplished through short-range positive feedback mechanisms that promote the local production or recruitment of signaling molecules. In addition, a long-range inhibition mechanism globally increases the degradation of these molecules. Together such mechanisms could strongly amplify the asymmetric distribution of molecules needed for directed movement. This model has been put forth to explain why chemotactic cells polarize and move in a random direction when encountering a uniform chemoattractant concentration. Although the chemoattractant receptors may be uniformly stimulated across the surface of the cells, randomly oriented asymmetry can be established through these mechanisms.If the AVM and HSN neurons behave similarly to chemotactic cells, then uniformly stimulating UNC-40 receptors might similarly cause nonspecific asymmetric UNC-40 localization and axon migrations in varying directions. However, this is difficult to test in vivo. Unlike exposing chemotactic cells to a uniform concentration of a chemotractant in vitro, there is no reliable way to ensure that a neuron in vivo is exposed to a uniform concentration of UNC-6. The pseudocoelomic cavity of C. elegans is fluid filled, and UNC-6 expression patterns are spatially and temporally complex (Wadsworth et al. 1996). How the distribution of UNC-6 is affected by interactions with the extracellular matrix and cell surfaces is unknown.Using a genetic approach, we have found an UNC-40 mutation that triggers randomly oriented neuronal asymmetry. On the basis of the models proposed for chemotactic cells, we suggest that there is an UNC-6/UNC-40-mediated signal that specifically induces the neuron''s intrinsic ability to polarize. The UNC-40 mutation activates this signal; however, a second signal, which normally would concurrently orient asymmetry relative to the UNC-6 gradient, is not activated. Single amino acid changes within the UNC-6 ligand can enhance or suppress the randomly oriented asymmetry phenotype caused by the UNC-40 mutation. This suggests that specific UNC-40 conformations uncouple the activation of the different signals.  相似文献   

17.
18.
19.
Dbf4-dependent kinase (DDK) and cyclin-dependent kinase (CDK) are essential to initiate DNA replication at individual origins. During replication stress, the S-phase checkpoint inhibits the DDK- and CDK-dependent activation of late replication origins. Rad53 kinase is a central effector of the replication checkpoint and both binds to and phosphorylates Dbf4 to prevent late-origin firing. The molecular basis for the Rad53Dbf4 physical interaction is not clear but occurs through the Dbf4 N terminus. Here we found that both Rad53 FHA1 and FHA2 domains, which specifically recognize phospho-threonine (pT), interacted with Dbf4 through an N-terminal sequence and an adjacent BRCT domain. Purified Rad53 FHA1 domain (but not FHA2) bound to a pT Dbf4 peptide in vitro, suggesting a possible phospho-threonine-dependent interaction between FHA1 and Dbf4. The Dbf4Rad53 interaction is governed by multiple contacts that are separable from the Cdc5- and Msa1-binding sites in the Dbf4 N terminus. Importantly, abrogation of the Rad53Dbf4 physical interaction blocked Dbf4 phosphorylation and allowed late-origin firing during replication checkpoint activation. This indicated that Rad53 must stably bind to Dbf4 to regulate its activity.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号