首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 937 毫秒
1.
The addition of Braun and Wood's inorganic supplements (845mg l–1 KCl, 1800 mgl–1 NaNO3, 300 mg l–1 NaH2PO4.2H2O,790 mg l–1 (NH4)2SO4) to White's medium caused markedincreases in the growth of normal tissues of Helianthus annuus,Nicotiana rustica, Daucus carota, and Vinca rosea and crown-galltumour tissues of H. annuus. However, no evidence was obtainedwhich suggested that the presence of these extra salts markedlyinfluenced the essential requirements of normal callus for auxinsand kinetin. In contrast their presence significantly influencedthe hormonal requirements of certain habituated cultures ofH. annuus and V. rosea. These habituated cultures had specificauxin requirements on White's medium while either an auxin orkinetin was sufficient on high-salts medium. These results arediscussed in relation to previous reports which suggested thatthe biosyntheses of auxins and other growth factors in normaland crown-gall cultures are specifically activated by certaininorganic ions.  相似文献   

2.
The mechanism of SO2-induced changes in stomatal conductance(g) of alder was examined to determine if SO2 affects guardcell function directly or indirectly through the SO2-inducedchanges in photosynthesis. During experimental fumigations at SO2 concentrations of 3–3µmol m–3 (0.08 µl l–1), stomatal closurepreceded declines in net photosynthetic rate (A), indicatingthat SO2 can directly affect guard cells. From these and otherstudies it appears that the sequence of A and g responses maybe influenced by SO2 concentration as well as by species. Fumigation with SO2 did not cause increases in g, even whenthe intercellular substomatal CO2 concentration (ci) was reducedby 50 µmol mol–1. Increases in g are not attributableto SO2 effects on the CO2-based stomatal control system. Key words: Air pollution, Alnus serrulata, gas exchange, stomata, sulphur dioxide  相似文献   

3.
The effects of exposure of up to 2 h with sulphur dioxide ona range of plant species was observed by measuring changes inthe rate of net photosynthesis under closely controlled environmentalconditions. Ryegrass, Lolium perenne ‘S23’ was thespecies most sensitive to SO2; significant inhibition was detectedat 200 nl l–1. Fumigations at 300 nl l–1 also inhibitedphotosynthesis in field bean (Vicia faba cv. ‘Three FoldWhite’ and ‘Blaze’) and in barley (Hordeumvulgare cv. ‘Sonja’). No effect was detected inwheat (Triticum aestivum cv. ‘Virtue’) at concentrationsup to 600 nl l–1 SO2, or in oil-seed rape (Brassica napuscv. ‘Rafal’) except at 800 nl l–1 SO2). Recoverycommenced immediately after the fumigation was terminated andwas complete within 2 h when inhibition had not exceeded 20%during the SO2 treatment. Key words: Sulphur dioxide, short-term fumigation, photosynthesis  相似文献   

4.
Permeability coefficients (PS values) for CO2 of the plasmamembrane (PM) of the unicellular green algae Eremosphaera viridis,Dunaliella parva, and Dunaliella acidophila, and of mesophyllprotoplasts isolated from Valerianella locusta were determinedfrom 14CO2 uptake experiments using the rapid separation ofcells by the silicone oil layer centrifugation technique. Theexperimental PS values were compared with calculated numbersobtained by interpolation of Collander plots, which are basedon lipid solubility and molecular size, for D. parva cells,mesophyll protoplasts isolated from Spinacia oleracea, mesophyllcells and guard cells of Valerianella, and guard cell protoplastsisolated from Vicia faba. The conductivity of algal plasma membranes for CO2 varies between0.1 and 9 ? 10–6 m s–1, whereas for the plasmalemmaof cells and protoplasts isolated from leaves of higher plantsvalues between 0.3 and 11 ? 10–6 m s–1 were measured.By assuming that these measurements are representative for plantsand algae in general, it is concluded that the CO2 conductivityof algal PM is of the same order of magnitude as that of thehigher plant cell PM. Ps values of plasma membranes for CO2are lower than those for SO2, but are in the same order of magnitudeas those measured for H2O. On the basis of these results itis concluded that theoretical values of about 3000 ? 10–6m s–1 believed to be representative for higher plant cells(Nobel, 1983) and which are frequently used for computer-basedmodels of photosynthesis, lack experimental confirmation andrepresent considerable overestimations. However, with severalsystems, including higher plant cells, the conductance of thePM for CO2 was significantly higher in light than in darkness.This suggests that in light, additional mechanisms for CO2 uptakesuch as facilitated diffusion or active uptake may operate inparallel with diffusional uptake. Key words: Conductivity, CO2, permeability coefficient, photosynthesis, plasmalemma  相似文献   

5.
The effects of SO2 on some growth and quality characteristicsof lucerne (Medicago sativa L.) were investigated by exposingplants to mean SO2 concentrations of 215, 78 or 2.8 µgm–3 in open-top chambers for 166 d. Plants exposed to215 µg m–3 had significantly lower shoot and rootweights compared with plants exposed to 78 µg m–3,but not compared with control plants. Exposure to 215 or 78µg m –3 increased the plant shoot: root ratio, buthad no effect on leaf area. During the middle of the fumigationperiod, relative growth rate and net assimilation rate werehighest in plants exposed to 215 fig m, but these later fellbelow control values, and plants exposed to 78 µg m–3had the highest relative growth rate and net assimilation rate.As the duration of exposure increased, an initial SO2-inducedstimulation of growth may have developed to toxicity at thehighest SO2 exposure. Exposure to SO2 depressed L-ascorbic acid concentrations inleaves, had no effect on foliar protein or starch concentrations,and increased the specific energy of shoots and plant sulphurconcentrations. The effect of SO2 on L-ascorbic acid concentrationsmay suggest a mechanism for reduced freezing tolerance of plantsafter exposure to SO2. Key words: SO2, Medicago sativa L., Growth  相似文献   

6.
The stomatal response of seedlings grown in 360 or 720 µmolmol–1 to irradiance and leaf-to-air vapour pressure deficit(VPD) at both 360 and 720 µmol mol–1 to CO2 wasmeasured to determine how environmental factors interact withCO2 enrichment to affect stomatal conductance. Seedlings offour species with different conductances and life histories,Cercis canadensis (L.), Quercus rubra (L.), Populus deltoides(Bartr. ex Marsh.) P. nigra (L.), and Pinus taeda (L.), weremeasured in hopes of identifying general responses. Conductanceof seedlings grown at 360 and 720 µmol mol–1 CO2were similar and responded in the same manner to measurementCO2 concentration, irradiance and VPD. Conductance was lowerfor all species when measured at 720 than when measured at 360µmol mol–1 CO2 at both VPDs ({small tilde}1.5 and{small tilde}2.5 kPa) and all measured irradiances greater thanzero (100, 300, 600,>1600 µmol m–2 S–2)The average decrease in conductance due to measurement in elevatedCO2 concentration was 32% for Cercis, 29% for Quercus, 26% forPopulus, and 11% for Pinus. For alt species, the absolute decreasein conductance due to measurement in CO2 enrichment decreasedas irradiance decreased or VPD increased. The proportional decreasedue to measurement in CO2 enrichment decreased in three of eightcases: from 0.46 to 0.10 in Populus and from 0.18 to 0.07 inPinus as irradiance decreased from>1600 to 100 µmolm–2 s–1 and from 0.35 to 0.24 in Cercis as VPD increasedfrom 1.3 to 2.6 kPa. Key words: Stomatal conductance, CO2 enrichment, irradiance, vapour pressure deficit  相似文献   

7.
Species-specific differences in the assimilation of atmosphericCO2 depends upon differences in the capacities for the biochemicalreactions that regulate the gas-exchange process. Quantifyingthese differences for more than a few species, however, hasproven difficult. Therefore, to understand better how speciesdiffer in their capacity for CO2 assimilation, a widely usedmodel, capable of partitioning limitations to the activity ofribulose-1,5-bisphosphate carboxylase-oxygenase, to the rateof ribulose 1,5-bisphosphate regeneration via electron transport,and to the rate of triose phosphate utilization was used toanalyse 164 previously published A/Ci, curves for 109 C3 plantspecies. Based on this analysis, the maximum rate of carboxylation,Vcmax, ranged from 6µmol m–2 s–1 for the coniferousspecies Picea abies to 194µmol m–2 s–1 forthe agricultural species Beta vulgaris, and averaged 64µmolm–2 s–1 across all species. The maximum rate ofelectron transport, Jmax, ranged from 17µmol m–2s–1 again for Picea abies to 372µmol m–2 s–1for the desert annual Malvastrum rotundifolium, and averaged134µmol m–2 s–1 across all species. A strongpositive correlation between Vcmax and Jmax indicated that theassimilation of CO2 was regulated in a co-ordinated manner bythese two component processes. Of the A/Ci curves analysed,23 showed either an insensitivity or reversed-sensitivity toincreasing CO2 concentration, indicating that CO2 assimilationwas limited by the utilization of triose phosphates. The rateof triose phosphate utilization ranged from 4·9 µmolm–2 s–1 for the tropical perennial Tabebuia roseato 20·1 µmol m–2 s–1 for the weedyannual Xanthium strumarium, and averaged 10·1 µmolm–2 s–1 across all species. Despite what at first glance would appear to be a wide rangeof estimates for the biochemical capacities that regulate CO2assimilation, separating these species-specific results intothose of broad plant categories revealed that Vcmax and Jmaxwere in general higher for herbaceous annuals than they werefor woody perennials. For annuals, Vcmax and Jmax averaged 75and 154 µmol m–2 s–1, while for perennialsthese same two parameters averaged only 44 and 97 µmolm2 s–1, respectively. Although these differencesbetween groups may be coincidental, such an observation pointsto differences between annuals and perennials in either theavailability or allocation of resources to the gas-exchangeprocess. Key words: A/Ci curve, CO2 assimilation, internal CO2 partial pressure, photosynthesis  相似文献   

8.
The hypothesis that the intracellularNa+ concentration([Na+]i)is a regulator of the epithelialNa+ channel (ENaC) was tested withthe Xenopus oocyte expression systemby utilizing a dual-electrode voltage clamp.[Na+]iaveraged 48.1 ± 2.2 meq (n = 27)and was estimated from the amiloride-sensitive reversal potential.[Na+]iwas increased by direct injection of 27.6 nl of 0.25 or 0.5 MNa2SO4.Within minutes of injection,[Na+]istabilized and remained elevated at 97.8 ± 6.5 meq(n = 9) and 64.9 ± 4.4 (n = 5) meq 30 min after theinitial injection of 0.5 and 0.25 MNa2SO4,respectively. This increase of[Na+]icaused a biphasic inhibition of ENaC currents. In oocytes injected with0.5 MNa2SO4(n = 9), a rapid decrease of inwardamiloride-sensitive slope conductance(gNa) to 0.681 ± 0.030 of control within the first 3 min and a secondary, slowerdecrease to 0.304 ± 0.043 of control at 30 min were observed.Similar but smaller inhibitions were also observed with the injectionof 0.25 MNa2SO4.Injection of isotonicK2SO4(70 mM) or isotonicK2SO4made hypertonic with sucrose (70 mMK2SO4-1.2M sucrose) was without effect. Injection of a 0.5 M concentration ofeitherK2SO4,N-methyl-D-glucamine (NMDG) sulfate, or 0.75 M NMDG gluconate resulted in a much smaller initial inhibition (<14%) and little or no secondary decrease. Thusincreases of[Na+]ihave multiple specific inhibitory effects on ENaC that can betemporally separated into a rapid phase that was complete within 2-3 min and a delayed slow phase that was observed between 5 and 30 min.

  相似文献   

9.
A 50-year-old Pinus sylvestris L. stand was exposed for 2 yearsto low concentrations of SO2 and NO2 in an open-air exposureexperiment in northern Sweden. The mean SO2 concentrations inthe centre of the exposed plot during the 1988 exposure from14 June to 25 September, and during the 1989 exposure from 6June to 30 September were 15 nl 1–1 and 12 nl 1–1,respectively. The corresponding values for NO2 were 15 nl 1–1and 10 nl 1–1, respectively. The concentration in thecontrol plot was never higher than a few ppb, and mostly below1 nl 1–1. Needles sampled from the SO2 and NO2-exposed area showed reducedactivities of glutathione reductase (GR; EC 1.6.4.2 [EC] ) and superoxidedismutase (SOD; EC 1.15.1.1 [EC] ) compared with controls. The GRactivity showed decreased levels in autumn and winter, whilethe exposure had ceased, and SOD showed decreased activity duringthe second summer of exposure. Neither membrane-bound nor water-solubleanti-oxidants such as -tocopherol, carotenoids or glutathionechanged due to the exposure. The sulphur/nitrogen ratio wasincreased in needles that were exposed to SO2 and NO2 implyinga changed nutrition balance. The results suggest that the capacityof SOD and GR in the ascorbate-glutathione pathway was reduceddue to the exposure to air pollutants. Key words: Anti-oxidants, -tocopherol, glutathione, pigments, Pinus sylvestris L  相似文献   

10.
A sulfite-dependent ATPase [EC 3.6.1.3 [EC] ] of Thiobacillus thiooxidanswas activated and solubilized by treatment with trypsin [EC3.4.4.4 [EC] ], and purified 84-fold with a 32% recovery. It requiredboth Mg2+ and SO32– for full activity, and its optimumpH was found at 7.5–8.0. Mn2+, Co2+, and Ca2+ could partiallysubstitute for Mg2+, while SeO32– and CrO42– couldpartially substitute for SO32–. The enzyme hydrolyzed ATP and deoxy-ATP most rapidly and otherphosphate esters were poorer substrates. The apparent Km valuefor ATP was 0.33 mM. The enzyme activity was strongly inhibitedby 0.2 mM NaN3 and 10 mM NaF. (Received July 27, 1977; )  相似文献   

11.
Maas, F. M., De Kok, L. J., Peters, J. L. and Kuiper, P. J.C. 1987. A comparative study on the effects of H2S and SO2 fumigationon the growth and accumulation of sulphate and sulphydryl compoundsin Trifolium pratense L., Glycine max Merr. and Phaseolus vulgarisL.—J. exp. Bot. 38: 1459-1469. The effects of 0—25 mm3 dm3 H2S and SO2 on growth andsulphur content of shoots of Trifolium pratense, Glycine maxand Phaseolus vulgaris were studied. After 2 weeks of fumigationthe yield of T. pralense was reduced by 32% by H2S, but notaffected by SO2. Yield of G. max was not affected by H2S, butreduced by 20% by SO2, whereas that of P. vulgaris was increasedby 11% by H2S and not affected by SO2. Increases in sulphydrylcontent were already observed after 24 h of exposure to H2Sand SO2 in all plants. The increase was greatest in T. pratenseand smallest in P. vulgaris and, except for T. pratense, alwaysgreater in the H2S-exposed than the SO2-exposed plants. Oneday of exposure resulted in an increase in sulphate contentonly in the SO2-fumigated plants, with the highest accumulationin T. pratense and the lowest in P. vulgaris. After 2 weeksan increase in sulphate content was also observed in the H2S-exposedplants. This increase was also highest in T. pratense and lowestin P. vulgaris. Transpiration rate was not affected by a 24 h exposure to H2Sor SO2 and was highest in T. pratense, intermediate in G. maxand lowest in P. vulgaris. The order of theoretical rates of deposition of H2S and SO2correlated with the observed increases in sulphydryl contentduring the first 24 h of exposure in both H2S and SO2-fumigatedplants and with the increase in sulphate content in the SO2-exposedplants. The increases in sulphydryl content were only 8% ofthe theoretical H2S and SO2-deposition fluxes, whereas sulphateaccumulation accounted for at least 57% of the theoretical SO2-depositionflux. Key words: Air pollution, clover, French bean, Glutathione, Soybean, sulphur metabolism.  相似文献   

12.
Rates of net photosynthesis, PN, and dark respiration of Viciafaba plants were measured in the laboratory in clean air andin air containing up to 175 parts 10–9 (500 µg m–3)SO2. At all SO2 concentrations exceeding 35 parts 10–9,PN was inhibited compared with clean air. At light saturation,the magnitude of inhibition depended on SO2 concentration butat low irradiances the inhibition was independent of concentration.Dark respiration rates increased substantially, independentof concentration. When exposures continued for up to 3 days,PN returned to clean air values about 1 h after fumigation ceased:dark respiration recovered after one photoperiod. There wereno visible injuries. Reviewing possible mechanisms responsible for the inhibitionof PN, it is suggested that SO2 competes with CO2 for bindingsites in RuBP carboxylase. Analysis of resistance analoguesdemonstrates that SO2 altered both stomatal and internal (residual)resistances. A model of crop photosynthesis shows the implications of theobserved responses for the growth of field crops in which plantsare assumed to respond like laboratory plants. Photosynthesisof the crop would be less sensitive than that of individualplants to SO2 concentration. Daily dry matter accumulation ofhypothetical ‘polluted crops’ would be substantiallyless than clean air values but would vary relatively littlewith SO2 concentration. It is concluded that physiological basesexist to account for observed reductions in growth of plantsat very low SO2 concentrations, and that thresholds for plantresponses to SO2 require reassessment.  相似文献   

13.
Gas exchange measurements were undertaken on 2-year-old plantsof Clusia rosea. The plants were shown to have the ability toswitch from C3-photosynthesis to CAM and vice versa regardlessof leaf age and, under some conditions, CO2 was taken up continuously,throughout the day and night. The light response was saturatedby 120 µmol m–2 s–1 typical of a shade plant. Gas exchange patterns in response to light, water and VPD wereexamined. All combinations of daytime and night-time CO2 uptakewere observed, with rates of CO2 uptake ranging from 2 to 11µmol m–2 s–1 depending upon water status andlight. Categorization of this plant asC3, CAM or an intermediateis impossible. Differing VPD affected the magnitude of changesfrom CAM to C3-photosynthesis (0 to 0.5 and 0 to 6.0 µmolm–2 s–1 CO2, respectively) when plants were watered.Under well-watered conditions, but not under water stress, highPPFD elicited changes from CAM to C3 gas exchange. This is unusualnot only for a shade plant but also for a plant with CAM. Itis of ecological importance for C. rosea, which may spend theearly years of its life as an epiphyte or in the forest understorey,to be able to maximize photosynthesis with minimal water loss. Key words: Clusia rosea, CAM, C3, stress  相似文献   

14.
The effects of two shoot densities (14 and 44 shoots/vine) andtwo crop levels (one and two clusters/shoot) on gas exchangeand water relations of field-grown Sauvignon blanc (Vitis viniferaL.) were studied in a factorial design over 3 years. The two-clustertreatments had 0.14 MPa higher stem water potential (stem),1.4 µmol m–2 s–1 higher assimilation rate(A), 0.04 mol m–2 s–1 higher stomatal conductance(gs) and 0.008 mol m–2 s–1 higher non-stomatal (gm)conductance. The two-cluster treatments had higher gs and transpirationrates than the one-cluster treatments, for similar stem. A quantitativeanalysis suggests that storage capacity cannot account for thesimultaneous increase in gs and stem in the two-cluster treatments.Similar gs-gm responses were found In the one- and two-clustertreatments, regard less of differences between the treatmentsin gs-stem response. Key words: Grapevine, stomatal conductance, assimilation rate, water relations  相似文献   

15.
Exposure of 3 week old field bean plants to concentrations ofSO2 from 50–500 µg m-3 induced comparable 20–25%increases in mean leaf diffusive conductance regardless of whetherthe diffusive conductances were obtained by porometric measurementor calculation from gas exchange data. The stomatal conductancesof the adaxial and abaxial leaf surfaces were both increasedby exposure to SO2. Microscopic examination of epidermal strips from control andpolluted plants revealed that the stomatal opening observedin treated plants was associated with a sharp reduction in theproportion of living epidermal cells adjacent to the stomata.The proportion of surviving adjacent epidermal cells was invariablysmaller on the lower epidermis and appeared to decrease as theSO2 concentration was raised from 50 to 500 µg m–3.Although the guard cells appeared to be undamaged at concentrationsbelow 200 µg m–3, structural disorganization ordeath of one or both guard cells was observed frequently ator above 500 µg m–3. The results are discussed in relation to the controversy concerningthe effects of SO2 on stomatal aperture.  相似文献   

16.
The sensitivity of S23 Lolium perenne L. to 11 parts 10–8SO2 was investigated at two different wind speeds. At the higherwind speed of 25 m min–8, SO2 caused significant reductionsin leaf area, root/shoot ratio, and all dry weight fractionsmeasured. At the lower wind speed of 10 m min–1 growthreductions were not found. The differences in sensitivity ofplants to SO2 at different wind speeds is discussed in relationto boundary layer resistances of leaves. It is concluded thatthe sensitivity of a plant to a particular pollutant shouldno longer be measured in terms of only the concentration andlength of exposure.  相似文献   

17.
In this paper we report for the first time the occurrence ofan inducible weak CAM in leaves of Talinwn triangulare (Jacq.)Willd. This plant is a terrestrial perennial deciduous herbwith woody stems and succulent leaves which grows under fullexposure and in the shade in northern Venezuela. Plants grownin a greenhouse (‘sun’ plants) and a growth cabinet(‘shade’ plants) with daily irrigation showed CO2uptake only during the daytime (maximum rate, 4?0 µmolm–2 s–1) and a small acid accumulation during thenight (6?0 µmol H+g–1 FW). Twenty-four hours aftercessation of irrigation, no CO2 exchange was observed duringpart of the night. Dark fixation reached a maximum (1?0 µmolCO2 m–2 s–1, 100 µmol H+ g–1 FW) onday 9 of drought. By day 30 almost no gas exchange was observed,while acid accumulation was still 10 µmol H+ g–1FW. Rewatering reverted the pattern of CO2 exchange to thatof a C3 plant within 24 h. Daytime and night-time phosphoenolpyruvatecarboxylase activity increased up to 100% (shade) and 62% (sun)of control values after 10 and 15 d of drought, respectively.Light compensation point and saturating irradiance were similarin well-watered sun and shade plants, values being characteristicof sun plants. CAM seems to be important for the tolerance ofplants of this species to moderately prolonged (up to 2 months)periods of drought in conditions of full exposure as well asshade, and also for regaining high photosynthetic rates shortlyafter irrigation. Key words: Talinum triwigulare, inducible CAM, PEP-C activity, recycling  相似文献   

18.
The relationships between CO2 concentrating mechanisms, photosyntheticefficiency and inorganic carbon supply have been investigatedfor the aquatic macrophyte Littorella uniflora. Plants wereobtained from Esthwaite Water or a local reservoir, with thelatter plants transplanted into a range of sediment types toalter CO2 supply around the roots. Free CO2 in sediment-interstitial-waterranged from 1–01 mol m–3 (Esthwaite), 0.79 mol m–3(peat), 0.32 mol m–3 (silt) and 0–17 mol m–3(sand), with plants maintained under PAR of 40 µmol m–2s–1. A comparison of gross morphology of plants maintained underthese conditions showed that the peat-grown plants with highsediment CO2 had larger leaf fresh weight (0–69 g) andtotal surface area (223 cm2 g–1 fr. wt. including lacunalsurface area) than the sand-grown plants (0.21 g and 196 cm2g–1 fr. wt. respectively). Root fresh weights were similarfor all treatments. In contrast, leaf internal CO2 concentration[CO2], was highest in the sand-grown plants (2–69 molm–3, corresponding to 6.5% CO2 in air) and lowest inthe Esthwaite plants (1–08 mol m–3). Expressionof CAM in transplants was also greatest in the low CO2 regime,with H+ (measured as dawn-dusk titratable acidity) of 50µmolg fr. wt., similar to Esthwaite plants in natural sediment.Assuming typical CAM stoichiometry, decarboxylation of malatecould account largely for the measured [CO2]1 and would makea major contribution to daytime CO2 fixation in vivo. A range of leaf sections (0–2, 1–0, 5–0 and17–0 mm) was used to evaluate diffusion limitation andto select a suitable size for comparative studies of photosyntheticO2 evolution. The longer leaf sections (17.0 mm), which weresealed and included the leaf tip, were diffusion-limited witha linear response to incremental addition of CO2 and 1–0mol m–3 exogenous CO2 was required to saturate photosynthesis.Shorter leaf sections were less diffusion-limited, with thegreatest photosynthetic capacity (36 µmol O2 g–1 fr. wt. h–1) obtainedfrom the 1.0 mm size and were not infiltrated by the incubatingmedium. Comparative studies with 1.0 mm sections from plants grown inthe different sediment types revealed that the photosyntheticcapacity of the sand-grown plants was greatest (45 µmolO2 g–1 fr. wt. h–1) with a K0.5 of 80 mmol m–3.In terms of light response, saturation of photosynthesis intissue slices occurred at 850–1000 µmol m–2s–1 although light compensation points (6–11 µmolm–2s–1) and chlorophyll a: b ratios (1.3) were low.While CO2 and PAR responses were obtained using varying numbersof sections with a constant fresh weight, the relationshipsbetween photosynthetic capacity and CO2 supply or PAR were maintainedwhen the data were expressed on a chlorophyll basis. It is concludedthat under low PAR, CO2 concentrating mechanisms interact inintact plants to maintain saturating CO2 levels within leaflacunae, although the responses of the various components ofCO2 supply to PAR require further investigation. Key words: Key words-Uttorella uniflora, internal CO2 concentration, crassulacean acid metabolism, root inorganic carbon supply, CO2 concentrating mechanism  相似文献   

19.
The specific respiration rates of nodulated root systems, ofnodules and of roots were determined during active nitrogenfixation in soya bean, navy bean, pea, lucerne, red clover andwhite clover, by measurements on whole plants before and afterthe removal of nodule populations. Similar measurements weremade on comparable populations of the six legumes, lacking nodulesbut receiving abundant nitrate-nitrogen, to determine the specificrespiration of their roots. All plants were grown in a controlled-environmentclimate which fostered rapid growth. The specific respiration rates of nodulated root systems ofthe three grain and three forage legumes during a 7–14-dayperiod of vegetative growth varied between 10 and 17 mg CO2g–1 (dry weight) h–1. This mean value consistedof two components: a specific root respiration rate of 6–9mg CO2 g–1 h–1 and a specific nodule respirationrate of 22–46 mg CO2 g–1 h–1. Nodule respirationaccounted for 42–70 per cent of nodulated root respiration;nodule weight accounted for 12–40 per cent of nodulatedroot weight. The specific respiration rates of roots lackingnodules and utilizing nitrate nitrogen were generally 20–30per cent greater than the equivalent rates of roots from nodulatedplants. The measured respiratory effluxes are discussed in thecontext of nitrogen nitrogen fixation, nitrate assimilation. Glycine max, Phaseolus vulgaris, Pisum sativum, Medicago sativa, Trifolium pratense, Trifolium repens, soya bean, navy bean, pea, lucerne, red clover, white clover, nodule respiration, root respiration, fixation, nitrate assimilation  相似文献   

20.
Phosphate Uptake in the Cyanobacterium Synechococcus R-2 PCC 7942   总被引:4,自引:0,他引:4  
Phosphate uptake rates in Synechococcus R-2 in BG-11 media (anitrate-based medium, not phosphate limited) were measured usingcells grown semi-continuously and in continuous culture. Netuptake of phosphate is proportional to external concentration.Growing cells at pHo 10 have a net uptake rate of about 600pmol m–2 s–1 phosphate, but the isotopic flux for32P phosphate was about 4 nmol m–2 s–1. There appearsto be a constitutive over-capacity for phosphate uptake. TheKm and Vmax, of the saturable component were not significantlydifferent at pHo 7.5 and 10, hence the transport system probablyrecognizes both H2PO4and HPO2–4. The intracellularinorganic phosphate concentration is about 3 to 10 mol m–3,but there is an intracellular polyphosphate store of about 400mol m–3. Intracellular inorganic phosphate is 25 to 50kJ mol–1 from electrochemical equilibrium in both thelight and dark and at pHo 7.5 and 10. Phosphate uptake is veryslow in the dark ( 100 pmol m–2 s–1) and is light-activated(pHo 7.51.3 nmol m–2 s–1, pHo 10600 pmol m–2s–1). Uptake has an irreversible requirement for Mg2+in the medium. Uptake in the light is strongly Na+-dependent.Phosphate uptake was negatively electrogenic (net negative chargetaken up when transporting phosphate) at pHo 7.5, but positivelyelectrogenic at pHo 10. This seems to exclude a sodium motiveforce driven mechanism. An ATP-driven phosphate uptake mechanismneeds to have a stoichiometry of one phosphate taken up perATP (1 PO4 in/ATP) to be thermodynamically possible under allthe conditions tested in the present study. (Received June 16, 1997; Accepted September 4, 1997)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号