首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
R. H. Berg  L. McDowell 《Protoplasma》1987,136(2-3):104-117
Summary This is an ultrastructural study of development of infected cells in nitrogen fixing root nodules ofCasuarina spp. While several aspects of development are similar to those found in many other actinorhizae, unusual aspects of development of the host cell and differentiation of the endophyte inCasuarina are correlated with unusual changes in the wall of the infected cell. Instead of vesicles the endophyte forms atypical hyphae in mature infected cells. These unusual hyphal forms are termed intracellular hyphae. Intracellular hyphae are nonseptate hyphae which originate and terminate within the same host cell, and have a varying diameter and a multidirectional growth and branching pattern. A laminate surface layer previously undescribed on hyphae ofFrankia is a feature common to mostCasuarina endophytic hyphae and is probably similar chemically to the laminae comprising the multilamellate envelope of endophytic vesicles in other actinorhizae.This paper is Florida Agricultural Experiment Station Journal Series No. 7350.  相似文献   

2.
O. Balboa  Guacolda Avila  P. Arce 《Protoplasma》1988,147(2-3):143-148
Summary Root nodulesTalguenea quinquenervia Gill et Hook (Rhamnaceae) are restricted to the middle region of the root cortex. The root endophyte possesses hyphae which are septate and vesicles. The vesicles are spherical and are continuous with that of the hyphae. The endophyte fine structure is similar to otherFrankia-induced root nodules.  相似文献   

3.
I. M. Miller  D. D. Baker 《Protoplasma》1985,128(2-3):107-119
Summary A correlated light and electron microscopic study was undertaken of the initiation and development of root nodules of the actinorhizal tree species,Elaeagnus angustifolia L. (Elaeagnaceae).Two pure culturedFrankia strains were used for inoculation of plants in either standing water culture or axenic tube cultures. Unlike the well known root hair infection of other actinorhizal genera such asAlnus orMyrica the mode of infection ofElaeagnus in all cases was by direct intercellular penetration of the epidermis and apoplastic colonization of the root cortex. Root hairs were not involved in this process and were not observed to be deformed or curled in the presence of the actinomyceteFrankia. In response to the invasion of the root, host cells secreted a darkly staining material into the intercellular spaces. The colonizingFrankia grew through this material probably by enzymatic digestion as suggested by clear dissolution zones around the hyphal strands. A nodule primordium was initiated from the root pericycle, well in advance of the colonizingFrankia. No random division of root cortical cells, indicative of prenodule formation was observed inElaeagnus. As the nodule primordium grew in size it was surrounded by tanninised cells of a protoperiderm. The endophyte easily traversed this protoperiderm, and once inside the nodule primordium cortex ramified within the intercellular spaces at multiple cell junctions. Invasion of the nodule cortical cells occurred when a hyphal branch of the endophyte was initiated and grew through the plant cell wall, again by apparent enzymatic digestion. The plant cell plasmalemma of invaded cells always remained intact and numerous secretory vesicles fused with it to encapsulate the advancingFrankia within a fibrous cell wall-like material. Once within the host cell some endophyte cells began to differentiate into characteristic vesicles which are the presumed site of nitrogen fixation. This study clearly demonstrates that alternative developmental pathways exist for the development of actinorhizal nitrogen-fixing root symbioses.  相似文献   

4.
Summary The fine structures of the microsymbiont inside the root nodules ofDatisca cannabina have been studied by light, by transmission- and by scanning-electron microscopy. The endophyte is prokaryotic and actinomycetal in nature. The hyphae are septate and branched, diameter 0.3–0.5 m. The tips of hyphae are swollen to form electron-dense, clubshaped to filamentous vesicles, ranging in diameter: 0.4–1.4 m. The endophyte penetrates through walls of the cortial cells. The infected zone is kidney shaped and confined to one side of the acentric stele. The orientation of infection is reversed from other actinorhizae exceptCoriaria. The hyphae are near the host cell wall and vesicles are directed towards the central vacuole. Vesicles are aseptate and no collapsing of the vesicle cell wall (void area) has been observed. Vesicle clusters structures are globular with an opening at one side of the cluster. The host cell is multinucleate or contains a lobed nucleus. Groups of mitochondria are located in between the hyphae, suggesting a strong association between the host and the endophyte for energy supply and amino acid production. The consequences of the inability to separate the mitochondria from the vesicle clusters in nodule homogenates in physiological studies have been discussed.Isolated vesicles clusters showed dehydrogenase activity, indicated by the presence of formazan crystals, after incubation with NADH and NBT. Strongest reducing activity was found within the vesicles. The possible role of filamentous vesicles in nitrogen fixation has been discussed.  相似文献   

5.
Summary Seedlings ofCasuarina spp. andAllocasuarina spp. were grown from seed in the greenhouse and inoculated with a nodule suspension fromC. equisetifolia. Plants ofCasuarina spp. nodulated regularly and were effective in nitrogen-fixation. Only one species ofAllocasuariona, A. lehmanniana formed root nodules. Using these plants as source of inoculum, the isolation of a newFrankia sp. HFPA11I1 (HFP022 801) was made and the strain was grown in pure culture.Frankia sp. HFPA11I1 grows well in a defined medium and shows typical morphological characteristics. In media lacking combined nitrogen, the filamentours bacterium forms terminal vesicles in abundance and differentiaties large intrahyphal or terminal sporangia containing numerous spores. This strain, used as inoculum, nodulates effectively seedlings ofC. equisietifolia andC. cunninghamiana, forming nodules with verically-growing nodule roots. Although effective in acetylene reduction, the endophyte within the nodules is filamentous and lacks veiscles. When used to inoculated seedlings ofA llocasuarina lehmanniana, Frankia sp. HFPA11I1 induces root nodules which are coralloid and lacking nodule roots. The nodules are effective in acetylene reduction and the filamentous hyphae ofFrankia within the nodule lobes lack vesicles. Effective nodulation inA. Lehmanniana depends upon environmental conditions of the seedlings and proceeds much more slowly than in Casuariana.  相似文献   

6.
D. J. Goodchild  C. Miller 《Protoplasma》1997,198(3-4):130-134
Summary Immunocytochemical localisation of hemoglobin on sections ofFrankia-infecledCasuarina glauca nodule tissue confirmed its presence in nitrogen-fixing infected cells. Using colloidal gold as the marker, hemoglobin was shown to be restricted to the cytoplasm and nucleus of infected cells. None was associated with endophyte hyphae or uninfected cells. As infection developed, with its associated thickening and modification of host cell walls, the level of label, and by implication, the level of hemoglobin increased.Abbreviations SPL semi-permeable layer - GA glutaraldehyde - PFA paraformaldehyde  相似文献   

7.
Summary The establishment of actinorhizal root nodules involves penetration of host cell walls and intracellular colonization by the nitrogen-fixing endosymbiont,Frankia (Actinomycetales). In the early stages of the infection process inAlnus, unusual cell walls with undulate profiles were observed in root tip meristematic derivatives, and in early (preinfection) derivatives of the nodule lobe meristem, inFrankia-inoculated plants. The irregular cell walls attached obliquely to preexisting walls, but were not discontinuous. Serial sections revealed that the unusual walls divided two daughter cells. Microtubules in bundled arrays were abundant near the undulate walls, and radiated in several planes. In the root tips, the anomalous cell walls were observed within one day of inoculation withFrankia.  相似文献   

8.
Summary A morphological analysis of the initiation and development of root nodules ofElaeagnus angustifolia andMyrica cerifera inoculated with pure-culturedFrankia strains DDB 011610 or DDB 020110 was undertaken. From ultrastructural observations it was determined that both of theseFrankia strains can infectElaeagnus by an intercellular penetration mechanism andMyrica by the root hair infection mechanism. This indicates that both of these strains have the ability to infect host plant roots by either of two mechanisms. The reverse, thatElaeagnus orMyrica could be infected by both mechanisms, was not observed. The infection and nodule development processes of these two plants in combination with these strains were similar to observations made in previous studies (Miller andBaker 1985,Torrey andCallaham 1979). However, one exception was identified in the development of the prenodule ofMyrica when infected with strain 011610, in that endophytic hyphae developed vesicles within the cells of the prenodule. This event has not been described before for any of the actinorhizal genera and may be an indication of less than optimal compatibility between the host plant and the symbiont.Contribution no. 876 of the Battelle-Kettering Laboratory.  相似文献   

9.
J. H. Becking 《Plant and Soil》1970,32(1-3):611-654
Summary A wide taxonomic range of non-leguminous dicotyledonous plants bear root nodules and are able to fix atmospheric nitrogen. These plants belong to the orders Casuarinales, Myricales, Fagales, Rhamnales, Coriariales, and Rosales. Actinomycetes are involved in the root-nodule symbiosis. Nitrogen fixation is inhibited by hydrogen and carbon monoxide. Combined nitrogen depress nodule formation, but nitrogen fixation still occurs in the presence of combined nitrogen in the medium. In nitrogen-free medium Alnus plants fix in one season of 48 weeks 500 mg N per plant and Ceanothus plants 760 mg N per plant. Fixation by the other plant species is about of the same order. Field estimates showed that the nitrogen increase of the soil was about 61.5–157 kg N per ha per annum, depending on the age of the trees, under Alnus, 58.5 kg N per ha per annum under Casuarina, about 60 kg N per ha per annum under Ceanothus, 27–179 kg N per ha per annum underHippopha? rhamnoides, and about 61.5 kg N per ha per annum underDryas drummondii with someShepherdia spp. Non-leguminous root nodules belong to two types: coralloid root nodules and root nodules where the apex of each nodule lobe produces a negatively geotropic root. The primary infection occurs through the root hairs where a curling effect is observed. In the host cells the endophyte presents itself in three forms: hyphae, vesicles and bacteria-like cells. Vesicles are probably associated with nitrogen fixation, whereas the bacteria-like cells function in the endophyte's survival and dispersal. The endophyte is an obligate symbiont. TheAlnus glutinosa endophyte has been isolated and grownin vitro in root-nodule callus tissue. However, the isolated endophyte produces only ineffective root nodules in re-inoculation tests.  相似文献   

10.
张爱梅  殷一然  孔维宝  朱学泰  孙坤 《生态学报》2021,41(20):8212-8221
根瘤是微生物侵染植物根部并与之形成的共生结构,这些微生物都可被称为植物内生菌。豆科植物根瘤中的内生菌常常又被称为根瘤菌,而侵染非豆科植物形成根瘤的主要是放线菌弗兰克氏菌,这些非豆科植物又被称为放线菌结瘤植物。西藏沙棘是一种典型的放线菌结瘤植物,由于其分布生境的特殊性,对其根瘤内生菌的研究具有重要的生态意义。对于西藏沙棘根瘤内生菌的研究,培养方法因难以模拟自然条件而不易获得纯培养,高通量测序技术对其多样性的研究提供了便利。因此,本研究以生长在甘肃省天祝县金强河河滩地的西藏沙棘根瘤为材料,采用16S rRNA基因扩增子高通量测序方法,结合OTU分析,对西藏沙棘根瘤内生菌的多样性进行探讨。实验结果表明,西藏沙棘根瘤内生菌具有丰富的多样性,根瘤内的优势属为共生固氮的弗兰克氏菌属(Frankia),其相对丰度为47.63%,共检测到7个弗兰克氏菌属的OTUs;根瘤内除弗兰克氏菌外,还存在大量的非弗兰克氏菌,共检测到1523个OTUs,隶属于22个门、33个纲、69个目、113个科和202个属,相对丰度排名前9的属中有25个非弗兰克氏菌属的OTUs。该研究也表明,西藏沙棘根瘤内生菌具有丰富的多样性,西藏沙棘根瘤中不仅存在着可共生固氮的弗兰克氏菌,并且还分布着非弗兰克氏菌;在同一根瘤样品中,弗兰克氏菌属还具有不同的物种。本研究不仅拓展了西藏沙棘根瘤内生菌多样性的研究方法,还为同一寄主植物中弗兰克氏菌多样性的研究提供了分析思路。  相似文献   

11.
Nitrogen-fixing root nodules of the Alnus crispa var. mollis Fern. were studied by scanning electron microscopy (SEM). The critical point drying of glutaraldehyde-osmium fixed nodular tissue permitted an excellent morphological preservation of the three-dimensional structures of the host and endophyte cells. The nodule endophyte was observed as two forms: the hypha which can be branched, and the vesicle which developed at the parental hypha tip. The actinomycetal endophyte penetrated through the host cortical cell wall and became enveloped by a membrane. This enclosing membrane is suggested to be the invaginated host plasmalemma. Perforations of the cell wall of the host infected cell were observed. These perforations are suggested to be the result of an enzymatic degradation process, probably regulated by the penetrating endophyte hyphae. In addition to the polymorphic endophyte, endogenous bacterial contaminants were observed in the nodular tissue. The present SEM study confirms previous light microscopy and transmission electron microscopy studies of the same species of root nodule symbiosis.  相似文献   

12.
Summary Frankia strain HFPCcI 3 is an actinomycete isolated from root nodules ofCasuarina cunninghamiana. In culture it exhibits typicalFrankia morphology and may produce three distinct morphological forms: branching septate hyphae, terminal or intercalary sporangia, and specialized structures termed vesicles which are the purported site of nitrogenase activity. An examination of the ultrastructure of all three morphological forms using both conventional chemical fixation (CF) and quick-freezing followed by freeze-substitution (FS) reveals some interesting differences between the two fixation methods. Unique to FS material are: 1. smooth membrane profiles; 2. lack of mesosomes; 3. lack of discernible nucleoid regions with condensed chromatin; 4. clarity of cytoplasmic elements such as ribosomes and granular bodies; 5. large cytoplasmic tubules in hyphae and young sporangia; 6. outer wall layer not widely separated from the spherical portion of the vesicle, and 7. bundles of microfilaments in vesicles. The quality of preservation after FS appears to be far superior to that obtained with CF. Accordingly the structures observed after FS are thought to represent more faithfully the structure of the living cell.  相似文献   

13.
羊奶果不同发育阶段根瘤的细胞结构及固氮、吸氢活性   总被引:1,自引:0,他引:1  
比较羊奶果根瘤三个不同发育阶段的显微,亚显微结构和固氮,吸氢活性的差异。探讨了根瘤结构与功能的关系。结果表明:早期侵染方式为皮层细胞间隙侵染,此期的内生菌是一种分枝,具隔膜的菌丝体,早期侵染细胞有脂体存在。成熟根瘤含菌细胞明显多于幼瘤和衰老瘤。成熟根瘤具有大量泡囊,成熟泡囊具分隔,双层壁结构。衰老瘤泡囊分隔消失,不呈双层壁结构。成熟根瘤的固氮,吸氢活性明显高于幼瘤和衰老瘤。  相似文献   

14.
A Frankia strain ISU 0224887 was isolated from spore negative root nodules of Gymnostoma sumatranum and was grown in pure culture. It was infective and effective for Gymnostoma species but failed to nodulate Allocasuarina and Casuarina seedlings. Light and scanning electron microscopy of it in nitrogen free medium revealed a filamentous mat of septate and branched hyphae bearing sporangia and vesicles capable of fixing nitrogen. The strain also produced an orange pigment after 2 weeks culture. The strain utilized only TWEEN 80 and propionate as sole carbon sources. The different antibiotics used showed varying effects on its growth.  相似文献   

15.
Field-collected nodules of Comptonia peregrina (L.) Coult. and Myrica gale L. (Myricaceae), infected by the nitrogen-fixing actinomycete Frankia sp., were of two types: those that lacked sporangia entirely, designated spore(-), and those that showed extensive sporangial development, designated spore(+). In spore(+) nodules of C. peregrina, sporangia began to develop after the differentiation of endophytic vesicles and the concomitant onset of nitrogenase activity. At the onset of sporangial differentiation, infected host cells appeared healthy. However, endophytic vesicles and host cell cytoplasm and nuclei began to senesce rapidly as sporangia developed. Staining of sectioned material with the fluorescent stain Calcofluor White suggested that vesicles, hyphae and young sporangia were enclosed within a host-derived encapsulation layer, but mature sporangia were no longer encapsulated. In both C. peregrina and M. gale, vesicles were more short-lived in spore(+) than in spore(-) nodules. Field-collected spore(+) M. gale nodules exhibited a pronounced seasonality of sporangial formation. Sporangia began to differentiate in June, after the formation of vesicles and became more prominent in late summer. Inter- and intraspecific cross-inoculations suggest that the ability to form sporangia in the symbiotic state is controlled by endophytic strain type rather than host genotype or host/endophyte combination. The host may, however, influence the number and seasonal appearance of sporangia formed.  相似文献   

16.
Four species of Casuarina were raised in the glasshouse and inoculated with nodules collected from nine different geographical areas within Australia. Isolations ofFrankia were attempted from 10 of the Casuarina-Frankia nodule combinations using two methods, a nodule dissection and a filtration method. With both techniquesFrankia isolates were obtained from four of the 10Frankia sources. Spores were not observed in sections of nodules from the four sources from whichFrankia was isolated, whereas spores were observed in the remaining six nodule sources. For selected nodule sources a range of isolation media were tried, but no improvement in the isolation success rate was achieved. The effect of host species on ease of isolation was studied. The results obtained suggested it was theFrankia strain and not the host plant species which determined the ease of isolation from Casuarina nodules.  相似文献   

17.
Summary Most of theFrankia strains isolated fromAlnus andMyrica species are morphologically almost indistinguishable, when grown under standard culture conditions. They form similar vegetative hyphae while sporangia are produced in variable amounts from strain to strain.Physiological reactions were assessed in order to compare 20 strains isolated from various species ofAlnus and one species ofMyrica in Europe and North America. Among invariant negative or positive characteristics, differences in urease, protease and -glucosidase activities appeared to be of significant value.  相似文献   

18.
Electron microscopy of the endophyte ofAlnus glutinosa   总被引:1,自引:0,他引:1  
Earlier light microscopic investigations have revealed that the endophyte ofAlnus glutinosa presents itself in three different forms. In the present study this is confirmed by electron microscopy; also, new data on the cytology of the endophyte have been obtained.The host cells are primarily infected by the hyphal form of the endophyte. A plant cell nucleus and mitochondria can be found in the infected host cells.In the majority of the infected cells, so-called vesicles develop at the tips of the hyphae. Electron micrographs show that these vesicles, as well as the hyphae, are surrounded by the host-cell cytoplasmic membrane. The endophyte cytoplasm inside the vesicles is divided in all directions by cross walls, many of which are incomplete. Plasmalemmosomes are conspicuous. Some vesicles look vigorous but others shrunken or nearly devoid of cytoplasm as if being digested.A minority of host cells situated between the vesicle-containing ones are completely filled by bacteria-like cells. These host cells, in contrast to the other ones, do not contain a nucleus nor mitochondria, nor are the endophyte cells in them enveloped by a host cell cytoplasmic membrane: these host cells are dead. Vesicles are not found in these cells.It is inferred that a living host cell exerts a stimulus on the endophyte to which the latter responds by forming vesicles at the tips of the hyphae. At a later stage the host cells digest the vesicles and the hyphae. On the other hand, if a host cell does not survive the infection, the hyphae divide into bacteria-like cells, which are not digested owing to the absence of host cytoplasm.According to the cytology of the hyphae, the endophyte is an actinomycete.The cytology of the endophyte needs further elucidation. Its plasmalemmosomes, or membranous bodies connected with the cytoplasmic membrane, are beautifully developed. The striated bodies described on p. 359 under 4) may be a new feature, which may turn up in other actinomycetes or bacteria.  相似文献   

19.
Summary AFrankia strain (ORS 021001) isolated fromCasuarina junghuhniana root nodules was shown to produce four type of structuresin vitro: vegetative hyphae, sporangiospores within sporangia, N2-fixing vesicles, and a fourth type of structure which is described in detail in this report. Structures of this latter type which we propose to call reproductive torulose hyphae: (RTH) result from enlargement and multiple segmentation of vegetative hyphae into torulose chaions of spore-like cells. RTH differ from sporangia in three major aspects: morphology, morphogenesis and outgrowth. RTH play an important role in survival and reproduction ofFrankia strain ORS 021001. Adding activated charcoal to the nutrient medium promotes the formation ofFrankia colonies orginating from RTH.  相似文献   

20.
Wu L  Guo S 《Mycorrhiza》2008,18(2):79-85
A dark-septate endophytic (DSE) fungus EF-M was isolated from the roots of an alpine plant Saussurea involucrata Kar. et Kir. ex Maxim. The fungus was identified by sequencing the PCR-amplified rDNA 5.8S gene and ITS regions. The sequence was compared with similar sequences in the GenBank, and results showed that EF-M was congeneric to Leptodontidium. Resynthesis study was conducted to clarify the relationship between the root endophyte EF-M and the host plant S. involucrata using the material grown in sterile culture bottle. In roots recovered 6 weeks after inoculation, epidermal cells were colonized by intercellular and intracellular hyphae and “microsclerotia” formed within individual cells in the epidermis layers. However, hyphae did not invade the cortex and the stele. There were no profound effects of endophyte EF-M on plant root development, but significant differences were detected in plant height and shoot dry weight between the treatments. The present study is the first report hitherto on DSE fungi in S. involucrata.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号