首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 27 毫秒
1.
Intracellular cysteine aspartate-specific proteases (caspases) play both signaling and effector roles in realizing the program of cell death. Caspases function as proteolytic cascades unique for each cell type and signal triggering apoptosis. All parts of the proteolytic cascades are duplicated and controlled by feedback signals. Amplification cycles between pairs of caspases (the third and the sixth, the ninth and the third, the twelfth and the sixth, and others) help multiply the initial apoptotic signal. The presence of physiological inhibitors of apoptosis that directly interact with caspases creates a multilevel regulatory network of apoptosis in cell. The caspase proteolytic cascades are also regulated by sphingolipid secondary messengers, among them ceramide, sphingosine, and their phosphates. Moreover, an association of the caspase signaling with ubiquitin-dependent proteolysis is shown in cells. In particular, the use of extracellular activators and inhibitors of caspases allows irreversible activation of apoptosis in tumor cells or the prevention of neuron death in neurodegenerative diseases.  相似文献   

2.
The present study was aimed to investigate whether or not cyclin-dependent kinases (CDKs) participate in different cascades leading to apoptosis. We examined the effects of two CDK inhibitors, olomoucine (OLM) and buty-rolactone-I (BL-I), on apoptosis induced in two kinds of Drosophila cell lines. Increases of caspase activity induced by actinomycin D, cycloheximide, H-7 or A23187 in a Drosophila neuronal cell line, ML-DmBG2-c2, and induced by excessive expression of a Drosophila cell death gene, reaper, in Drosophila S2 cells were suppressed by 24-h pretreatment of each CDK inhibitor. Concomitant with the suppression of the caspase activity, fragmentations of cells and DNA, representatives of apoptosis, were also inhibited. These results suggest that CDK(s) participates in progression of apoptosis. However, these effects of the CDK inhibitors were also observed even at lower doses which did not affect cell proliferation. Therefore, it was shown that apoptosis is not always related to cell cycle in Drosophila cells. It was also suggested that the target(s) of the CDK inhibitors locates upstream of caspase in the cascade(s) of apoptosis.  相似文献   

3.
Mitochondria at the Crossroad of Apoptotic Cell Death   总被引:8,自引:0,他引:8  
In the past few years, it has become widely appreciated that apoptotic cell death generallyinvolves activation of a family of proteases, the caspases, which undermine the integrity ofthe cell by cleavage of critical intracellular substrates. Caspases, which are synthesized asinactive zymogens, are themselves caspase substrates and this cleavage leads to their activation.Hence, the potential exists for cascades of caspases leading to cell death. However, it has beenrecently recognized that another, perhaps more prominent route to caspase activation, involvesthe mitochondria. Upon receipt of apoptotic stimuli, either externally or internally generated,cells initiate signaling pathways which converge upon the mitochondria to promote release ofcytochrome C to the cytoplasm; cytochrome c, thus released, acts as a potent cofactor incaspase activation. Even cell surface death receptors such as Fas, which can trigger directcaspase activation (and potentially a caspase cascade), appear to utilize mitochondria as partof an amplification mechanism; it has been recently demonstrated that activated caspases cancleave key substrates to trigger mitochondrial release of cytochrome c, thereby inducing furthercaspase activation and amplifying the apoptotic signal. Therefore, mitochondria play a centralrole in apoptotic cell death, serving as a repository for cytochrome c.  相似文献   

4.
Surviving apoptosis   总被引:4,自引:0,他引:4  
The concept that cells subjected to chromatin cleavage during apoptosis are destined to die is being challenged. The execution phase of apoptosis is characterized by the activation of effector caspases, such as caspase-3, that cleave key regulatory or structural proteins and in particular activate apoptotic nucleases such as the caspase activated deoxyribonuclease (CAD). It is apparent that caspases of this type may become active both through non-apoptotic processing and potentially within cells that exhibit apoptotic morphology but are subsequently able to survive. In such systems caspase suppressor molecules, the inhibitors of apoptotic proteins or IAP's, may rescue cells from apoptotic nuclease(s) attack initiated by transient caspase activation. The MLL gene is involved in leukemogenic translocations in ALL and AML and is a target of nuclease cleavage during apoptosis. Translocations initiated at the site of apoptotic nuclease attack within MLL have been identified and may offer a model, with clinical relevance, for DNA damage mediated by the apoptosis system in cells destined to survive. The specificity of apoptotic cleavage combined with the potential for recovery from the execution phase of apoptosis suggests a novel and pathogenic role for apoptosis in creating translocations with leukemogenic potential.  相似文献   

5.
The proteolytic caspase cascade plays a central role in the signaling and execution steps of apoptosis. This study investigated the activation of different caspases in apoptosis induced by MAL (a folding variant of human alpha-lactalbumin) isolated from human milk. Our results show that the caspase-3-like enzymes, and to a lesser extent the caspase-6-like enzymes, were activated in Jurkat and A549 cells exposed to MAL. Activated caspases subsequently cleaved several protein substrates, including PARP, lamin B, and alpha-fodrin. A broad-range caspase inhibitor, zVAD-fmk, blocked the caspase activation, the cleavage of proteins, and DNA fragmentation, indicating an important role for caspase activation in MAL-induced apoptosis. Since an antagonistic anti-CD95 receptor antibody, ZB4, did not influence the MAL-induced killing, we conclude that this process does not involve the CD95-mediated pathway. While MAL did not directly activate caspases in the cytosol, it colocalized with mitochondria and induced the release of cytochrome c. Thus, these results demonstrate that caspases are activated and involved in apoptosis induced by MAL and that direct interaction of MAL with mitochondria leads to the release of cytochrome c, suggesting that this release is an important step in the initiation and/or amplification of the caspase cascade in these cells.  相似文献   

6.
Aspirin and other non-steroidal anti-inflammatory drugs induce apoptosis in many cell types. Although the involvement of caspases has been demonstrated, the mechanism leading to caspase activation remains unknown. We have studied the role of the mitochondrial pathway in aspirin-induced apoptosis. The apoptotic effect of aspirin was analyzed in different cell lines (Jurkat, MOLT-4, Raji and HL-60) showing induction of mitochondrial cytochrome c release and caspases 9, 3 and 8 processing. Furthermore, early aspirin-induced cytochrome c release was not affected by the caspase inhibitor Z-VAD·fmk and preceded loss of mitochondrial membrane potential. Therefore, aspirin-induced apoptosis involves caspase activation through cytochrome c release.  相似文献   

7.
Background and Aims. H. pylori infection results in an increased epithelial apoptosis in gastritis and duodenal ulcer patients. We investigated the role and type of activation of caspases in H. pylori‐induced apoptosis in gastric epithelial cells. Methods. Differentiated human gastric cancer cells (AGS) and human gastric mucous cell primary cultures were incubated with H. pylori for 0.5–24 hours in RPMI 1640 medium, and the effects on cell viability, epithelial apoptosis, and activity of caspases were monitored. Apoptosis was analyzed by detection of DNA‐fragments by Hoechst stain®, DNA‐laddering, and Histone‐ELISA. Activities of caspases were determined in fluorogenic assays and by Western blotting. Cleavage of BID and release of cytochrome c were analyzed by Western blot. Significance of caspase activation was investigated by preincubation of gastric epithelial cells with cell permeable specific caspase inhibitors. Results. Incubation of gastric epithelial cells with H. pylori caused a time and concentration dependent induction of DNA fragmentation (3‐fold increase), cleavage of BID, release of cytochrome c and a concomittant sequential activation of caspase‐9 (4‐fold), caspase‐8 (2‐fold), caspase‐6 (2‐fold), and caspase‐3 (6‐fold). No effects on caspase‐1 and ‐7 were observed. Activation of caspases preceded the induction of DNA fragmentation. Apoptosis could be inhibited by prior incubation with the inhibitors of caspase‐3, ‐8, and ‐9, but not with that of caspase‐1. Conclusions. Activation of certain caspases and activation of the mitochondrial apoptotic pathway are essential for H. pylori induced apoptosis in gastric epithelial cells.  相似文献   

8.
Many host–parasite interactions are regulated in part by the programmed cell death of host cells or the parasite. Here we review evidence suggesting that programmed cell death occurs during the early stages of the development of the malaria parasite in its vector. Zygotes and ookinetes of Plasmodium berghei have been shown to die by programmed cell death (apoptosis) in the midgut lumen of the vector Anopheles stephensi, or whilst developing in vitro. Several morphological markers, indicative of apoptosis, are described and evidence for the involvement of a biochemical pathway involving cysteine proteases discussed in relationship to other protozoan parasites. Malaria infection induces apoptosis in the cells of two mosquito tissues, the midgut and the follicular epithelium. Observations on cell death in both these tissues are reviewed including the role of caspases as effector molecules and the rescue of resorbing follicles resulting from inhibition of caspases. Putative signal molecules that might induce parasite and vector apoptosis are suggested including nitric oxide, reactive nitrogen intermediates, oxygen radicals and endocrine balances. Finally, we suggest that programmed cell death may play a critical role in regulation of infection by the parasite and the host, and contribute to the success or not of parasite establishment and host survival.  相似文献   

9.
It is well known that mild hypothermia prevents neuronal cell death following cerebral ischemia, although it can also cause apoptosis in other cell types. Thus, incubation at room temperature (RT) has been shown to induce apoptosis in hematopoietic cells, including Jurkat T leukemia cells. To further understand the apoptotic events that can be activated at RT, we compared the induction of apoptosis by several apoptotic insults in Jurkat cells stimulated at 37°C or RT. Retinoid-related molecules, which induce apoptosis via the intrinsic pathway, failed to induce apoptosis when cells were treated at RT, as determined by various apoptotic parameters including cytochrome c release and activation of caspase 3. In contrast, most apoptotic events were enhanced by lower temperatures when cells were stimulated with anti-Fas antibody via the extrinsic pathway. Ultraviolet radiation produced partial effects at RT, correlating with its capacity to activate both pathways. Our results indicate that the core caspase machinery is operational under mild hypothermia conditions. Experiments using purified recombinant caspases and cell-free assays confirmed that caspases are fully functional at RT. Other hallmark events of apoptosis, such as phosphatidylserine externalization and formation of apoptotic bodies were variably affected by RT in a stimulus-dependent manner, suggesting the existence of critical steps that are sensitive to temperature. Thus, analysis of apoptosis at RT might be useful to (i) discriminate between the extrinsic and intrinsic pathways in Jurkat cells treated with prospective stimuli, and (ii) to unravel temperature-sensitive steps of apoptotic signaling cascades.  相似文献   

10.
We cloned and characterized a novel Bombyx mori homologue (bm-dronc) of Drosophila melanogaster dronc (dm-dronc), which could encode a polypeptide of 438 amino acid residues. Bm-Dronc shares relatively low amino acid sequence identities of 25% and 26% with Dm-Dronc and Aedes aegypti Dronc (Aa-Dronc), respectively. Bm-Dronc has the sequence QACRG surrounding the catalytic site (C), which is consistent with the QAC(R/Q/G)(G/E) consensus sequence in most caspases but distinct from the sequences PFCRG and SICRG of Dm-Dronc and Aa-Dronc, respectively. Bm-Dronc possesses a long N-terminal prodomain containing a caspase recruitment domain (CARD), a p20 domain and a p10 domain, exhibiting cleavage activities on synthetic substrates Ac-VDVAD-AMC, Ac-IETD-AMC and Ac-LEHD-AMC, which are preferred by human initiator caspases-2, -8 and -9, respectively. Bm-Dronc transiently expressed in insect cells and Escherichia coli cells underwent spontaneous cleavage and caused apoptosis and stimulation of caspase-3-like protease activity in various lepidopteran cell lines, but not in the dipteran cell line D. melanogaster S2. The apoptosis and the stimulation of caspase-3-like protease activity induced by Bm-Dronc overexpression were abrogated upon transfection with either a double-stranded RNA against bm-dronc or a plasmid expressing functional anti-apoptotic protein Hycu-IAP3 encoded by the baculovirus Hyphantria cunea multiple nucleopolyhedrovirus (MNPV). Apoptosis induction in BM-N cells by infection with a p35-defective Autographa californica MNPV or exposure to actinomycin D and UV promoted the cleavage of Bm-Dronc. These results indicate that Bm-Dronc serves as the initiator caspase responsible for the induction of caspase-dependent apoptosis.  相似文献   

11.
Normal cell growth requires a precisely controlled balance between cell death and survival. This involves activation of different types of intracellular signaling cascades within the cell. While some types of signaling proteins regulate apoptosis, or programmed cell death, other proteins within the cell can promote survival. The serine/threonine kinase PAK4 can protect cells from apoptosis in response to several different types of stimuli. As is the case for other members of the p21-activated kinase (PAK) family, one way that PAK4 may promote cell survival is by phosphorylating and thereby inhibiting the proapoptotic protein Bad. This leads in turn to the inhibition of effector caspases such as caspase 3. Here we show that in response to cytokines which activate death domain-containing receptors, such as the tumor necrosis factor and Fas receptors, PAK4 can inhibit the death signal by a different mechanism. Under these conditions, PAK4 inhibits apoptosis early in the caspase cascade, antagonizing the activation of initiator caspase 8. This inhibition, which does not require PAK4's kinase activity, may involve inhibition of caspase 8 recruitment to the death domain receptors. This role in regulating initiator caspases is an entirely novel role for the PAK proteins and suggests a new mechanism by which these proteins promote cell survival.  相似文献   

12.
We previously demonstrated that caspase-3, an executioner of apoptosis, is activated in the pressure-induced apoptosis of murine erythroleukemia (MEL) cells (at 100 MPa). Here, we examined the pathway of caspase-3 activation using peptide substrates and caspase inhibitors. Using the substrates of caspases-8 and -9, it was found that both are activated in cells under high pressure. The production of nuclei with sub-G1 DNA content in 100 MPa-treated MEL cells was suppressed by inhibitors of caspases-8 and -9, and pan-caspase. In 100 MPa-treated cells, pan-caspase inhibitor partially prevented the cytochrome c release from the mitochondria and the breakdown of mitochondrial membrane potential. These results suggest that the intrinsic and extrinsic pathways are activated in apoptotic signaling during the high pressure-induced death of MEL cells.  相似文献   

13.
Developmental and tissue homeostasis is a delicate balance between cell proliferation and cell death. The activation of caspases, a conserved family of cysteine proteases, is a main event in the initiation and execution of programmed cell death. While caspases have been characterized from many organisms, comparatively little is known about insect caspases. In Drosophila melanogaster, seven caspases have been characterized; three initiators and four effectors. In mosquitoes, several putative caspases have been identified in the genomes of Aedes aegypti and Anopheles gambiae. A small number of caspases have been identified in the Lepidoptera, the flour beetle, Tribolium castaneum, and the pea aphid, Acyrthosiphon pisum. The availability of new insect genome sequences will provide a unique opportunity to examine the caspase family across an evolutionarily diverse phylum and will provide valuable insights into their function and regulation.  相似文献   

14.
In Drosophila, the APAF-1 homolog ARK is required for the activation of the initiator caspase DRONC, which in turn cleaves the effector caspases DRICE and DCP-1. While the function of ARK is important in stress-induced apoptosis in Drosophila S2 cells, as its removal completely suppresses cell death, the decision to undergo apoptosis appears to be regulated at the level of caspase activation, which is controlled by the IAP proteins, particularly DIAP1. Here, we further dissect the apoptotic pathways induced in Drosophila S2 cells in response to stressors and in response to knock-down of DIAP1. We found that the induction of apoptosis was dependent in each case on expression of ARK and DRONC and surviving cells continued to proliferate. We noted a difference in the effects of silencing the executioner caspases DCP-1 and DRICE; knock-down of either or both of these had dramatic effects to sustain cell survival following depletion of DIAP1, but had only minor effects following cellular stress. Our results suggest that the executioner caspases are essential for death following DIAP1 knock-down, indicating that the initiator caspase DRONC may lack executioner functions. The apparent absence of mitochondrial outer membrane permeabilization (MOMP) in Drosophila apoptosis may permit the cell to thrive when caspase activation is disrupted.  相似文献   

15.
When PC12 cells are deprived of trophic support they undergo apoptosis. We have previously shown that survival of trophic factor-deprived PC12M1 cells can be promoted by activation of the G protein-coupled muscarinic receptors. The mechanism whereby muscarinic receptors inhibit apoptosis is poorly understood. In the present study we investigated this mechanism by examining the effect of muscarinic receptor activation on the serum deprivation-induced activity of key players in apoptosis, the caspases, in PC12M1 cells. The results showed that m1 muscarinic activation inhibits caspase activity induced by serum deprivation. This effect appeared to be caused by the prevention of activation of caspases such as caspase-2 and caspase-3, and not by the inhibition of existing activity. Muscarinic receptor activation also stimulated the mitogen-activated protein kinase/extracellular signaling-regulated kinase (MAPK/ERK) and phosphoinositide (PI) 3-kinase signaling pathways. The PI 3-kinase pathway inhibitors wortmannin and LY294002, as well as the MAPK/ERK pathway PD98059 inhibitor, did not however suppress the inhibitory effect of the muscarinic receptors on caspase activity. The results therefore suggested that the muscarinic survival effect is mediated by a pathway that leads to caspase inhibition by MAPK/ERK- and PI 3-kinase-independent signaling cascades.  相似文献   

16.
DNA fragmentation is a hallmark of apoptosis that is induced by apoptotic stimuli in various cell types. Apoptotic signal pathways, which eventually cause DNA fragmentation, are largely mediated by the family of cysteinyl aspartate-specific protease caspases. Caspases mediate apoptotic signal transduction by cleavage of apoptosis-implicated proteins and the caspases themselves. In the process of caspase activation, reversible protein phosphorylation plays an important role. The activation of various proteins is regulated by phosphorylation and dephosphorylation, both upstream and downstream of caspase activation. Many kinases/phosphatases are involved in the control of cell survival and death, including the mitogen-activated protein kinase signal transduction pathways. Reversible protein phosphorylation is involved in the widespread regulation of cellular signal transduction and apoptotic processes. Therefore, phosphatase/kinase inhibitors are commonly used as apoptosis inducers/inhibitors. Whether protein phosphorylation induces apoptosis depends on many factors, such as the type of phosphorylated protein, the degree of activation and the influence of other proteins. Phosphorylation signaling pathways are intricately interrelated; it was previously shown that either induction or inhibition of phosphorylation causes cell death. Determination of the relationship between protein and phosphorylation helps to reveal how apoptosis is regulated. Here we discuss DNA fragmentation and protein phosphorylation, focusing on caspase and serine/threonine protein phosphatase activation.  相似文献   

17.
Damaged endothelium is one of the pathological changes of the cerebral vasospastic vessels following subarachnoid hemorrhage. Our recent study shows that oxyhemoglobin (OxyHb) induces apoptosis in vascular endothelial cells. Apoptosis generally requires the action of various classes of proteases, including a family of cysteine proteases, known collectively as the caspases. This study was undertaken to investigate the activation of caspases and the efficacy of caspase inhibitors, z-IETD-fmk and z-LEHD-fmk, for oxyhemoglobin-induced apoptosis in vascular endothelial cells. Cultured bovine brain microvascular endothelial cells (passages 5-9) were used for this study. OxyHb (10 micromol/L) was added during the 24-72 h incubation with and without caspase-8 or - 9 inhibitors (z-IETD-fmk and z-LEHD-fmk). Counting surviving cells, DNA laddering, western blotting of poly(ADP-ribose) polymerase, and measurement of caspase activities were employed to confirm the cytotoxic effects of OxyHb and the protective effects of the caspase inhibitors. OxyHb produced cell detachment in a time-dependent manner and increased caspase-8 and -9 activities in the cells. z-IETD-fmk and z-LEHD-fmk (100 micromol/L) attenuated OxyHb-induced cell loss, DNA laddering, and proteolytic cleavage of PARP, although a lower concentration (10 micromol/L) of caspase inhibitors showed partial effects. OxyHb activates caspase-8 and -9 in cultured vascular endothelial cells, and blocking the action of the caspases with the inhibitors efficiently prevents loss of vascular endothelial cells from OxyHb-induced apoptosis in vitro. These results suggest that the caspase cascade participates in OxyHb-induced apoptosis.  相似文献   

18.
Tumour Necrosis Factor binding at the cell surface induces a complex series of signaling events culminating in the caspase cascade, which is central to apoptosis. However, recent work from several laboratories has questioned caspase involvement in commitment to cell death. We have therefore investigated the involvement of caspases in the crucial commitment stage of tumour necrosis factor-induced apoptosis in human T-leukaemic CEM-C7 cells and breast carcinoma MCF-7 cells, using both peptide-based and viral caspase inhibitors. Our observations converge on the conclusion that commitment to death in these systems is dependent on caspase activity, e.g. baculovirus p35 produces over 50-fold protection of colony-forming ability, the most stringent criterion of cell survival. These observations strongly support the view that the caspase family is of great biological and medical significance, since caspase dysfunction resulting in failure to commit to cell death after treatment with tumour necrosis factor or other stimuli may contribute to cancer development.  相似文献   

19.
We have reconstituted the Apaf-1-activated apoptosis mechanism in Sacchromyces cerevisiae such that the presence of a constitutively active form of Apaf-1 together with both Caspase-9 and Caspase-3 results in yeast death. This system is a good model of the Apaf-1-activated pathway in mammalian cells: MIHA (XIAP/hILP), and to a lesser degree MIHB (c-IAP1/HIAP2) and MIHC (c-IAP-2/HIAP1) can inhibit caspases in this system, and protection by IAPs (inhibitor of apoptosis) can be abrogated by coexpression of the Drosophila pro-apoptotic proteins HID and GRIM or the mammalian protein DIABLO/Smac. Using this system we demonstrate that unlike DIABLO/Smac, other proteins which interact with mammalian IAPs (TAB-1, Zap-1, Traf-1 and Traf-2) do not act to antagonise IAP- mediated caspase inhibition.  相似文献   

20.
Since the pioneering discovery that the genetic cell death program in C. elegans is executed by the cysteine-aspartate protease (caspase) CED3, caspase activation has become nearly synonymous with apoptosis. A critical mass of data accumulated in the past few years, have clearly established that apoptotic caspases can also participate in a variety of non-apoptotic processes. The roles of caspases during these processes and the regulatory mechanisms that prevent unrestrained caspase activity remain to be fully investigated, and may vary in different cellular contexts. Significantly, some of these processes, such as terminal differentiation of vertebrate lens fiber cells and red blood cells, as well as spermatid terminal differentiation and dendritic pruning of sensory neurons in Drosophila, all involve proteolytic degradation of major cellular compartments, and are conceptually, molecularly, biochemically, and morphologically reminiscent of apoptosis. Moreover, some of these model systems bear added values for the study of caspase activation/apoptosis. For example, the Drosophila sperm differentiation is the only system known in invertebrate which absolutely requires the mitochondrial pathway (i.e. Cyt c). The existence of testis-specific genes for many of the components in the electron transport chain, including Cyt c, facilitates the use of the Drosophila sperm system to investigate possible roles of these otherwise essential proteins in caspase activation. Caspases are also involved in a wide range of other vital processes of non-degenerative nature, indicating that these proteases play much more diverse roles than previously assumed. In this essay, we review genetic, cytological, and molecular studies conducted in Drosophila, vertebrate, and cultured cells, which underlie the foundations of this newly emerging field.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号