首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Experiments were conducted during the 1974–75 and 1975–76winter season with the barley (Hordeum vulgare L.) cultivarJyoti. From amongst the various plant parts, the flag leaf bladehad higher in vivo nitrate reductase (NR) activity than thelower two leaf blades, glumes, and grains. However, the potentialof a plant part to reduce NO3 is a function of its freshweight and the NR per unit fresh weight. On this basis, thesecond and third leaf blades could reduce more NO3 thanthe flag leaf blade. N fertilizer application resulted in enhancementof the activity of the leaf blades alone. N fertilizer appliedduring the reproductive phase was taken up and assimilated bythe various plant parts. The studies suggest that, even whenthe fertilizer is applied at optimum levels for obtaining maximumyields, the upper leaf blades have sub-optimal NR activity andthat there is a likelihood of either a preferential flow ofNO3 to the leaf blades or transnational barriers to NO3movement to the ear.  相似文献   

2.
An investigation was made to study the assimilation and transportof 15N-labelled nitrate nitrogen in rice plant (Oryza sativaL.). Nitrogen from labelled nitrate at the end of plant feedingwas found mainly in nitrate form, and was more prevalent inroots, stem and leaf sheaths. The nitrite fraction had the nextlargest 15N enrichment. The 15NO3 assimilation in the newlyemerged panicle was mainly in amide and amino acid. The 15N-incorporation at day 0 was greatest in amino acid andnitrate of roots and decreased towards the stem and leaves.Incorporation in these fractions considerably decreased fromday 0 to day 10. Probably most of the nitrogen from the nitratesource was transported from the roots to the shoot in nitrateand amino acid forms. A decrease of 15N-incorporation in the soluble N fraction andincrease in the insoluble N fraction from day 0 to day 10 inplant parts, particularly the blades, suggested that proteinsynthesis occurred mostly in young parts of the shoot duringthis period. The marked variation in 15N distribution in differentparts of the plant during the 10 days indicated that the nitrogenin roots and tillers was probably remobilized and transportedto other parts, particularly the upper leaf blades. Ammonium and nitrate nitrogen transport in rice plant are compared. (Received May 11, 1974; )  相似文献   

3.
Glycinebetaine, proline, asparagine, sucrose, glucose, and dimethylsulphoniopropionate(DMSP) were the major organic solutes in Spartina alternifloraleaf blades. To investigate the physiological role(s) of thesesolutes, the effects of salinity, nitrogen, and sulphur treatmentson leaf blade solute levels were examined. Glycinebetaine wasthe major organic solute accumulated in leaf blades grown at500 mol m–3 NaCl, although asparagine and proline alsoaccumulated when the supply of nitrogen was sufficient. Thesesolutes may play a role in osmotic adjustment. In contrast,DMSP levels either did not change or were reduced in responseto the 500 mol m–3 NaCl treatment. Furthermore, elevatednitrogen supply decreased leaf blade DMSP levels, which wasopposite to the response of glycinebetaine, proline, and asparagine.A 1000-fold increase in external sulphate concentration hadno effect on the leaf blade levels of DMSP, glycinebetaine,proline, or asparagine. These findings suggest that the majorphysiological role of DMSP in S. alterniflora leaf blades isnot for osmotic adjustment, even under conditions of nitrogendeficit and excess sulphur. Instead, DMSP which was presentat 45—130 µmol g–1 dry weight, may play arole as a constitutive organic osmoticum. Key words: Spartina alterniflora, dimethylsulphoniopropionate, glycinebetaine, nitrogen, salinity  相似文献   

4.
5.
Hordeum vulgare cv. California Mariout was grown for 50 d insand culture at 100 mol m–3 NaCl. Xylem sap was collectedthrough incisions at the base of individual leaves along thestem axis by applying pressure to the root system. K+ concentrationsin the xylem sap reaching individual leaves increased towardsthe apex, while concentrations of Na+, NO3, and Cldeclined. Phloem exudate was obtained by collecting into Li2EDTAfrom the base of excised leaves. K/Na ratios of phloem exudatesincreased from older to younger leaves. K/Na ratios in xylem sap and phloem exudate were combined withchanges in ion content between two harvests (38 and 45 d aftergermination) and the direction of phloem export from individualleaves, to construct an empirical model of K+ and Na+ net flowswithin the xylem and phloem of the whole plant. This model indicatesthat in old leaves, phloem export of K+ greatly exceeded xylemimport. In contrast, Na+ export was small compared to importand Na+ once imported was retained within the leaf. The direction of export strongly depended on leaf age. Old,basal leaves preferentially supplied the root, and most of theK+ retranslocated to the roots was transferred to the xylemand subsequently became available to the shoot. Upper leavesexported to the apex. Young organs were supplied by xylem andphloem, with the xylem preferentially delivering Na+ , and thephloem most of the K+ . For the young ear, which was still coveredby the sheath of the flag leaf, our calculation predicts phloemimport of ions to such an extent that the surplus must havebeen removed by an outward flow in the xylem. Within the culm,indications for specific transfers of K+ and Na+ between xylemand phloem and release or absorption of these ions by the tissuewere obtained. The sum of these processes in stem internodes and leaves ledto a non-uniform distribution of Na+ and K+ within the shoot,Na+ being retained in old leaves and basal stem internodes,and K+ being available for growth and expansion of young tissues. Key words: Hordeum vulgare L., K+, Na+, stem, salt stress  相似文献   

6.
HO  L. C. 《Annals of botany》1976,40(6):1153-1162
The rate of carbon transport from an old tomato leaf (54 days),grown at 80 W m–2, was measured under light flux densitiesbetween 7 and 90 W m–2. Under low light, the rate of carbontransport over a 6 h period was about 1 mg C dm–2 h–1,well in excess of the concurrent photosynthetic rate. The lossfrom these leaves of 14C-leaf assimilate which was fixed beforethe experimental period amounted to 62 per cent of the totalinitial uptake and was higher than that from leaves with higherconcurrent photosynthetic rates. The higher loss of 14C fromleaves with low photosynthetic rates was due to a greater contributionof 14C from the starch and residue fractions. The rate of transportappeared to be determined by the concentration of the labilesucrose, not the total sucrose concentration. In comparisonwith young fully-expanded tomato leaves (Ho, 1976) the sizeof the labile sucrose pool appeared to decrease with age. Thephotosynthesistranslocation coefficient was low (k1k2=0•21)for an old tomato leaf. Based on these results a scheme of carbonpartitioning in relation to translocation is proposed. Criteriafor assessing the efficiency of translocation in leaves arediscussed.  相似文献   

7.
Bulb development in onion plants (Allium cepa L.) is consideredto be regulated by bulbing and anti-bulbing hormones. Sincebulbing involves the disruption of microtubules, both jasmonicacid (JA) and methyl jasmonate (JAMe) are candidates for thebulbing hormone because of their microtubule-disrupting activitiesand wide distribution in higher plants. To survey JA and JAMein onion plants, we developed a radioimmunoassay (RIA) for JAMethat is sensitive enough to detect femtomole amounts of JAMe.Using this RIA, we detected JA in leaf blades, leaf sheathsand roots of onion plants, but no JAMe was detected in any tissue.The endogenous levels of JA in leaf blades, leaf sheaths androots of 4-week-old bulbing and non-bulbing onion plants weredetermined by gas chromatography/selected ion monitoring with[2H2]JA as an internal standard. The amount of JA per plantin leaf sheaths of bulbing onion plants was about three timeshigher than that of non-bulbing onion plants, although the differencein levels of JA in leaf blades between bulbing and non-bulbingonion plants was quite small, and the level of JA in roots ofbulbing onion plants was lower than that of non-bulbing onionplants. However, the relationship between endogenous JA andthe development of onion bulbs remains to be clarified. (Received June 3, 1992; Accepted October 1, 1992)  相似文献   

8.
GLOVER  J. 《Annals of botany》1974,38(4):909-920
The rates of apparent photosynthesis of whole sugarcane plantswhich do not suffer from water stress are linearly related tothe rates of solar radiation on a horizontal surface up to intensitiesof at least 840 Wm–2. This holds good over a wide rangeof leaf areas from 200 dm2 for young plants to 700 dm2 for olderplants, and for temperatures in the range 14–35 °C. The amount of CO2 assimilated per unit area of ground coveredby the leaves, at any intensity of insolation up to 840 Wm–2,is approximately constant for plants between 3 and 18 monthsold. Thus the assimilation of CO2 by a crop of sugarcane is linearlyrelated to the intensity of the insolation and the area of groundcovered by green leaves. Very young plants (3 months old) consisting mainly of numerousyoung leaves have apparent photosynthetic rates per unit leafarea which are some 1.5 times those of older plants (7 to 8or 17 to 18 months old) which carry fewer but proportionatelymore mature leaves. Water stress, caused either by under- or over-watering, reducesapparent photosynthetic rates below normal levels. The extentand duration of the reduction depends on the degree of stress. The onset of and recovery from such stresses are illustrated.  相似文献   

9.
Carbon Dioxide Effects on Carbohydrate Status and Partitioning in Rice   总被引:6,自引:0,他引:6  
The atmospheric carbon dioxide (CO2) concentration has beenrising and is predicted to reach double the present concentrationsometime during the next century. The objective of this investigationwas to determine the long-term effects of different CO2 concentrationson carbohydrate status and partitioning in rice (Oryza sativaL cv. IR-30). Rice plants were grown season-long in outdoor,naturally sunlit, environmentally controlled growth chamberswith CO2 concentrations of 160, 250, 330, 500, 660, and 900µmolCO2 mol1 air. In leaf blades, the priority between the partitioningof carbon into storage carbohydrates or into export changedwith developmental stage and CO2 concentration. During vegetativegrowth, leaf sucrose and starch concentrations increased withincreasing CO2 concentration but tended to level off above 500µmolmol–1 CO2. Similarly, photosynthesis also increased withCO2 concentrations up to 500µmol mol–1 and thenreached a plateau at higher concentrations. The ratio of starchto sucrose concentration was positively correlated with theCO2 concentration. At maturity, increasing CO2 concentrationresulted in an increase in total non-structural carbohydrate(TNC) concentration in leaf blades, leaf sheaths and culms.Carbohydrates that were stored in vegetative plant parts beforeheading made a smaller contribution to grain dry weight at CO2concentrations below 330µmol mol–1 than for treatmentsat concentrations above ambient Increasing CO2 concentrationhad no effect on the carbohydrate concentration in the grainat maturity Key words: CO2 enrichment, starch, sucrose  相似文献   

10.
Komatsuna (Brassica campestris L. var. rapa) plants were grownhydroponically under various conditions with respect to thesupply of nitrate, and the variations in levels of natural 15Nabundance (15N) in nitrogenous fractions of leaf blades, petiolesplus midribs, and roots in these plants were analyzed. The fractionation of nitrogen isotopes during uptake of nitratewas null irrespective of the concentrations of nitrate in theculture medium. The roots had lower 15N values than that inthe nitrate applied to plants. The nitrate in the three tissuesexamined had higher 15N values than that in the nitrate applied:the values were highest in the leaf blades which were presumedto have highest activities in terms of reduction of nitrate.In contrast, the amino acids and residual fractions had lower15N values than those in the nitrate applied. These resultssuggest that reduction of nitrate is a critical step in thefractionation of nitrogen isotopes in plant tissues in vivo. 1Permanent address: Fukuoka Agricultural Experiment Station,Yoshiki 587, Chikushino, 818 Japan. (Received March 10, 1989; Accepted July 10, 1989)  相似文献   

11.
D-Alanylglycine was detected in the leaf blades of axenic riceseedlings grown under light/dark regime and its content appearedto increase with age. D-Alanylglycine was not detected in riceseedlings grown in the dark, but it was formed with light irradiationof the tissues. 3Present address: Public Health Society of Miyagi Prefecture,Sendai 980, Japan. (Received November 21, 1980; Accepted January 10, 1981)  相似文献   

12.
The purpose of the present study was to compare themyogenic response of hindlimb muscles in young (14-20 wk of age)and old (>120 wk of age) rats with a single exhaustive bout of heavyresistance weight lifting. [3H]thymidine and[14C]leucine labeling were monitored for up to2 wk after the exercise bout to estimate serial changes in mitoticactivity and the level of amino acid uptake and myosin synthesis.Histological, histochemical, and immunohistochemical[anti-5-bromo-2'-deoxyuridine and myogenic determinationgenes (MyoD)] analyses of whole muscles and analysis ofmuscle-specific gene expression (MyoD) using Western blotting andRT-PCR were performed. Old rats showed significant muscle atrophy and alower exercise capacity than young rats. Exercise-induced muscledamage, as assessed in histological sections, and increases in serumcreatine kinase activity were evident in both young and old exercisedgroups. Mitotic activity was increased in young, but not old, rats 2 days after exercise. There was a biphasic increase in[14C]leucine uptake during the 14 dayspostexercise (peaks at 1-4 and 10 days) in young rats: only thefirst peak was observed in old rats. There was a lower uptake of[14C]leucine in the myosin fraction and animpaired expression of MyoD at the protein (immunohistochemistry andWestern blotting) and mRNA (RT-PCR) levels in old rats throughout thepostexercise period. These results demonstrate a reduced reparativecapability of muscle in response to a single bout of exercise in oldcompared with young rats.

  相似文献   

13.
The assimilation and transport of 15N-labelled ammonium nitrogenin rice plants (Oryza sativa L.) was studied. Plants assimilatedlarge amounts of nitrogen from labelled ammonium into theiramides and amino acids, particularly in the roots and stem,at the end of a 4-day 15N feeding and 10 days later in the upperleaves, especially in the blades. Although the incorporationof 15N into all the nitrogen fractions of the newly emergedpanicle was evident, it was particularly pronounced in the amidesand amino acids of the soluble fractions. The upper leaves hada greater 15N incorporation in their organic N-fractions thandid the lower ones. Amides and amino acids are considered tobe the main forms of nitrogen transported to the shoot fromthe ammonium assimilated in the roots. The transport of theorganic forms of nitrogen was possibly greater to the upperleaves than to the lower ones. The nitrite fraction had more 15N than did the nitrate fractionin all parts of the plant, particularly in the upper leaf blades.It appeared that some of the ammonia might have been oxidizedto nitrite, then to nitrate in some parts of the plant; probablyin the upper leaves. The synthesis of protein and nucleic acid occurred rapidly inthe upper leaves, especially in the blades, also in the rootsas evidenced by the considerable incorporation of 15N in theinsoluble fractions of these parts. The variation in 15N-distribution,during the 10 days, in the different plant parts suggests thatthe nitrogen incorporated during protein synthesis in the rootsand tillers was remobilized and transported to the upper partsof the shoot. A concept for the transport of organic nitrogenouscompounds from the roots to shoot through the phloem and xylemof the rice plant stem is discussed. (Received May 11, 1974; )  相似文献   

14.
The effects of manganese supply on plant growth and on photosynthesisand manganese concentrations in young leaves were examined inSeaton Park subterranean clover in three glasshouse water cultureexperiments. Plants werc grown initially with a copious supply of manganese,and transferred to solutions either with or without manganese.Sequential harvests were taken to determine the effects of developingmanganese deficiency on dry matter (DM) yield of whole plantsand selected characteristics [manganese, chlorophyll and photosyntheticoxygen evolution (POE)] of youngest open leaf blades (YOL).In addition, the deffect of leaf age and iron supply on POEwerc examined. Manganese concentrations and POE in YOL declined markedly andrapidly in plants transferred to solutions without manganese,while chlorophyll concentrations of YOL and plant DM yield respondedmore weakly and more slowly. As a result, a level of manganesedeficiency which depressed POE in young leaves by more than50 per cent had no effed on DM production. In youngleaves (YOL, YOL + 1, YOL–1), POE declined whentheir manganese concentrations were < 20 µg g–1DM. Iron supply did not affect this rdationship. When learnwith < 20 µg Mn g–1 DM were detached and incubatedfor 24 h in solutions containing high concentrations of manganese,their POE increased to normal rates; leaves with higher manganeseconcentrations did not respond. It is suggested that the valueof 20 µg Mn g–1 DM is the functional manganese requirementfor POE in young subterranean clover leaves It is also suggestedthat this value may be used as a critical value for indicatingmanganese deficiency in subterranean clover. Functional nutrient requirements determined in this way by correlationof nutrient concentrations in young leaves with their biochemicalor physiological activities appear to offer more accurate andconsistent standards for use an critical values for diagnosisof plant nutrient status than do the critical values determinedin the usual way by correlation with plant dry weight. Trifolium subterraneum L. subterranean clover, manganese, functional requirements, deficiency diagnosis, nutrient requirements, critical values, photosynthetic oxygen evolution  相似文献   

15.
The nature and rate of degradation of carboxyl-14C-labelledindol-3y1-acetic acid (IAA-[l-14C]) were studied in apple leaves.The labelled auxin was applied to the cut surface of the growingshoot after the apical part had been removed. The respiratoryCO2 absorbed by chromatographic paper as Na2CO3 then freed byphosphoric acid was quantitatively measured by an internal gascounter. It was found that the concentration of 14CO2 evolvedby leaves was 77 times higher in daylight than in darkness.The ratio of 14CO2/CO2 obtained from respiration from the uppersurface of leaf blades was two and seven times higher than thatfrom the lower surface after 15 and 30 h of daylight, respectively.No such differences were noticed in darkness. Similarly, thetotal radioactivity of leaf tissues tripled in daylight, presumablybecause of photosynthetic incorporation of radioactive CO2 evolvedduring decomposition of LAA. These facts demonstrate the photolyticcharacter of auxin decarboxylation in apple leaves. Prolongeddarkness seemed to provoke a large metabolite withdrawal fromleaves and, to some extent, to protect auxin against decarboxylation.  相似文献   

16.
CO2-exchange rates (CER) of the sixth and the flag leaves oftwo spring-wheat varieties, Kolibri and Famos, were comparedusing an open-circuit infrared gas analysing system. Measurementswere repeated every two weeks starting when leaf blades werefully expanded. Single plants were grown in a controlled environmenthaving a photopuiod of 15 h and a day/night temperature of 24/19°C(H), 18/13 °C (M), and 12/7 °C (L) respectively untilapprox. 2 weeks after anthesis and at 18/13 °C until maturity.The photosynthetic photon-flux density (PPFD) at the top ofthe plants was 500 µE m–2 sec–1. During themeasurements PPFD was gradually reduced from 2000 to 0 µEm–2 sec–1 whereas the temperature was maintainedat the respctive growth-temperatures during the light period.The CER of the sixth leaf declined fairly similarly for bothvarieties, except for Kolibri where a faster decline was observedduring the first two weeks after full leaf expansion. The CERof the flag leaf declined more slowly than that of the sixthleaf. With the flag leaf of Famos, the decline was nearly linear,whereas with Kolibri it was very slow during the first few weeksbut rapid as the leaves further senesced. This pattern becamemore pronounced as the growth temperature decreased. The declinein relation to leaf age was much smaller at low PPFD than athigh PPFD during the same period. At full leaf expansion Kolibrireached higher maximum CER than Famos except at H. As the PPFDwas reduced the difference became smaller and at very low PPFDsuch as 50 µE m–2 sec–1 was reversed for thesixth leaf. Under optimum growth conditions maximum values ofCER were greater than 50mg CO2 dm–2h–1 and PPFDfor light saturation was close to 2000 µE m–2 sec–1.A comparison between the actual CER and a fitted curve widelyused, PN=(a+b/l)–1–DR, showed that the goodnessof fit strongly depends on cultivar, treatment and leaf ageas well as on the number and the level of PPFD from which datafor calculations are taken. Triticum aestivum, L., wheat, photosynthesis, photon-flux density, light response, carbon, dioxide exchange  相似文献   

17.
Microswards of white clover (Trifolium repens L.) were grownin controlled environments at 10/7, 18/13 and 26/21 °C day/nighttemperatures. The vertical distribution of leaves of differentages and their rates of 14CO2-uptake in situ were studied. Extending petioles carried the laminae of young leaves throughthe existing foliage. A final position was reached within 1/4to 1/3 of the time between unfolding and death. Newly unfoldedleaves had higher rates of 14CO2-uptake per leaf area than olderones at the same height in the canopy. At higher temperatures,the decrease with age was faster. However, the light-photosynthesisresponse of leaves which were removed from different heightsin the canopy varied much less with leaf age than did the ratesof 14CO2-uptake in situ. The comparison of the rates of 14CO2-uptake in situ with thelight-photosynthesis response curves suggests that young leavesreceive more light than older ones at the same height in thecanopy. This would imply that young white clover leaves havethe ability to reach canopy positions having a favourable lightenvironment. This ability may improve the chances of survivalof white clover in competition with other species. Trifolium repens L., white clover, photosynthesis, canopy, leaf age, 14CO2-uptake, ecotypes, temperature  相似文献   

18.
Agrostis capillaris L.5, Festuca vivipara L. and Poaalpina L.were grown in outdoor open-top chambers at either ambient (340 3µmol mol–1) or elevated (6804µmol mol–1)concentrations of atmospheric carbon dioxide (CO2) for periodsfrom 79–189 d. Photosynthetic capacity of source leaves of plants grown atboth ambient and elevated CO2 concentrations was measured atsaturating light and 5% CO2. Dark respiration of leaves wasmeasured using a liquid phase oxygen electrode with the buffersolution in equilibrium with air (21% O2, 0.034% CO2). Photo-syntheticcapacity of P. alpina was reduced by growth at 680 µmolmol–1 CO2 by 105 d, and that of F. vivipara was reducedat 65 d and 189 d after CO2 enrichment began, suggesting down-regulationor acclimation. Dark respiration of successive leaf blades ofall three species was unaltered by growth at 680 relative to340 µmol mol–1 CO2. In F. vivipara, leaf respirationrate was markedly lower at 189 d than at either 0 d or 65 d,irrespective of growth CO2 concentration. There was a significantlylower total non-structural carbohydrate (TNC) concentrationin the leaf blades and leaf sheaths of A. capillaris grown at680µmol mol–1 CO2. TNC of roots of A. capillariswas unaltered by CO2 treatment. TNC concentration was increasedin both leaves and sheaths of P. alpina and F. vivipara after105 d and 65 d growth, respectively. A 4-fold increase in thewater-soluble fraction (fructan) in P. alpina and in all carbohydratefractions in F. vivipara accounted for the increased TNC content. In F. vivipara the relationship between leaf photosyn-theticcapacity and leaf carbohydrate concentration was such that therewas a strong positive correlation between photosynthetic capacityand total leaf N concentration (expressed on a per unit structuraldry weight basis), and total nitrogen concentration of successivemature leaves reduced with time. Multiple regression of leafphotosynthetic capacity upon leaf nitrogen and carbohydrateconcentrations further confirmed that leaf photosynthetic capacitywas mainly determined by leaf N concentration. In P. alpina,leaf photosynthetic capacity was mainly determined by leaf CHOconcentration. Thus there is evidence for down-regulation ofphotosynthetic capacity in P. alpina resulting from increasedcarbohydrate accumulation in source leaves. Leaf dark respiration and total N concentration were positivelycorrelated in P. alpina and F. vivipara. Leaf dark respirationand soluble carbohydrate concentration of source leaves werepositively correlated in A. capillaris. Changes in source leafphotosynthetic capacity and carbohydrate concentration of plantsgrown at ambient or elevated CO2 are discussed in relation toplant growth, nutrient relations and availability of sinks forcarbon. Key words: Elevated CO2, Climate change, grasses, carbohydrate partitioning, photosynthesis, respiration  相似文献   

19.
Protein synthesis in very young leaves utilizes carbon fromphotosynthesis and from translocated sucrose, and nitrogen translocatedin both xylem and phloem. The carbon of young leaf protein isderived mainly from assimilated CO2, while translocated sucrosecontributes proportionately more of its carbon to insolublecarbohydrate. Most protein amino-acids become labelled from14CO2, glutamate being the notable exception. Glutamine or glutamateis synthesized from sucrose in roots, and is translocated toyoung leaves. It is suggested that a small but significant proportionof the nitrogen requirement of the young leaf is translocatedfrom roots as glutamine, in the phloem. Inorganic nitrogen istranslocated in xylem.  相似文献   

20.
Uptake and partitioning through the xylem and phloem of K+,Na+, Mg2+ , Ca2+ and Cl were studied over a 9 d intervalduring late vegetative growth of castor bean (Ricinus communisL.) plants exposed to a mean salinity stress of 128 mol m–3NaCl. Empirically based models of flow and utilization of eachion within the whole plant were constructed using informationon ion increments of plant parts, molar ratios of ions to carbonin phloem sap sampled from petioles and stem internodes andpreviously derived information on carbon flow between plantsparts in xylem and phloem in identical plant material. Salientfeatures of the plant budget for K+ were prominent depositionin leaves, high mobility of K+ in phloem, high rates of cyclingthrough leaves and downward translocation of K+ providing theroot with a large excess of K+ . Corresponding data for Na+showed marked retention in the root, lateral uptake from xylemby hypocotyl, stem internodes and petioles leading to low intakeby young leaf laminae and substantial cycling from older leavesback to the root. The partitioning of the anionic componentof NaCl salinity, Cl, contrasted to that of Na+ in thatit was not substantially retained in the root, but depositedmore or less uniformly in stem, petiole and leaf lamina tissues.The flow pattern for Mg2+ showed relatively even depositionthrough the plant but some preferential uptake by young leaves,generally lesser export than import by leaf laminae, and a returnflow of Mg2+ from shoot to root considerably less than the recordedincrement of the root. Ca2+ partitioning contrasted with thatof the other ions in showing extremely poor phloem mobility,leading to progressive preferential accumulation in leaf laminaeand negligible cycling of the element through leaves or root.Features of the response of Ricinus to salinity shown in thepresent study were discussed with data from similar modellingstudies on white lupin (Lupinus albus L.) and barley (Hordeumvulgare L.) Key words: Ricinus communis L, potassium, sodium, chloride, calcium, magnesium, phloem, xylem, transport, partitioning, salinity  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号