首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Aim Climate‐modelling exercises have demonstrated that the Cape Floristic Region is highly sensitive to climate change and will apparently lose much of its northern limits over the next few decades. Because there is little monitoring of diversity in this area, ant assemblage structure was investigated within the main vegetation types in the Greater Cederberg Biodiversity Corridor. In particular, we sought to determine how ant assemblage structure differs between the main vegetation types, how restricted ants – and in particular the major myrmecochores – are to the major vegetation types, and which environmental variables might underlie differences in the ant assemblages and in the specificity of species to particular areas. Location Northern Cape Floristic Region, Western Cape, South Africa. Methods Sampling was undertaken during October 2002 and March 2003 across an altitudinal gradient ranging from sea level (Lambert's Bay) to c. 2000 m a.s.l. (Sneeukop, Cederberg) and down again to 500 m a.s.l. (Wupperthal) in the Western Cape, South Africa. Pitfall traps were used to sample ants at 17 altitudinal bands, stretching over three vegetation types (Strandveld, Mountain Fynbos and Succulent Karoo). Biotic and abiotic environmental variables were collected at each sampling site. Generalized linear models were used to determine the relationships between species richness, density, abundance and the abundance of the major myrmecochores, and the environmental variables. Redundancy analysis was used to determine the relationship between ant assemblage structure and the environmental variables. The Indicator Value Method was used to identify characteristic ant species for each vegetation type and altitudinal site. Results Temperature explained significant proportions of the variation in species density and abundance, and, together with area and several vegetation variables, contributed significantly to the separation of the assemblages in the major vegetation types and biomes. Four major myrmecochores were identified [Anoplolepis sp. (cf. custodiens), Anoplolepis sp. (cf. steinergroeveri), Camponotus niveosetosus, Tetramorium quadrispinosum]. The abundances of the two Anoplolepis species were related to vegetation variables, while the abundance of the other two species showed opposite relationships with temperature variables. Fourteen ant species were characteristic of certain vegetation types and altitudes. Several of these species contributed to the differences between the assemblages. Main conclusions There are likely to be substantial and complex changes to ant assemblages as climates change in the northern Cape Floristic Region. Moreover, the importance of ants for ecosystem functioning suggests that these responses are not only likely to be a response solely to vegetation changes, but might also precipitate vegetation changes. The changes that are predicted to take place in the next 50 years in the Cape Floristic Region could be substantially exacerbated by such synergistic effects, which have major implications for long‐term conservation plans. Ongoing monitoring of this transect will reveal the nature and pace of the change as it unfolds.  相似文献   

2.
Mountains present particular challenges for biodiversity conservation. Table Mountain is a significant mountain in a global biodiversity hotspot, the Cape Floristic Region. It has outstanding angiosperm diversity and endemism. Yet, aerial and foliage invertebrates in the area have been poorly studied, despite their importance as pollinators and predators. These plant and invertebrate assemblages are under great pressure from human disturbance. Aerial and foliage invertebrates were sampled with a range of techniques. Sites were chosen to make comparisons between vegetation structure and type, elevation and aspect. In total, 216 species from 63 families and 14 orders were recorded. Vegetation structure (fynbos or forest) and elevation were the most important environmental variables for both aerial and foliage invertebrates. Peak time for aerial invertebrate abundance was spring and summer in the fynbos and spring in the forests, while the foliage invertebrates showed very little seasonal variation. There was no correlation between the diversity of aerial and foliage invertebrates. When these results were compared with others on epigaeic invertebrates, it became clear that epigaeic and aerial invertebrates are not correlated, while epigaeic and foliage invertebrates were only partially correlated, but not sufficiently so to consider one as a reliable estimator of the other. The management pointer from this study is that sites at all elevations are vital for the conservation of biodiversity on Table Mountain. Both the aerial and epigaeic/foliage invertebrate assemblages will need to be monitored separately to maintain the mountain’s conservation status.  相似文献   

3.
We report on the species richness patterns of epigaeic beetles (Coleoptera: Carabidae and Staphylinidae) along a subtropical elevational gradient of Balang Mountain, southwestern China. We tested the roles of environmental factors (e.g. temperature, area and litter cover) and direct biotic interactions (e.g. foods and antagonists) that shape elevational diversity gradients. Beetles were sampled at 19 sites using pitfall traps along the studied elevational gradient ranging from 1500 m–4000 m during the 2004 growing season. A total of 74416 specimens representing 260 species were recorded. Species richness of epigaeic beetles and two families showed unimodal patterns along the elevational gradient, peaking at mid-elevations (c. 2535 m), and the ranges of most beetle species were narrow along the gradient. The potential correlates of both species richness and environmental variables were examined using linear and second order polynomial regressions. The results showed that temperature, area and litter cover had strong explanatory power of beetle species richness for nearly all richness patterns, of beetles as a whole and of Carabidae and Staphylinidae, but the density of antagonists was associated with species richness of Carabidae only. Multiple regression analyses suggested that the three environmental factors combined contributed most to richness patterns for most taxa. The results suggest that environmental factors associated with temperature, area and habitat heterogeneity could account for most variation in richness pattern of epigaeic beetles. Additionally, the mid-elevation peaks and the small range size of most species indicate that conservation efforts should give attention to the entire gradient rather than just mid-elevations.  相似文献   

4.
Determining patterns of plant diversity on granite inselbergs is an important task for conservation biogeography due to mounting threats. However, beyond the tropics there are relatively few quantitative studies of floristic diversity, or consideration of these patterns and their environmental, biogeographic, and historical correlates for conservation. We sought to contribute broader understanding of global patterns of species diversity on granite inselbergs and inform biodiversity conservation in the globally significant Southwest Australian Floristic Region (SWAFR). We surveyed floristics from 16 inselbergs (478 plots) across the climate gradient of the SWAFR stratified into three major habitats on each outcrop. We recorded 1,060 species from 92 families. At the plot level, local soil and topographic variables affecting aridity were correlated with species richness in herbaceous (HO) and woody vegetation (WO) of soil‐filled depressions, but not in woody vegetation on deeper soils at the base of outcrops (WOB). At the outcrop level, bioclimatic variables affecting aridity were correlated with species richness in two habitats (WO and WOB) but, contrary to predictions from island biogeography, were not correlated with inselberg area and isolation in any of the three habitats. Species turnover in each of the three habitats was also influenced by aridity, being correlated with bioclimatic variables and with interplot geographic distance, and for HO and WO habitats with local site variables. At the outcrop level, species replacement was the dominant component of species turnover in each of the three habitats, consistent with expectations for long‐term stable landscapes. Our results therefore highlight high species diversity and turnover associated with granite outcrop flora. Hence, effective conservation strategies will need to focus on protecting multiple inselbergs across the entire climate gradient of the region.  相似文献   

5.
Aim To evaluate the role of habitat heterogeneity on species richness and turnover in the mega species‐rich Cape Floristic Region (Cape), the mediterranean region of southern Africa. Location The Cape and Drakensberg regions of southern Africa. Methods Bioclimatic data were used to estimate habitat amount and habitat heterogeneity in the Cape and Drakensberg regions; these data were then used to explain the patterns of species diversity in the Pentaschistis clade (Poaceae) in these two regions. Habitat variables were used to create ‘bioclimatic units’ to characterize 1′× 1′ cells in southern Africa and to describe the niches of species. Using these bioclimatic units, the niche and range sizes of species in the two regions were compared. A phylogram was used to test for age and lineage effects. Results Pentaschistis species diversity and turnover are higher in the Cape than the Drakensberg. There is no significant difference in the habitat amount and heterogeneity between the two regions. Species occupy the same range of estimated niche sizes, yet there are significantly more range‐restricted Pentaschistis species in the Cape. Main conclusions The roles of age‐ and lineage‐related effects are rejected; biodiversity differences lie in the regions. Current macrohabitat does not explain the differences in biodiversity between the two regions. The larger number of range‐restricted species in the Cape cannot be explained by dispersal mechanism or the occupation of range‐restricted habitats. Species of Pentaschistis and other Cape clades share characteristics associated with species from historically climatically stable areas, and palaeoclimatic and palaeontological evidence indicates the Cape climate has been more stable than the Drakensberg climate throughout the Pleistocene. We conclude that the corresponding lack of extinction might have allowed an accumulation of species in the Cape. Similar climatic and biological evidence for the south‐west Australian Floristic and Mediterranean regions indicate that the same mechanism might explain the high species richness of these mediterranean regions.  相似文献   

6.
Vegetation effects on arthropods are well recognized, but it is unclear how different vegetation attributes might influence arthropod assemblages across mixed-agricultural landscapes. Understanding how plant communities influence arthropods under different habitat and seasonal contexts can identify vegetation management options for arthropod biodiversity. We examined relationships between vegetation structure, plant species richness and plant species composition, and the diversity and composition of beetles in different habitats and time periods. We asked: (1) What is the relative importance of plant species richness, vegetation structure and plant composition in explaining beetle species richness, activity-density and composition? (2) How do plant-beetle relationships vary between different habitats over time? We sampled beetles using pitfall traps and surveyed vegetation in three habitats (woodland, farmland, their edges) during peak crop growth in spring and post-harvest in summer. Plant composition better predicted beetle composition than vegetation structure. Both plant richness and vegetation structure significantly and positively affected beetle activity-density. The influence of all vegetation attributes often varied in strength and direction between habitats and seasons for all trophic groups. The variable nature of plant-beetle relationships suggests that vegetation management could be targeted at specific habitats and time periods to maximize positive outcomes for beetle diversity. In particular, management that promotes plant richness at edges, and promotes herbaceous cover during summer, can support beetle diversity. Conserving ground cover in all habitats may improve activity-density of all beetle trophic groups. The impacts of existing weed control strategies in Australian crop margins on arthropod biodiversity require further study.  相似文献   

7.
Habitat heterogeneity is a determinant cause of biological diversity in natural ecosystems, and therefore its preservation should be a priority when planning conservation strategies. Sierra de Baza, in southern Spain, is a protected natural area in which biotopes of particular interest still remain, but extensive afforestation with pine species has been widespread in recent decades and, in some cases, continues. The aim of this paper is to test the role of habitat heterogeneity at the landscape scale in generating epigaeic beetle diversity in Sierra de Baza. After two-year-long cycles of sampling epigaeic beetles, differences in local diversity at nine sites, and differences in the pattern of species turnover between sites, have been measured. Local communities differed among sites, 74% of the species being scarce (less than 0.41% of total beetle abundance), and thus species replacement differed markedly between sites. Comparisons between habitat types showed that the planted pine forests support less diverse fauna. Our results identify habitat heterogeneity at the landscape scale as the main source of epigaeic beetle diversity at the landscape scale, practices such as extensive afforestation diminishing landscape heterogeneity and consequently local beetle diversity. Preservation of landscape heterogeneity should be encouraged for an adequate beetle biodiversity conservation.  相似文献   

8.
Biodiversity loss and anthropogenic environmental changes are known to impact ecosystem functions and services. However, there are still some uncertainties such as confounding environmental factors other than community attributes that affect ecosystem functioning. Our goal was to understand what factors influence the performance of Scarabaeinae dung beetle functions, testing the hypothesis that both community attributes and environmental variables influence the performance. Toward this aim, we collected dung beetles along an elevational gradient (800–1400 m a.s.l.) in the Espinhaço mountain range (Brazil) and quantified dung beetle functions, that is, dung removal, soil excavation and secondary seed dispersal. We recorded data on environmental factors related to climate, soil and vegetation and evaluated their effects on dung beetle functions. Dung beetle ecological functions declined with elevation and the decrease was more pronounced than richness, indicating that there are other factors involved in functions performance besides diversity of beetles. Indeed, we found that the ecological functions measured were dependent on both dung beetle community attributes and environmental factors. Climate, soil and vegetation influenced dung beetle function performance as much as richness, abundance and body size. Dung beetle functional diversity did not explain any of the functions measured. Our study demonstrates that ecological functions are directly influenced by both community attributes and environmental variables and confirms the link between biodiversity, environment and ecosystem functioning.  相似文献   

9.
Environmental fluctuations, such as changes in climate, agricultural management and anthropogenic land-use patterns can affect the diversity of organisms inhabiting an area. Losses of biodiversity alter ecosystems processes, eroding their capacity to deliver ecosystem services. Dung beetles are critical ecosystem service providers, making them an ideal ecological indicator to explore the effects of land-use change on biodiversity. Dung beetles were sampled across three land-use types, in the summers of 2015 and 2016 in the Eastern Cape province, South Africa. Game ranching is regarded as a relatively low-intensity land use type. It was compared with cattle ranching (medium intensity) and dairy farming (high intensity) to examine their effect on dung beetle assemblage metrics (abundance, species richness and true Shannon diversity index), guild diversity (as nesting guilds) and spatial turnover. The intermediate grazing intensity of cattle ranching supported a higher abundance and diversity of both whole dung beetle assemblage and the nesting guilds, followed by the game ranches and then dairy farms. Differences between the sampling years were dependent on the beetle nesting guild, and largely correlated with rainfall and temperature. Cattle and game ranches shared a higher number of species than either shared with dairy farms. Whittaker's Beta-diversity index showed the highest species turnover between game ranches and dairy farms. A mix of game and cattle ranching, minimising dairy farming or restricting it to already ecological degraded sites, appears the best alternative for maintenance of dung beetle diversity and their ecosystem services. The year-to-year trends of the data were in general consistent, confirming that dung beetles are reliable ecological indicators; but also suggest that climate change that affects rainfall will result in the reduction of the abundance and diversity of this key ecological group.  相似文献   

10.
Landscape ecological networks (ENs) consist of landscape-scale conservation corridors that connect areas of high natural value within a production mosaic with protected areas (PAs). In South Africa, ENs have been implemented on a large spatial scale to offset the negative impacts of plantation forestry on indigenous grasslands. We focus on corridor width as a factor for conserving dung beetle and ant diversity within an EN. We also investigate the importance of natural environmental heterogeneity (elevation, vegetation type) and habitat quality (soil hardness, invasive alien plant density). We sampled dung beetles and ants in 30 corridors of different sizes, and at ten sites in a nearby PA. In addition, we also analysed dung beetles according to their feeding guild. Tunnelling dung beetle species richness increased with corridor width. Rolling dung beetle species richness was higher in the PA than in the corridors of the EN. The dung beetle assemblage within the EN differed from that within the PA. Corridors of various widths differed in ant composition but not in species richness. Furthermore, the PA and the EN differed in environmental variables, which contributed to differences in dung beetle species richness and assemblage composition. Within the EN, environmental heterogeneity across the landscape was more important than corridor width for driving species diversity of both dung beetles and ants. When planning future ENs, wide corridors (>280 m) that encompass as much natural heterogeneity across the landscape as possible will best conserve the range of local insect species.  相似文献   

11.
兴安落叶松林是大兴安岭地区代表性的植被类型,其生物多样性具有独特性。步甲是森林生态系统环境和多样性的指示性物种,以及认识环境变化和生物多样性特征的关键物种。为研究大兴安岭地区兴安落叶松林步甲群落多样性的时间动态,分析步甲群落对时间变化的响应规律,于2019年5月下旬-8月下旬步甲活跃期,利用陷阱诱捕法在兴安落叶松林5个样地中采集步甲标本共15属34种1149头,其中大兴安岭地区地理新纪录物种7种,中国地理新纪录物种6种。研究结果表明,通缘步甲属(Pterostichus)和大步甲属(Carabus)物种丰富度最高;通缘步甲属未定种5(Pterostichus eximius)为极优势物种,对时间变化最敏感。兴安落叶松林小生境类型的多样化和步甲休眠期的选择是步甲群落个体数和物种数随时间变化呈双峰模式的主要因素,最高峰均出现在6月下旬;多样性与均匀度指数均在7月上旬达高峰期,8月下旬多样性下降而均匀度上升,各指数之间相关性较低。步甲群落在6月下旬到7月下旬对环境具有较高的适应度;群落结构在环境条件相对稳定的6月下旬到7月下旬和8月上旬到8月下旬均表现为极相似(I>0.75)。物种取食特征和生活史策略的多样化使步甲群落各指数随时间变化具有显著差异,而物种取食特征和生活史策略受环境因子的综合影响较大。稳定的森林环境条件下,步甲活跃期更长,群落结构相似度更高。该结果为步甲群落时间动态研究奠定了一定的理论基础,为大兴安岭地区地下生物多样性的保护和管理策略制定提供了一定的理论和数据依据。  相似文献   

12.
The causes of exceptionally high plant diversity in Mediterranean‐climate biodiversity hotspots are not fully understood. We asked whether a mechanism similar to the tropical niche conservatism hypothesis could explain the diversity of four large genera (Protea, Moraea, Banksia, and Hakea) with distributions within and adjacent to the Greater Cape Floristic Region (South Africa) or the Southwest Floristic Region (Australia). Using phylogenetic and spatial data we estimated the environmental niche of each species, and reconstructed the mode and dynamics of niche evolution, and the geographic history, of each genus. For three genera, there were strong positive relationships between the diversity of clades within a region and their inferred length of occupation of that region. Within genera, there was evidence for strong evolutionary constraint on niche axes associated with climatic seasonality and aridity, with different niche optima for hotspot and nonhotspot clades. Evolutionary transitions away from hotspots were associated with increases in niche breadth and elevated rates of niche evolution. Our results point to a process of “hotspot niche conservatism” whereby the accumulation of plant diversity in Mediterranean‐type ecosystems results from longer time for speciation, with dispersal away from hotspots limited by narrow and phylogenetically conserved environmental niches.  相似文献   

13.
Cicadas have been shown to be useful organisms for examining the effects of distribution, plant association and geographical barriers on gene flow between populations. The cicadas of the Platypleura stridula species complex are restricted to the biologically diverse Cape Floristic Region (CFR) of South Africa. They are thus an excellent study group for elucidating the mechanisms by which hemipteran diversity is generated and maintained in the CFR. Phylogeographical analysis of this species complex using mitochondrial DNA Cytochrome Oxidase I (COI) and ribosomal 16S sequence data, coupled with preliminary morphological and acoustic data, resolves six clades, each of which has specific host-plant associations and distinct geographical ranges. The phylogeographical structure implies simultaneous or near-simultaneous radiation events, coupled with shifts in host-plant associations. When calibrated using published COI and 16S substitution rates typical for related insects, these lineages date back to the late Pliocene - early Pleistocene, coincident with vegetation change, altered drainage patterns and accelerated erosion in response to neotectonic crustal uplift and cyclic Pleistocene climate change, and glaciation-associated changes in climate and sea level.  相似文献   

14.
Commercial plantations and alien tree invasions often have substantial negative impacts on local biodiversity. The effect of plantations on faunal communities in the fire‐adapted fynbos vegetation of the Cape Floristic Region biodiversity hotspot is not yet well quantified. We studied small mammal community structure in alien Pinus radiata plantations and adjacent fynbos regenerating after clear‐felling of plantations on the Cape Peninsula, South Africa. Small mammal sampling over 1,800 trap‐nights resulted in 480 captures of 345 individuals (excluding recaptures) representing six species. Significantly more species, individuals (12 X) and biomasses (29 X) of small mammals occurred on recovering fynbos sites compared to plantations. This was commensurate with a higher diversity of plant growth forms, vegetation densities and live vegetation biomass. Only one small mammal species, the pygmy mouse (Mus minutoides), was consistently trapped within plantations. Fynbos sites were dominated by three small mammal species that are ecological generalists and early successional pioneer species, rendering the recovering fynbos slightly depauperate in terms of species richness and evenness relative to other studies done in pristine fynbos. We make three recommendations for forestry that would facilitate the restoration of more diverse natural plant communities and progressively more diverse and dynamic small mammal assemblages in a key biodiversity hotspot.  相似文献   

15.
With 2285 species of higher plants crammed into 471 km2, the flora of South Africa's Cape Peninsula is exceptionally rich. Similar sized areas in other Mediterranean-climate region biodiversity hot-spots support between 4.7 and 2.7 times fewer species. The high plant species richness of the Cape Peninsula is due to the exceptionally high turnover between moderately species-rich sites in different habitats (beta diversity) and between sites in similar habitats along geographical gradients (gamma diversity). Highest beta diversity, encompassing almost complete turnover, was recorded along soil fertility gradients. Although similar patterns for these independent components explain the richness of other regions in the Cape Floristic Region, it is the very long and steep habitat gradients of the Cape Peninsula that makes this region exceptionally rich. Furthermore, the flora is characterized by a high degree of rarity, a phenomenon that undoubtedly influences the turnover. Future research should focus on developing a biological and ecological understanding of the different forms of rarity and integrating this into management plans for the maintenance of biodiversity.  相似文献   

16.
Evolution of the species-rich Cape flora   总被引:4,自引:0,他引:4  
The Cape Floristic Region ('fynbos biome') has very high levels of plant species diversity and endemism. Much of this diversity is concentrated in a relatively small number of clades centered in the region (Cape clades), and these form a vegetation called 'fynbos'. The general explanation for the origin of this diversity is that much of it evolved in the Pliocene and Late Miocene in response to progressive aridification. We present a phylogenetic analysis of an almost complete species sample of the largest clade of Restionaceae, the third largest Cape clade. This indicates that the radiation of the Restionaceae started between 20 and 42 Myr ago, and since then there were no, or at most gradual, changes in the speciation rate in this clade. For seven other clades, the estimated starting dates for their radiation ranges from 7 to 20 Myr ago. Combining the radiation patterns for these clades shows that ca. 15% of the modern species evolved during the Pleistocene, and almost 40% since the beginning of the Pliocene. We suggest that these clades might have radiated in response to the fynbos vegetation increasing its extent in the Cape as a result of climatic change.  相似文献   

17.
Question: What is the relative importance of environmental and spatial factors for species compositional and phylogenetic turnover? Location: High‐rainfall zone of the Southwest Australian Floristic Region (SWAFR). Methods: Correlates of species compositional turnover were assessed using quadrat‐based floristic data, and establishing relationships with environmental and spatial factors using canonical correspondence analyses and Mantel tests. Between‐quadrat phylogenetic distance measures were computed and examined for correlations with environmental and spatial attributes. Processes structuring pa2t2terns of beta diversity were also evaluated within four broad floristic assemblages defined a priori. Results: Floristic diversity was strongly related to environmental attributes. A low significance of spatial variables on assemblage patterns suggested no evident effect of dispersal limitations. Species compositional turnover was especially high within the swamp and outcrop assemblage. Phylogenetic turnover was closely coupled to species compositional turnover, implying the occurrence of many locally endemic and phylogenetically relict taxa. Beta diversity patterns within assemblages were also significantly correlated with the local environment, and relevant correlates differed between floristic assemblage types. Conclusion: Phylogenetic diversity in the SWAFR high‐rainfall zone is clustered within edaphic microhabitats in a generally subdued landscape. A clustered rather than dispersed distribution of phylogenetic diversity increases the probability of significant plant diversity loss during periods of climate change. Climate change susceptibility of the region's flora is accordingly estimated to be high. We highlight the conservation significance of swamp and outcrops that are characterized by distinct hydrological properties and may provide refugial habitat for plant diversity during periods of moderate climate change.  相似文献   

18.
Aim The research aim is to reconstruct last glacial maximum (LGM) and Holocene vegetation history and ecology from fossil beetle assemblages. Location The LGM and Holocene sites are located in the Awatere Valley, which lies in the tectonically active Marlborough Region in the north east of the South Island of New Zealand. Methods Beetle fossils were extracted from silty organic sediment using the standard kerosene flotation method. Fossils were identified by comparisons made to modern species based on morphology and surface features. The ecology and distribution of modern analogues are extrapolated to reconstruct the fossil environment. Results One hundred and forty‐five beetle species belonging to 33 families were identified. The LGM fossil fauna showed the local vegetation was characterized by a forest patch surrounded by an open tussock/grassland landscape. This Nothofagus (southern beech) forest persisted at the site until mid‐Holocene when it was replaced by a podocarp forest that contained high beetle diversity. Herbivores dominate in the early stage of this zone, indicating a relatively new forest environment. Later in the Holocene, the fauna is dominated by detritivores indicating an older more established forest. The late Holocene is characterized by low diversity and the absence of forest species. This fauna indicates that by 500 years ago, the forest was absent and is associated with an almost compete loss of beetle biodiversity. Main conclusions The fossil beetles provide a unique perspective into the past environment in the Awatere Valley on a local scale. The reconstruction supports regional pollen interpretations of Holocene vegetation by identifying a specific forest patch. Fossil beetles are thus a valuable local proxy for vegetation reconstructions.  相似文献   

19.

Background and Aims

Genome duplication is widely acknowledged as a major force in the evolution of angiosperms, although the incidence of polyploidy in different floras may differ dramatically. The Greater Cape Floristic Region of southern Africa is one of the world''s biodiversity hotspots and is considered depauperate in polyploids. To test this assumption, ploidy variation was assessed in a widespread member of the largest geophytic genus in the Cape flora: Oxalis obtusa.

Methods

DNA flow cytometry complemented by confirmatory chromosome counts was used to determine ploidy levels in 355 populations of O. obtusa (1014 individuals) across its entire distribution range. Ecological differentiation among cytotypes was tested by comparing sets of vegetation and climatic variables extracted for each locality.

Key Results

Three majority (2x, 4x, 6x) and three minority (3x, 5x, 8x) cytotypes were detected in situ, in addition to a heptaploid individual originating from a botanical garden. While single-cytotype populations predominate, 12 mixed-ploidy populations were also found. The overall pattern of ploidy level distribution is quite complex, but some ecological segregation was observed. Hexaploids are the most common cytotype and prevail in the Fynbos biome. In contrast, tetraploids dominate in the Succulent Karoo biome. Precipitation parameters were identified as the most important climatic variables associated with cytotype distribution.

Conclusions

Although it would be premature to make generalizations regarding the role of genome duplication in the genesis of hyperdiversity of the Cape flora, the substantial and unexpected ploidy diversity in Oxalis obtusa is unparalleled in comparison with any other cytologically known native Cape plant species. The results suggest that ploidy variation in the Greater Cape Floristic Region may be much greater than currently assumed, which, given the documented role of polyploidy in speciation, has direct implications for radiation hypotheses in this biodiversity hotspot.  相似文献   

20.
Responses to microhabitat are often neglected when ecologists sample animal indicator groups. Microhabitats may be particularly influential in non-passive biodiversity sampling methods, such as baited traps or light traps, and for certain taxonomic groups which respond to fine scale environmental variation, such as insects. Here we test the effects of microhabitat on measures of species diversity, guild structure and biomass of dung beetles, a widely used ecological indicator taxon. We demonstrate that choice of trap placement influences dung beetle functional guild structure and species diversity. We found that locally measured environmental variables were unable to fully explain trap-based differences in species diversity metrics or microhabitat specialism of functional guilds. To compare the effects of habitat degradation on biodiversity across multiple sites, sampling protocols must be standardized and scale-relevant. Our work highlights the importance of considering microhabitat scale responses of indicator taxa and designing robust sampling protocols which account for variation in microhabitats during trap placement. We suggest that this can be achieved either through standardization of microhabitat or through better efforts to record relevant environmental variables that can be incorporated into analyses to account for microhabitat effects. This is especially important when rapidly assessing the consequences of human activity on biodiversity loss and associated ecosystem function and services.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号