首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
1.?We tested the hypotheses that feeding guild structure of beetle assemblages changed with different arboreal microhabitats and that these differences were consistent across rainforest tree species. 2.?Hand collection and beating techniques were used from the gondola of the Australian Canopy Crane to collect beetles from five microhabitats (mature leaves, flush leaves, flowers, fruit and suspended dead wood) within the rainforest canopy. A simple randomization procedure was implemented to test whether the abundances of each feeding guild on each microhabitat were different from that expected based on a null hypothesis of random distribution of individuals across microhabitats. 3.?Beetles from different feeding guilds were not randomly distributed, but congregated on those microhabitats that are likely to provide the highest concentrations of their preferred food sources. Herbivorous beetles, in particular, were over-represented on flowers and flush foliage and under-represented on mature leaves and dead wood. Proportional numbers of species within each feeding guild were remarkably uniform across tree species for each microhabitat, but proportional abundances of feeding guilds were all significantly non-uniformly distributed between host tree species, regardless of microhabitat, confirming patterns previously found for arthropods in trees in temperate and tropical forests. 4.?These results show that the canopy beetle community is partitioned into discrete assemblages between microhabitats and that this partitioning arises because of differences in feeding guild structure as a function of the diversity and the temporal and spatial availability of resources found on each microhabitat.  相似文献   

2.
The objectives of this work are: (1) to define spider guilds for all extant families worldwide; (2) test if guilds defined at family level are good surrogates of species guilds; (3) compare the taxonomic and guild composition of spider assemblages from different parts of the world; (4) compare the taxonomic and functional diversity of spider assemblages and; (5) relate functional diversity with habitat structure. Data on foraging strategy, prey range, vertical stratification and circadian activity was collected for 108 families. Spider guilds were defined by hierarchical clustering. We searched for inconsistencies between family guild placement and the known guild of each species. Richness and abundance per guild before and after correcting guild placement were compared, as were the proportions of each guild and family between all possible pairs of sites. Functional diversity per site was calculated based on hierarchical clustering. Eight guilds were discriminated: (1) sensing, (2) sheet, (3) space, and (4) orb web weavers; (5) specialists; (6) ambush, (7) ground, and (8) other hunters. Sixteen percent of the species richness corresponding to 11% of all captured individuals was incorrectly attributed to a guild by family surrogacy; however, the correlation of uncorrected vs. corrected guilds was invariably high. The correlation of guild richness or abundances was generally higher than the correlation of family richness or abundances. Functional diversity was not always higher in the tropics than in temperate regions. Families may potentially serve as ecological surrogates for species. Different families may present similar roles in the ecosystems, with replacement of some taxa by other within the same guild. Spiders in tropical regions seem to have higher redundancy of functional roles and/or finer resource partitioning than in temperate regions. Although species and family diversity were higher in the tropics, functional diversity seems to be also influenced by altitude and habitat structure.  相似文献   

3.
Guild structure of arthropods from Bornean rain forest trees   总被引:7,自引:0,他引:7  
ABSTRACT. 1. 23275 arthropods collected by insecticide fogging from ten Bornean lowland rain forest trees were sorted to approximately 3000 species and assigned to guilds using two sets of criteria.
2. The rank order for proportions of guilds of species but not individuals is similar in tropical and temperate canopy samples.
3. Misplacement in the guild assignments of a few species can cause important differences in the proportions of certain guilds. This can seriously affect the results of comparisons of different samples, and views on proportional constancy of guilds of species on different trees.
4. Guilds of arthropod species such as chewers, suckers, all phytophages, predators, ants and tourists, occur in constant proportions in samples from different tropical trees and this constancy of proportion is similar in samples from groups of'closely related'and'distantly related'trees.
5. The guild concept of community structure and problems in assigning species to guilds are considered with respect to arthropod samples. The conclusions on constancy of proportion for guilds of species are tempered by remarks on the problems of guild composition.  相似文献   

4.
Abstract 1. Networks of feeding interactions among insect herbivores and natural enemies such as parasitoids, describe the structure of these assemblages and may be critically linked to their dynamics and stability. The present paper describes the first quantitative study of parasitoids associated with gall‐inducing insect assemblages in the tropics, and the first investigation of vertical stratification in quantitative food web structure. 2. Galls and associated parasitoids were sampled in the understorey and canopy of Parque Natural Metropolitano in the Pacific forest, and in the understorey of San Lorenzo Protected Area in the Caribbean forest of Panama. Quantitative host–parasitoid food webs were constructed for each assemblage, including 34 gall maker species, 28 host plants, and 57 parasitoid species. 3. Species richness was higher in the understorey for parasitoids, but higher in the canopy for gall makers. There was an almost complete turnover in gall maker and parasitoid assemblage composition between strata, and the few parasitoid species shared between strata were associated with the same host species. 4. Most parasitoid species were host specific, and the few polyphagous parasitoid species were restricted to the understorey. 5. These results suggest that, in contrast to better‐studied leaf miner–parasitoid assemblages, the influence of apparent competition mediated by shared parasitoids as a structuring factor is likely to be minimal in the understorey and practically absent in the canopy, increasing the potential for coexistence of parasitoid species. 6. High parasitoid beta diversity and high host specificity, particularly in the poorly studied canopy, indicate that tropical forests may be even more species rich in hymenopteran parasitoids than previously suspected.  相似文献   

5.
How arthropods are distributed within the vertical structure of tropical rainforests is of considerable interest to ecologists. Here, we examine how light trapped beetles are distributed in tropical rainforest in North Queensland, Australia. In January and July 2012, traps were suspended 0 m, 10 m, 20 m and 30 m above the ground in five locations with no more than one trap at any single location on any night. Maximum canopy height at the sites was 35 m. A total of 7299 individuals of 492 morphospecies and 66 families were collected. The species abundance‐based coverage estimator predicted a total species richness of 765. Sample completeness decreases with increasing height from the ground suggesting higher strata were less well sampled. Distance‐based redundancy analysis showed species richness was significantly different between 30 m and all other levels but not between other paired strata. In contrast, both species composition and family composition were significantly distinct for all strata pairs except 10 m with 20 m, and 20 m with 30 m, suggesting that the most distinct strata were 0 m and 30 m. The first two axes of ordination and hierarchical clustering accounted for 46.5% and 17.4% of species composition variation corresponding with season and stratum, respectively. Family level analyses gave similar results to those at the species level. We found stratification of different feeding guilds with herbivores comprising a larger percentage of species in higher strata, whereas saprophages were restricted to the lower strata, reflecting the availability of key resources for these guilds. Fewer species or families were found to be indicators of strata, as measured using IndVal, than for Malaise and flight interception traps (FIT). Dytiscidae and Hydraenidae were abundant but had not been collected using Malaise and FIT. Which species or families are indicators of strata depends on sampling method suggesting multiple sampling methods should be used to establish indicators.  相似文献   

6.
森林冠层昆虫多样性研究方法   总被引:2,自引:0,他引:2  
孟庆繁 《昆虫知识》2007,44(6):815-820
森林冠层是森林昆虫栖息、取食、避敌的重要生境,其中生活着十分丰富的昆虫物种。但由于乔木树体高大,冠层难于接近,在很大程度上限制了冠层昆虫多样性的研究。冠层昆虫类群结构的划分和冠层昆虫取样技术也是冠层昆虫多样性研究的重要基础。文章综述当前冠层接近和冠层昆虫抽样技术的最新进展,并评述冠层昆虫类群结构划分的方法。  相似文献   

7.
Variation in plant traits among plant species may promote the development of a characteristic functional assemblage of insect herbivores associated with each plant species. However, only a small number of studies have detailed the representation of several herbivore guilds among co‐occurring plant species to determine whether the functional structure of herbivorous insect assemblages varies widely and consistently among plant species. The present study provides one of the few published data sets reporting on the density of several guilds of insect herbivores among numerous plant species. Variation in guild associations with plant phenology and season are also described. Insect herbivores were divided into 10 guilds, and the representation of these guilds was examined for 18 co‐occurring plant species. Guild densities and assemblage composition varied significantly among plant species, even when variation over time was taken into account. Variation in guild densities and assemblage composition were not strongly related to the taxonomic relationships of the plants. The highest densities of several guilds occurred in spring and summer, although other guilds were not strongly seasonal. Certain guilds were strongly associated with the presence of new leaves, whereas other guilds appeared to prefer mature leaves. This resulted in assemblage differences between samples containing new and mature leaves and samples containing mature leaves only. Even though the timing and duration of leaf and flower production varied among plant species, this did not explain all variation in guild densities among plant species. It is suggested that additional factors, including plant traits, are contributing to the wide and consistent variation in herbivore assemblage composition among plant species.  相似文献   

8.
Successional processes in forest gaps created by tree falls are often considered a principal mechanism maintaining species diversity within forests. Although insects are important as mediators of forest recovery processes, there have been few observations of how they differ between forest gaps and non-gaps across latitudes. Here we tested the impacts of gap habitat on beetle assemblage composition at three locations spanning sub-tropical and tropical biomes (28°S, 16°S, 5°N: Lamington and Daintree in Australia, and Danum in Borneo). Beetles were collected by flight interception traps and sorted to family and feeding guilds. Despite clear differences in environmental conditions between gaps and non-gaps at all three location, we found weak and inconsistent differences in beetle family and feeding guild composition across a latitudinal gradient. PERMANOVA results showed no significant differences in beetle family and feeding guild composition between gaps and non-gaps. For beetle families, however, the interaction effect (between gap vs. non-gap treatment and location) was significant. Post-hoc analysis and NMDS ordinations showed significant and clear separation of family assemblages between gaps and non-gaps within the Danum samples but not within samples from either the Lamington or Daintree sites. Using IndVal, when all three locations were combined, Chrysomelidae and Tenebrionidae were found to be indicators for gaps and Scarabaeinae and Leiodidae for non-gaps. Analysed separately, gap indicators were only Chrysomelidae at Daintree, whereas non-gap indicators were Scarabaeinae at Lamington, Scarabaeinae, all other Scarabaeidae, Anthicidae, Scydmaeninae, and Hybosoridae at Danum. We suggest the scale of changes in insect composition and richness with the creation of a natural light gap in forests contrast with those resulting from anthropogenic disturbance such as logging and clearing of forests and the greater adaptability of forests to small-scale changes rather than large-scale changes.  相似文献   

9.
Vertical stratification of avian communities has been studied in both temperate and tropical forests; however, the majority of studies used ground-based methods. In this study we used ground-to-canopy mist nets to collect detailed data on vertical bird distribution in primary rain forest in Wanang Conservation Area in Papua New Guinea (Madang Province). In total 850 birds from 86 species were caught. Bird abundance was highest in the canopy followed by the understory and lowest in the midstory. Overall bird diversity increased towards the canopy zone. Insectivorous birds represented the most abundant and species-rich trophic guild and their abundances decreased from the ground to canopy. The highest diversity of frugivorous and omnivorous birds was confined to higher vertical strata. Insectivorous birds did not show any pattern of diversity along the vertical gradient. Further, insectivores preferred strata with thick vegetation, while abundance and diversity of frugivores increased with decreasing foliage density. Our ground-to-canopy (0–27 m) mist netting, when compared to standard ground mist netting (0–3 m), greatly improved bird diversity assessment and revealed interesting patterns of avian community stratification along vertical forest strata.  相似文献   

10.
Tropical rainforest canopies are renowned for their high invertebrate diversity and abundance. The canopy comprises a range of microhabitats representing very different food resources (including photosynthetic, reproductive, and structural tissues). As these resources vary considerably in temporal and spatial availability, nutritional quality, chemical protection and other attributes, we hypothesized that microhabitats support structurally different invertebrate communities. To test this we used the Australian Canopy Crane to sample invertebrates from mature leaves, flush leaves, flowers, fruit and suspended dead wood from 23 plant species. Invertebrate faunas on different microhabitats varied in taxonomic composition and feeding guild structure in support of the microhabitat differentiation hypothesis. Herbivores were found predominantly on new leaves (Hemiptera, Lepidoptera) and especially flowers (Coleoptera, Thysanoptera), but were relatively uncommon on mature leaves. Instead, the mature foliage community was dominated by predators, especially spiders and ants, and supported high abundances of saprophages. Ripe fruit and dead wood were scarce canopy resources that were utilized by a relatively small number of invertebrates, mostly saprophages and fungivores. Flowers supported a more heterogeneous fauna than the leaves in terms of proportional abundances of taxonomic groups and feeding guilds, both within tree species (evenness) and between tree species (non‐uniformity). These results demonstrate microhabitat differentiation in a rainforest canopy and are the first to quantify differences in taxonomic composition, guild structure and abundance patterns between such diverse invertebrate assemblages within host trees. We conclude that studies based only on sampling one microhabitat, and leaves in particular, may provide a distorted picture of invertebrate community structure.  相似文献   

11.
Tropical forests accommodate rich species diversity, particularly among insects. Habitat heterogeneity along the vertical gradient extending from the forest understorey to the tree canopy influences diversity. The vertical distribution of forest insects is poorly understood across Africa, most especially eastern Africa. Food‐baited traps were used to study the vertical stratification of adult fruit‐feeding nymphalid butterflies in Mtai Forest Reserve, north‐eastern Tanzania. Traps were located in the forest canopy and understorey. A total of 277 individuals of 24 species were captured. Species composition differed by trap locations: 33% of the species captured were found in both the canopy and understorey strata; however, significantly more species were captured in the understorey (54%) than canopy (13%). Males were significantly more abundant than females and captured in both strata. A greater proportion of females were captured in the understorey than the canopy. The time of day affected capture rates, with more individuals caught in the afternoon; however, there was no association between the time period and the sex of individuals captured in canopy versus understorey locations. Understanding how the sexes of butterflies vary in understorey versus canopy offers new biological insights into the vertical stratification of insects.  相似文献   

12.
Shanahan  Mike  Compton  Stephen G. 《Plant Ecology》2001,153(1-2):121-132
Fig trees (Ficus spp; Moraceae) are a common constituent of many tropical forests, where they produce figs that are eaten by a wide range of bird and mammal species. In our Bornean field site six Ficus seed dispersal guilds can be recognised, differentially attracting subsets of the frugivore community. Guild membership appears to be determined by figs' size, colour, crop size and height above ground, and frugivores' size, sensory and locomotory physiology and foraging height. Vertical stratification therefore appears to be an important determinant of fig and frugivore partitioning. The guild structure observed is discussed with respect to implications for seed dispersal and the differences between the canopy and understorey. Regarding figs eaten primarily by birds, larger fruit and crops can be found in the canopy where they are exposed to larger assemblages of potential frugivores than those presented in the understorey.  相似文献   

13.
Aim Insect assemblages associated with lianas in tropical forests are poorly studied compared with those associated with trees. The importance of lianas for the maintenance of local species richness of insect herbivores in tropical forests is therefore poorly understood. With this in mind, a comparative study of the relative importance of trees and lianas as hosts for phytophagous beetles was carried out. Location The study area was located in the canopy of a dry tropical forest in Parque Natural Metropolitano, Panama province, Republic of Panama. Methods A crane system was utilized to access the canopy. The number of species and host specialization of adult phytophagous beetles associated with twenty‐six liana species of ten different families, and twenty‐four tree species of twelve different families were compared. Results A total of 2561 host associations of 697 species of beetles were determined (1339 for trees and 1222 for lianas). On average 55.8 ± 6.8 beetle species were found to be associated with each tree species while the comparable number for lianas was 47.0 ± 6.1. The pooled numbers of phytophagous beetle species associated with trees and lianas, respectively, were not significantly different. However, there were significantly more species feeding on green plant parts on lianas than on trees, and there were significantly more wood eaters on trees than on lianas. Phytophagous beetles associated with lianas were significantly more specialized than the tree associates due to a higher degree of specialization among the species feeding on green plant parts of lianas. Wood eaters and flower visitors showed no differences in host specialization on different growth forms. Main conclusion The present study shows that lianas are at least as important as trees for the maintenance of local species diversity of phytophagous beetles at this site. The mechanisms that drive the patterns can only be hypothesized. Plant architecture, size, and length of growing season are probably involved. Further studies, should include measurements of plant traits to elucidate experimentally what mechanisms that drive the patterns. Additional insight would come from similar studies in other forest types, and also studies of other major taxonomic groups of arthropod herbivores.  相似文献   

14.
Secondary forest habitats are increasingly recognized for their potential to conserve biodiversity in the tropics. However, the development of faunal assemblages in secondary forest systems varies according to habitat quality and species‐specific traits. In this study, we predicted that the recovery of bird assemblages is dependent on secondary forest age and level of isolation, the forest stratum examined, and the species’ traits of feeding guild and body mass. This study was undertaken in secondary forests in central Panama; spanning a chronosequence of 60‐, 90‐, and 120‐year‐old forests, and in neighboring old‐growth forest. To give equal attention to all forest strata, we employed a novel method that paired simultaneous surveys in canopy and understory. This survey method provides a more nuanced picture than ground‐based studies, which are biased toward understory assemblages. Bird reassembly varied according to both habitat age and isolation, although it was challenging to separate these effects, as the older sites were also more isolated than the younger sites. In combination, habitat age and isolation impacted understory birds more than canopy‐dwelling birds. Proportions of dietary guilds did not vary with habitat age, but were significantly different between strata. Body mass distributions were similar across forest ages for small‐bodied birds, but older forest supported more large‐bodied birds, probably due to control of poaching at these sites. Canopy assemblages were characterized by higher species richness, and greater variation in both dietary breadth and body mass, relative to understory assemblages. The results highlight that secondary forests may offer critical refugia for many bird species, particularly specialist canopy‐dwellers. However, understory bird species may be less able to adapt to novel and isolated habitats and should be the focus of conservation efforts encouraging bird colonization of secondary forests.  相似文献   

15.
16.
The vertical stratification of lepidopteran and coleopteran communities in a cool-temperate deciduous forest in Japan was examined to evaluate the hypothesis of an expected uniform distribution of mobile flying insects between the canopy and understory of temperate forests. Lepidopteran and coleopteran insects were trapped using light traps at three sites in each of the canopy and understory for three consecutive nights each month from April to October 2001. For Lepidoptera, species richness, abundance, and family richness were significantly higher in the understory than in the canopy. For Coleoptera, only abundance was larger in the canopy relative to the understory; species and family richness did not differ between the strata. The beta diversity of the lepidopteran community was larger between the strata than among sites, but the coleopteran community showed an inverse pattern. These results imply the presence of vertical stratification within the lepidopteran community, but not within the coleopteran community, in the temperate forest. The understory contributes more than the canopy to lepidopteran diversity in the temperate forest, although this stratification may be relatively weak because, in contrast to the situation in tropical forests, the canopy and understory assemblages share many species.  相似文献   

17.
Climate change is expected to cause geographic redistributions of species. To the extent that species within assemblages have different niche requirements, assemblages may no longer remain intact and dis‐ and reassemble at current or new geographic locations. We explored how climate change projected by 2100 may transform the world's avian assemblages (characterized at a 110 km spatial grain) by modeling environmental niche‐based changes to their dietary guild structure under 0, 500, and 2000 km‐dispersal distances. We examined guild structure changes at coarse (primary, high‐level, and mixed consumers) and fine (frugivores, nectarivores, insectivores, herbivores, granivores, scavengers, omnivores, and carnivores) ecological resolutions to determine whether or not geographic co‐occurrence patterns among guilds were associated with the magnitude to which guilds are functionally resolved. Dietary guilds vary considerably in their global geographic prevalence, and under broad‐scale niche‐based redistribution of species, these are projected to change very heterogeneously. A nondispersal assumption results in the smallest projected changes to guild assemblages, but with significant losses for some regions and guilds, such as South American insectivores. Longer dispersal distances are projected to cause greater degrees of disassembly, and lead to greater homogenization of guild composition, especially in northern Asia and Africa. This arises because projected range gains and losses result in geographically heterogeneous patterns of guild compensation. Projected decreases especially of primary and mixed consumers most often are compensated by increases in high‐level consumers, with increasing uncertainty about these outcomes as dispersal distance and degree of guild functional resolution increase. Further exploration into the consequences of these significant broad‐scale ecological functional changes at the community or ecosystem level should be increasingly on the agenda for conservation science.  相似文献   

18.
One of the least understood aspects of insect diversity in tropical rain forests is the temporal structuring, or seasonality, of communities. We collected 29,986 beetles of 1473 species over a 4-yr period (45 monthly samples), with the aim to document the temporal dynamics of a trophically diverse beetle assemblage from lowland tropical rain forest at Cape Tribulation, Australia. Malaise and flight interception traps were used to sample adult beetles at five locations at both ground and canopy levels. Beetles were caught throughout the year, but individual species were patchy in their temporal distribution, with the 124 more abundant species on average being present only 56 percent of the time. Climatic variables (precipitation, temperature, and solar radiation) were poorly correlated with adult beetle abundance, possibly because: (1) seasonality of total beetle abundance was slight; (2) the peak activity period (September–November) did not correspond to any climatic maxima or minima; or (3) responses were nonlinear owing to the existence of thresholds or developmental time-lags. Our results do not concur with the majority of tropical insect seasonality studies suggesting a wet season peak of insect activity, perhaps because there is no uniform pattern of insect seasonally for the humid tropics. Herbivores showed low seasonality and individual species' peaks were less temporally aggregated compared to nonherbivores. Canopy-caught and larger beetles (> 5 mm) showed greater seasonality and peaked later in the year compared to smaller or ground-caught beetles. Thus seasonality of adult beetles varied according to the traits of feeding ecology, body size, and habitat strata.  相似文献   

19.
Using an exclosure experiment in managed woodland in eastern England, we examined species and guild responses to vegetation growth and its modification by deer herbivory, contrasting winter and the breeding season over 4 years. Species and guild responses, in terms of seasonal presence recorded by multiple point counts, were examined using generalized linear mixed models. Several guilds or migrant species responded positively to deer exclusion and none responded negatively. The shrub‐layer foraging guild was recorded less frequently in older and browsed vegetation, in both winter and spring. Exclusion of deer also increased the occurrence of ground‐foraging species in both seasons, although these species showed no strong response to vegetation age. The canopy‐foraging guild was unaffected by deer exclusion or vegetation age in either season. There was seasonal variation in the responses of some individual resident species, including a significantly lower occurrence of Eurasian Wren Troglodytes troglodytes and European Robin Erithacus rubecula in browsed vegetation in winter, but no effect of browsing on those species in spring. Ordinations of bird assemblage compositions also revealed seasonal differences in response to gradients of vegetation structure generated by canopy‐closure and exclusion of deer. Positive impacts of deer exclusion in winter are probably linked to reduced thermal cover and predator protection afforded by browsed vegetation, whereas species that responded positively in spring were also dependent on a dense understorey for nesting. The effects on birds of vegetation development and its modification by herbivores extend beyond breeding assemblages, with different mechanisms implicated and different species affected in winter.  相似文献   

20.
Effect of siltation on stream fish communities   总被引:10,自引:0,他引:10  
Synopsis The effect of siltation on stream fish in northeast Missouri was evaluated using community structural measurements and a functional approach that emphasized feeding and reproductive guilds. As the percentage of fine substrate increased, the distinction among riffle, run, and pool communities decreased, primarily because the number of individuals of typical riffle species decreased. Within the riffle communities the abundance of fish of two feeding guilds — benthic insectivores and herbivores — was reduced as the percent of fine substrate increased. The abundance of fish in other feeding guilds was not affected. The only reproductive guild to be similarly affected was the simple and lithophilous, whose members require a clean gravel substrate for spawning. Species within each guild affected by siltation had significantly similar trends in abundance. The guild analysis indicated that species with similar ecological requirements had a common response to habitat degradation by siltation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号