首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

Background

This study demonstrates that a dynamic susceptibility contrast-magnetic resonance imaging (DSC-MRI) perfusion parameter may indicate vascular abnormality in a brain tumor model and reflects an effect of dexamethasone treatment. In addition, X-ray computed tomography (CT) measurements of vascular tortuosity and tissue markers of vascular morphology were performed to investigate the underpinnings of tumor response to dexamethasone.

Methodology/Principal Findings

One cohort of Fisher 344 rats (N = 13), inoculated intracerebrally with 9L gliosarcoma cells, was treated with dexamethasone (i.p. 3 mg/kg/day) for five consecutive days, and another cohort (N = 11) was treated with equal volume of saline. Longitudinal DSC-MRI studies were performed at the first (baseline), third and fifth day of treatments. Relative cerebral blood volume (rCBV) was significantly reduced on the third day of dexamethasone treatment (0.65±.13) as compared to the fifth day during treatment (1.26±.19, p<0.05). In saline treated rats, relative CBV gradually increased during treatment (0.89±.13, 1.00±.21, 1.13±.23) with no significant difference on the third day of treatment (p>0.05). In separate serial studies, microfocal X-ray CT of ex vivo brain specimens (N = 9) and immunohistochemistry for endothelial cell marker anti-CD31 (N = 8) were performed. Vascular morphology of ex vivo rat brains from micro-CT analysis showed hypervascular characteristics in tumors, and both vessel density (41.32±2.34 branches/mm3, p<0.001) and vessel tortuosity (p<0.05) were significantly reduced in tumors of rats treated with dexamethasone compared to saline (74.29±3.51 branches/mm3). The vascular architecture of rat brain tissue was examined with anti-CD31 antibody, and dexamethasone treated tumor regions showed reduced vessel area (16.45±1.36 µm2) as compared to saline treated tumor regions (30.83±4.31 µm2, p<0.001) and non-tumor regions (22.80±1.11 µm2, p<0.01).

Conclusions/Significance

Increased vascular density and tortuosity are culprit to abnormal perfusion, which is transiently reduced during dexamethasone treatment.  相似文献   

2.

Background

Dabigatran etexilate (DE) is a new oral direct thrombin inhibitor. Clinical trials point towards a favourable risk-to-benefit profile of DE compared to warfarin. In this study, we evaluated whether hemorrhagic transformation (HT) occurs after experimental stroke under DE treatment as we have shown for warfarin.

Methods

44 male C57BL/6 mice were pretreated orally with 37.5 mg/kg DE, 75 mg/kg DE or saline and diluted thrombin time (dTT) and DE plasma concentrations were monitored. Ischemic stroke was induced by transient middle cerebral artery occlusion (tMCAO) for 1 h or 3 h. We assessed functional outcome and HT blood volume 24 h and 72 h after tMCAO.

Results

After 1 h tMCAO, HT blood volume did not differ significantly between mice pretreated with DE 37.5 mg/kg and controls (1.5±0.5 µl vs. 1.8±0.5 µl, p>0.05). After 3 h tMCAO, DE-anticoagulated mice did also not show an increase in HT, neither at the dose of 37.5 mg/kg equivalent to anticoagulant treatment in the therapeutic range (1.3±0.9 µl vs. control 2.3±0.5 µl, p>0.05) nor at 75 mg/kg, clearly representing supratherapeutic anticoagulation (1.8±0.8 µl, p>0.05). Furthermore, no significant increase in HT under continued anticoagulation with DE 75 mg/kg could be found at 72 h after tMCAO for 1 h (1.7±0.9 µl vs. control 1.6±0.4 µl, p>0.05).

Conclusion

Our experimental data suggest that DE does not significantly increase hemorrhagic transformation after transient focal cerebral ischemia in mice. From a translational viewpoint, this indicates that a continuation of DE anticoagulation in case of an ischemic stroke might be safe, but clearly, clinical data on this question are warranted.  相似文献   

3.
Wang X  Duan X  Yang G  Zhang X  Deng L  Zheng H  Deng C  Wen J  Wang N  Peng C  Zhao X  Wei Y  Chen L 《PloS one》2011,6(4):e18490

Background

Gliosarcoma is one of the most common malignant brain tumors, and anti-angiogenesis is a promising approach for the treatment of gliosarcoma. However, chemotherapy is obstructed by the physical obstacle formed by the blood-brain barrier (BBB) and blood-cerebrospinal fluid barrier (BCSFB). Honokiol has been known to possess potent activities in the central nervous system diseases, and anti-angiogenic and anti-tumor properties. Here, we hypothesized that honokiol could cross the BBB and BCSFB for the treatment of gliosarcoma.

Methodologies

We first evaluated the abilities of honokiol to cross the BBB and BCSFB by measuring the penetration of honokiol into brain and blood-cerebrospinal fluid, and compared the honokiol amount taken up by brain with that by other tissues. Then we investigated the effect of honokiol on the growth inhibition of rat 9L gliosarcoma cells and human U251 glioma cells in vitro. Finally we established rat 9L intracerebral gliosarcoma model in Fisher 344 rats and human U251 xenograft glioma model in nude mice to investigate the anti-tumor activity.

Principal Findings

We showed for the first time that honokiol could effectively cross BBB and BCSFB. The ratios of brain/plasma concentration were respectively 1.29, 2.54, 2.56 and 2.72 at 5, 30, 60 and 120 min. And about 10% of honokiol in plasma crossed BCSFB into cerebrospinal fluid (CSF). In vitro, honokiol produced dose-dependent inhibition of the growth of rat 9L gliosarcoma cells and human U251 glioma cells with IC50 of 15.61 µg/mL and 16.38 µg/mL, respectively. In vivo, treatment with 20 mg/kg body weight of honokiol (honokiol was given twice per week for 3 weeks by intravenous injection) resulted in significant reduction of tumor volume (112.70±10.16 mm3) compared with vehicle group (238.63±19.69 mm3, P = 0.000), with 52.77% inhibiting rate in rat 9L intracerebral gliosarcoma model, and (1450.83±348.36 mm3) compared with vehicle group (2914.17±780.52 mm3, P = 0.002), with 50.21% inhibiting rate in human U251 xenograft glioma model. Honokiol also significantly improved the survival over vehicle group in the two models (P<0.05).

Conclusions/Significance

This study provided the first evidence that honokiol could effectively cross BBB and BCSFB and inhibit brain tumor growth in rat 9L intracerebral gliosarcoma model and human U251 xenograft glioma model. It suggested a significant strategy for offering a potential new therapy for the treatment of gliosarcoma.  相似文献   

4.

Background

Allograft vasculopathy (AV) and native atherosclerosis (NA) share the presence of a T-cell mediated inflammatory response, but differ in overall plaque morphology and growth rate. We studied the distribution and frequency of regulatory- and cytotoxic T cells in the arterial intima lesions in both conditions.

Methodology/Principal Findings

The study is based on vessels of 15 explanted human renal allografts with AV and 10 carotid artery plaques obtained at surgery. Distribution and frequency of cytotoxic- and regulatory T cells, as identified by the expression of Granzyme B (GrB) and FOXP3 was established in NA and AV. Furthermore, we compared the distribution of these cells in AV with the perivascular, interstitial renal tissue using immunohistochemistry. The total number of T cells was much higher in AV than in NA lesions (711±135 and 37±8 CD3/mm2 respectively, p<0.005, mean, ± SEM). Total numbers of FOXP3+ regulatory cells were also significantly increased in AV (36±10 and 0.9±0.3 FOXP3+/mm2 p<0.05), but relative numbers, expressed as a percentage of the total number of CD3+ T cells ((FOXP3+/CD3+) ×100), were not significantly different (4.6%±0.9 and 2.7%±0.6). GrB+ cells were rare in NA, but significantly increased numbers of GrB+ cells were found in AV lesions (85±24 and 0.2±0.1 GrB+/mm2, p<0.05). Perivascular tissues in the allografts showed a higher relative frequency of FOXP3+ cells than adjacent intimal lesions (14.0%±2.7 and 4.6%±0.9, respectively, p<0.05), but a lower frequency of GrB+ cytotoxic T cells (16.1%±2.7 and 22.6%±3.6, p<0.05).

Conclusions

Similar to NA, AV is characterized by a low frequency of intimal FOXP3+ regulatory T cells. Moreover, significant spatial differences exist in the distribution of functional T cell subsets between the intra- and extravascular micro-environments of the graft.  相似文献   

5.

Purpose

Carbon monoxide (CO) is an accepted cytoprotective molecule. The extent and mechanisms of protection in neuronal systems have not been well studied. We hypothesized that delivery of CO via a novel releasing molecule (CORM) would impart neuroprotection in vivo against ischemia-reperfusion injury (IRI)-induced apoptosis of retinal ganglion cells (RGC) and in vitro of neuronal SH-SY5Y-cells via activation of soluble guanylate-cyclase (sGC).

Methods

To mimic ischemic respiratory arrest, SH-SY5Y-cells were incubated with rotenone (100 nmol/L, 4 h) ± CORM ALF186 (10–100 µmol/L) or inactivated ALF186 lacking the potential of releasing CO. Apoptosis and reactive oxygen species (ROS) production were analyzed using flow-cytometry (Annexin V, mitochondrial membrane potential, CM-H2DCFDA) and Western blot (Caspase-3). The impact of ALF186± respiratory arrest on cell signaling was assessed by measuring expression of nitric oxide synthase (NOS) and soluble guanylate-cyclase (sGC) and by analyzing cellular cGMP levels. The effect of ALF186 (10 mg/kg iv) on retinal IRI in Sprague-Dawley rats was assessed by measuring densities of fluorogold-labeled RGC after IRI and by analysis of apoptosis-related genes in retinal tissue.

Results

ALF186 but not inactivated ALF186 inhibited rotenone-induced apoptosis (Annexin V positive cells: 25±2% rotenone vs. 14±1% ALF186+rotenone, p<0.001; relative mitochondrial membrane potential: 17±4% rotenone vs. 55±3% ALF186+rotenone, p<0.05). ALF186 increased cellular cGMP levels (33±5 nmol/L vs. 23±3 nmol/L; p<0.05) and sGC expression. sGC-inhibition attenuated ALF186-mediated protection (relative mitochondrial membrane potential: 55±3% ALF186+rotenone vs. 20±1% ODQ+ALF186+rotenone, p<0.05). ALF186 protected RGC in vivo (IRI 1255±327 RGC/mm2 vs. ALF186+IRI 2036±83; p<0.05) while sGC inhibition abolished the protective effects of ALF186 (ALF186+IRI 2036±83 RGC/mm2 vs. NS-2028+ALF186+IRI 1263±170, p<0.05).

Conclusions

The CORM ALF186 inhibits IRI-induced neuronal cell death via activation of sGC and may be a useful treatment option for acute ischemic insults to the retina and the brain.  相似文献   

6.

Background

Human duodenal mucosa secretes increased levels of satiety signals upon exposure to intact protein. However, after oral protein ingestion, gastric digestion leaves little intact proteins to enter the duodenum. This study investigated whether bypassing the stomach, through intraduodenal administration, affects hormone release and food-intake to a larger extent than orally administered protein in both lean and obese subjects.

Methods

Ten lean (BMI:23.0±0.7 kg/m2) and ten obese (BMI:33.4±1.4 kg/m2) healthy male subjects were included. All subjects randomly received either pea protein solutions (250 mg/kg bodyweight in 0.4 ml/kg bodyweight of water) or placebo (0.4 ml/kg bodyweight of water), either orally or intraduodenally via a naso-duodenal tube. Appetite-profile, plasma GLP-1, CCK, and PYY concentrations were determined over a 2 h period. After 2 h, subjects received an ad-libitum meal and food-intake was recorded.

Results

CCK levels were increased at 10(p<0.02) and 20(p<0.01) minutes after intraduodenal protein administration (IPA), in obese subjects, compared to lean subjects, but also compared to oral protein administration (OPA)(p<0.04). GLP-1 levels increased after IPA in obese subjects after 90(p<0.02) to 120(p<0.01) minutes, compared to OPA. Food-intake was reduced after IPA both in lean and obese subjects (-168.9±40 kcal (p<0.01) and −298.2±44 kcal (p<0.01), respectively), compared to placebo. Also, in obese subjects, food-intake was decreased after IPA (−132.6±42 kcal; p<0.01), compared to OPA.

Conclusions

Prevention of gastric proteolysis through bypassing the stomach effectively reduces food intake, and seems to affect obese subjects to a greater extent than lean subjects. Enteric coating of intact protein supplements may provide an effective dietary strategy in the prevention/treatment of obesity.  相似文献   

7.

Background

Activated platelets exert a pro-inflammatory action that can be largely ascribed to their ability to interact with leukocytes and modulate their activity. We hypothesized that platelet activation and consequent formation of monocyte-platelet aggregates (MPA) induces a pro-inflammatory phenotype in circulating monocytes.

Methodology/Principal Findings

CD62P+ platelets and MPA were measured, and monocytes characterized, by whole blood flow cytometry in healthy subjects, before and two days after receiving influenza immunization. Three monocytic subsets were identified: CD14+CD16, CD14highCD16+and CD14lowCD16+. The increase in high sensitivity C-reactive protein post-immunization was accompanied by increased platelet activation and MPA formation (25.02±12.57 vs 41.48±16.81; p = 0.01), along with enhancement of circulating CD14highCD16+ cells (4.7±3.6 vs 10.4±4.8; p = 0.003), their percentage being linearly related to levels of CD62P+-platelets (r2 = 0.4347; p = 0.0008). In separate in vitro experiments, co-incubation of CD14+CD16 cells, isolated from healthy donor subjects, with autologous platelets gave rise to up-regulation of CD16 on monocytes as compared with those maintained in medium alone (% change in CD14+CD16+ cells following 48 h co-incubation of monocytes with platelets was +106±51% vs monocytes in medium alone; p<0.001). This effect correlated directly with degree of MPA formation (r2 = 0.7731; p<0.0001) and was associated with increased monocyte adhesion to endothelial cells. P-selectin glycoprotein ligand-1 (PSGL-1) blocking antibody, which abrogates MPA formation, abolished these effects, as did the cyclooxygenase (COX)-2 selective inhibitor NS-398, aspirin and the EP1/EP2-selective antagonist AH6809.

Conclusions/Significance

These data suggest that MPA formation, as occurs in the blood under pro-inflammatory conditions, expands the pool of circulating CD14highCD16+ monocytes in a COX-2 dependent manner, and these monocytes exhibit increased adhesion to endothelium. Our findings delineate a novel mechanism underlying the pro-inflammatory effect of platelet activation.  相似文献   

8.

Background

Food allergy may affect the gastrointestinal tract and eosinophilia is often associated with allergic gastrointestinal disorders. Allergy to peanuts is a life-threatening condition and effective and safe treatments still need to be developed. The present study aimed to evaluate the effects of sustained oral exposure to peanuts on the esophageal and jejunal mucosa in sensitized mice. We also evaluated the effects of desensitization with epicutaneous immunotherapy (EPIT) on these processes.

Methods

Mice were sensitized by gavages with whole peanut protein extract (PPE) given with cholera toxin. Sensitized mice were subsequently exposed to peanuts via a specific regimen and were then analysed for eosinophilia in the esophagus and gut. We also assessed mRNA expression in the esophagus, antibody levels, and peripheral T-cell response. The effects of EPIT were tested when intercalated with sensitization and sustained oral peanut exposure.

Results

Sustained oral exposure to peanuts in sensitized mice led to severe esophageal eosinophilia and intestinal villus sub-atrophia, i.e. significantly increased influx of eosinophils into the esophageal mucosa (136 eosinophils/mm2) and reduced villus/crypt ratios (1.6±0.15). In the sera, specific IgE levels significantly increased as did secretion of Th2 cytokines by peanut-reactivated splenocytes. EPIT of sensitized mice significantly reduced Th2 immunological response (IgE response and splenocyte secretion of Th2 cytokines) as well as esophageal eosinophilia (50 eosinophils/mm2, p<0.05), mRNA expression of Th2 cytokines in tissue - eotaxin (p<0.05), IL-5 (p<0.05), and IL-13 (p<0.05) -, GATA-3 (p<0.05), and intestinal villus sub-atrophia (2.3±0.15). EPIT also increased specific IgG2a (p<0.05) and mRNA expression of Foxp3 (p<0.05) in the esophageal mucosa.

Conclusions

Gastro-intestinal lesions induced by sustained oral exposure in sensitized mice are efficaciously treated by allergen specific EPIT.  相似文献   

9.
Wang Q  Zhang M  Ning G  Gu W  Su T  Xu M  Li B  Wang W 《PloS one》2011,6(6):e21006

Background

Recent studies have shown that adult human possess active brown adipose tissue (BAT), which might be important in controlling obesity. It is known that ß-adrenoceptor-UCP1 system regulates BAT in rodent, but its influence in adult humans remains to be shown. The present study is to determine whether BAT activity can be independently stimulated by elevated catecholamines levels in adult human, and whether it is associated with their adiposity.

Methodology/Principal Findings

We studied 14 patients with pheochromocytoma and 14 normal subjects who had performed both 18F-fluorodeoxyglucose positron emission tomography/computed tomography (18F-FDG PET/CT) and plasma total metanephrine (TMN) measurements during 2007–2010. The BAT detection rate and the mean BAT activity were significantly higher in patients with elevated TMN levels (Group A: 6/8 and 6.7±2.1 SUVmean· g/ml) than patients with normal TMN concentrations (Group B: 0/6 and 0.4±0.04 SUVmean· g/ml) and normal subjects (Group C: 0/14 and 0.4±0.03 SUVmean·g/ml). BAT activities were positively correlated with TMN levels (R = 0.83, p<0.0001) and were inversely related to body mass index (R = −0.47, p = 0.010), visceral fat areas (R = −0.39, p = 0.044), visceral/total fat areas (R = −0.52, p = 0.0043) and waist circumferences (R = −0.43, p = 0.019). Robust regression revealed that TMN (R = 0.81, p<0.0001) and waist circumferences (R = −0.009, p = 0.009) were the two independent predictors of BAT activities.

Conclusions/Significance

Brown adipose tissue activity in adult human can be activated by elevated plasma TMN levels, such as in the case of patients with pheochromocytoma, and is negatively associated with central adiposity.  相似文献   

10.

Background

The aims were to analyze two novel NOD2 variants (rs2066843 and rs2076756) in a large cohort of patients with inflammatory bowel disease and to elucidate phenotypic consequences.

Methodology/Principal Findings

Genomic DNA from 2700 Caucasians including 812 patients with Crohn''s disease (CD), 442 patients with ulcerative colitis (UC), and 1446 healthy controls was analyzed for the NOD2 SNPs rs2066843 and rs2076756 and the three main CD-associated NOD2 variants p.Arg702Trp (rs2066844), p.Gly908Arg (rs2066847), and p.Leu1007fsX1008 (rs2066847). Haplotype and genotype-phenotype analyses were performed. The SNPs rs2066843 (p = 3.01×10−5, OR 1.48, [95% CI 1.23-1.78]) and rs2076756 (p = 4.01×10−6; OR 1.54, [95% CI 1.28-1.86]) were significantly associated with CD but not with UC susceptibility. Haplotype analysis revealed a number of significant associations with CD susceptibility with omnibus p values <10−10. The SNPs rs2066843 and rs2076756 were in linkage disequilibrium with each other and with the three main CD-associated NOD2 mutations (D''>0.9). However, in CD, SNPs rs2066843 and rs2076756 were more frequently observed than the other three common NOD2 mutations (minor allele frequencies for rs2066843 and rs2076756: 0.390 and 0.380, respectively). In CD patients homozygous for these novel NOD2 variants, genotype-phenotype analysis revealed higher rates of a penetrating phenotype (rs2076756: p = 0.015) and fistulas (rs2076756: p = 0.015) and significant associations with CD-related surgery (rs2076756: p = 0.003; rs2066843: p = 0.015). However, in multivariate analysis only disease localization (p<2×10−16) and behaviour (p = 0.02) were significantly associated with the need for surgery.

Conclusion/Significance

The NOD2 variants rs2066843 and rs2076756 are novel and common CD susceptibility gene variants.  相似文献   

11.

Objective

Pre-treatment with angiotensin receptor blockers is known to improve neurological outcome after stroke. This study investigated for the first time, whether the renin inhibitor aliskiren has similar neuroprotective effects.

Methods

Since aliskiren specifically blocks human renin, double transgenic rats expressing human renin and angiotensinogen genes were used. To achieve a systolic blood pressure of 150 or 130 mmHg animals were treated with aliskiren (7.5 or 12.5 mg/kg*d) or candesartan (1.5 or 10 mg/kg*d) via osmotic minipump starting five days before middle cerebral artery occlusion with reperfusion. Infarct size was determined by magnetic resonance imaging. mRNA of inflammatory marker genes was studied in different brain regions.

Results

The mortality of 33.3% (7 of 21 animals) in the vehicle group was reduced to below 10% by treatment with candesartan or aliskiren (p<0.05). Aliskiren-treated animals had a better neurological outcome 7 days post-ischemia, compared to candesartan (Garcia scale: 9.9±0.7 vs. 7.3±0.7; p<0.05). The reduction of infarct size in the aliskiren group did not reach statistical significance compared to candesartan and vehicle (24 h post-ischemia: 314±81 vs. 377±70 and 403±70 mm3 respectively). Only aliskiren was able to significantly reduce stroke-induced gene expression of CXC chemokine ligand 1, interleukin-6 and tumor necrosis factor-alpha in the ischemic core.

Conclusions

Head-to-head comparison suggests that treatment with aliskiren before and during cerebral ischemia is at least as effective as candesartan in double transgenic rats. The improved neurological outcome in the aliskiren group was blood pressure independent. Whether this effect is due to primary anti-inflammatory mechanisms has to be investigated further.  相似文献   

12.

Background

Genetic variability of the major subunit (CACNA1E) of the voltage-dependent Ca2+ channel CaV2.3 is associated to risk of type 2 diabetes, insulin resistance and impaired insulin secretion in nondiabetic subjects. The aim of the study was to test whether CACNA1E common variability affects beta cell function and/or insulin sensitivity in patients with newly diagnosed type 2 diabetes.

Methodology/Principal Findings

In 595 GAD-negative, drug naïve patients (mean±SD; age: 58.5±10.2 yrs; BMI: 29.9±5 kg/m2, HbA1c: 7.0±1.3) with newly diagnosed type 2 diabetes we: 1. genotyped 10 tag SNPs in CACNA1E region reportedly covering ∼93% of CACNA1E common variability: rs558994, rs679931, rs2184945, rs10797728, rs3905011, rs12071300, rs175338, rs3753737, rs2253388 and rs4652679; 2. assessed clinical phenotypes, insulin sensitivity by the euglycemic insulin clamp and beta cell function by state-of-art modelling of glucose/C-peptide curves during OGTT. Five CACNA1E tag SNPs (rs10797728, rs175338, rs2184945, rs3905011 and rs4652679) were associated with specific aspects of beta cell function (p<0.05−0.01). Both major alleles of rs2184945 and rs3905011 were each (p<0.01 and p<0.005, respectively) associated to reduced proportional control with a demonstrable additive effect (p<0.005). In contrast, only the major allele of rs2253388 was related weakly to more severe insulin resistance (p<0.05).

Conclusions/Significance

In patients with newly diagnosed type 2 diabetes CACNA1E common variability is strongly associated to beta cell function. Genotyping CACNA1E might be of help to infer the beta cell functional phenotype and to select a personalized treatment.  相似文献   

13.

Background

Aberrant CD40 ligand (CD154) expression occurs on both T cells and B cells in human lupus patients, which is suggested to enhance B cell CD40 signaling and play a role in disease pathogenesis. Transgenic mice expressing CD154 by their B cells (CD154TG) have an expanded spleen B cell pool and produce autoantibodies (autoAbs). CD22 deficient (CD22−/−) mice also produce autoAbs, and importantly, their B cells are hyper-proliferative following CD40 stimulation ex vivo. Combining these 2 genetic alterations in CD154TGCD22−/− mice was thereby predicted to intensify CD40 signaling and autoimmune disease due to autoreactive B cell expansion and/or activation.

Methodology/Principal Findings

CD154TGCD22−/− mice were assessed for their humoral immune responses and for changes in their endogenous lymphocyte subsets. Remarkably, CD154TGCD22−/− mice were not autoimmune, but instead generated minimal IgG responses against both self and foreign antigens. This paucity in IgG isotype switching occurred despite an expanded spleen B cell pool, higher serum IgM levels, and augmented ex vivo B cell proliferation. Impaired IgG responses in CD154TGCD22−/− mice were explained by a 16-fold expansion of functional, mature IL-10-competent regulatory spleen B cells (B10 cells: 26.7×106±6 in CD154TGCD22−/− mice; 1.7×106±0.4 in wild type mice, p<0.01), and an 11-fold expansion of B10 cells combined with their ex vivo-matured progenitors (B10+B10pro cells: 66×106±3 in CD154TGCD22−/− mice; 6.1×106±2 in wild type mice, p<0.01) that represented 39% of all spleen B cells.

Conclusions/Significance

These results demonstrate for the first time that the IL-10-producing B10 B cell subset has the capacity to suppress IgG humoral immune responses against both foreign and self antigens. Thereby, therapeutic agents that drive regulatory B10 cell expansion in vivo may inhibit pathogenic IgG autoAb production in humans.  相似文献   

14.

Background

Migraine is associated with an increased risk for cardiovascular disease (CVD). Both migraine and CVD are highly heritable. However, the genetic liability for CVD among migraineurs is unclear.

Methods

We performed a genome-wide association study for incident CVD events during 12 years of follow-up among 5,122 migraineurs participating in the population-based Women''s Genome Health Study. Migraine was self-reported and CVD events were confirmed after medical records review. We calculated odds ratios (OR) and 95% confidence intervals (CI) and considered a genome-wide p-value <5×10−8 as significant.

Results

Among the 5,122 women with migraine 164 incident CVD events occurred during follow-up. No SNP was associated with major CVD, ischemic stroke, myocardial infarction, or CVD death at the genome-wide level; however, five SNPs showed association with p<5×10−6. Among migraineurs with aura rs7698623 in MEPE (OR = 6.37; 95% CI 3.15–12.90; p = 2.7×10−7) and rs4975709 in IRX4 (OR = 5.06; 95% CI 2.66–9.62; p = 7.7×10−7) appeared to be associated with ischemic stroke, rs2143678 located close to MDF1 with major CVD (OR = 3.05; 95% CI 1.98–4.69; p = 4.3×10−7), and the intergenic rs1406961 with CVD death (OR = 12.33; 95% CI 4.62–32.87; p = 5.2×10−7). Further, rs1047964 in BACE1 appeared to be associated with CVD death among women with any migraine (OR = 4.67; 95% CI 2.53–8.62; p = 8.0×10−7).

Conclusion

Our results provide some suggestion for an association of five SNPs with CVD events among women with migraine; none of the results was genome-wide significant. Four associations appeared among migraineurs with aura, two of those with ischemic stroke. Although our population is among the largest with migraine and incident CVD information, these results must be treated with caution, given the limited number of CVD events among women with migraine and the low minor allele frequencies for three of the SNPs. Our results await independent replication and should be considered hypothesis generating for future research.  相似文献   

15.

Background

South Asians are more insulin resistant than Europeans, which cannot be fully explained by differences in adiposity. We investigated whether differences in oxidative capacity and capacity for fatty acid utilisation in South Asians might contribute, using a range of whole-body and skeletal muscle measures.

Methodology/Principal Findings

Twenty men of South Asian ethnic origin and 20 age and BMI-matched men of white European descent underwent exercise and metabolic testing and provided a muscle biopsy to determine expression of oxidative and lipid metabolism genes and of insulin signalling proteins. In analyses adjusted for age, BMI, fat mass and physical activity, South Asians, compared to Europeans, exhibited; reduced insulin sensitivity by 26% (p = 0.010); lower VO2max (40.6±6.6 vs 52.4±5.7 ml.kg−1.min−1, p = 0.001); and reduced fat oxidation during submaximal exercise at the same relative (3.77±2.02 vs 6.55±2.60 mg.kg−1.min−1 at 55% VO2max, p = 0.013), and absolute (3.46±2.20 vs 6.00±1.93 mg.kg−1.min−1 at 25 ml O2.kg−1.min−1, p = 0.021), exercise intensities. South Asians exhibited significantly higher skeletal muscle gene expression of CPT1A and FASN and significantly lower skeletal muscle protein expression of PI3K and PKB Ser473 phosphorylation. Fat oxidation during submaximal exercise and VO2max both correlated significantly with insulin sensitivity index and PKB Ser473 phosphorylation, with VO2max or fat oxidation during exercise explaining 10–13% of the variance in insulin sensitivity index, independent of age, body composition and physical activity.

Conclusions/Significance

These data indicate that reduced oxidative capacity and capacity for fatty acid utilisation at the whole body level are key features of the insulin resistant phenotype observed in South Asians, but that this is not the consequence of reduced skeletal muscle expression of oxidative and lipid metabolism genes.  相似文献   

16.

Background

There is increasing recognition that pulmonary artery stiffness is an important determinant of right ventricular (RV) afterload in pulmonary arterial hypertension (PAH). We used intravascular ultrasound (IVUS) to evaluate the mechanical properties of the elastic pulmonary arteries (PA) in subjects with PAH, and assessed the effects of PAH-specific therapy on indices of arterial stiffness.

Method

Using IVUS and simultaneous right heart catheterisation, 20 pulmonary segments in 8 PAH subjects and 12 pulmonary segments in 8 controls were studied to determine their compliance, distensibility, elastic modulus and stiffness index β. PAH subjects underwent repeat IVUS examinations after 6-months of bosentan therapy.

Results

At baseline, PAH subjects demonstrated greater stiffness in all measured indices compared to controls: compliance (1.50±0.11×10–2 mm2/mmHg vs 4.49±0.43×10–2 mm2/mmHg, p<0.0001), distensibility (0.32±0.03%/mmHg vs 1.18±0.13%/mmHg, p<0.0001), elastic modulus (720±64 mmHg vs 198±19 mmHg, p<0.0001), and stiffness index β (15.0±1.4 vs 11.0±0.7, p = 0.046). Strong inverse exponential associations existed between mean pulmonary artery pressure and compliance (r2 = 0.82, p<0.0001), and also between mean PAP and distensibility (r2 = 0.79, p = 0.002). Bosentan therapy, for 6-months, was not associated with any significant changes in all indices of PA stiffness.

Conclusion

Increased stiffness occurs in the proximal elastic PA in patients with PAH and contributes to the pathogenesis RV failure. Bosentan therapy may not be effective at improving PA stiffness.  相似文献   

17.

Background

Although the satellite cell (SC) is a key regulator of muscle growth during development and muscle adaptation following exercise, the regulation of human muscle SC function remains largely unexplored. STAT3 signalling mediated via interleukin-6 (IL-6) has recently come to the forefront as a potential regulator of SC proliferation. The early response of the SC population in human muscle to muscle-lengthening contractions (MLC) as mediated by STAT3 has not been studied.

Methodology/Principal Findings

Twelve male subjects (21±2 y; 83±12 kg) performed 300 maximal MLC of the quadriceps femoris at 180°•s−1 over a 55° range of motion with muscle samples (vastus lateralis) and blood samples (antecubital vein) taken prior to exercise (PRE), 1 hour (T1), 3 hours (T3) and 24 hours (T24) post-exercise. Cytoplasmic and nuclear fractions of muscle biopsies were purified and analyzed for total and phosphorylated STAT3 (p-STAT3) by western blot. p-STAT3 was detected in cytoplasmic fractions across the time course peaking at T24 (p<0.01 vs. PRE). Nuclear total and p-STAT3 were not detected at appreciable levels. However, immunohistochemical analysis revealed a progressive increase in the proportion of SCs expressing p-STAT3 with ∼60% of all SCs positive for p-STAT3 at T24 (p<0.001 vs. PRE). Additionally, cMyc, a STAT3 downstream gene, was significantly up-regulated in SCs at T24 versus PRE (p<0.05). Whole muscle mRNA analysis revealed induction of the STAT3 target genes IL-6, SOCS3, cMyc (peaking at T3, p<0.05), IL-6Rα and GP130 (peaking at T24, p<0.05). In addition, Myf5 mRNA was up-regulated at T24 (p<0.05) with no appreciable change in MRF4 mRNA.

Conclusions/Significant Findings

We demonstrate that IL-6 induction of STAT3 signaling occurred exclusively in the nuclei of SCs in response to MLC. An increase in the number of cMyc+ SCs indicated that human SCs were induced to proliferate under the control of STAT3 signaling.  相似文献   

18.

Background

For successful cardiac resynchronisation therapy (CRT) a spatial and electrical separation of right and left ventricular electrodes is essential. The spatial distribution of electrical delays within the coronary sinus (CS) tributaries has not yet been identified.

Objective

Electrical delays within the CS are described during sinus rhythm (SR) and right ventricular pacing (RVP). A coordinate system grading the mitral ring from 0° to 360° and three vertical segments is proposed to define the lead positions irrespective of individual CS branch orientation.

Methods

In 13 patients undergoing implantation of a CRT device 6±2.5, (median 5) lead positions within the CS were mapped during SR and RVP. The delay to the onset and the peak of the local signal was measured from the earliest QRS activation or the pacing spike. Fluoroscopic positions were compared to localizations on a nonfluoroscopic electrode imaging system.

Results

During SR, electrical delays in the CS were inhomogenous in patients with or without left bundle branch block (LBBB). During RVP, the delays increased by 44±32 ms (signal onset from 36±33 ms to 95±30 ms; p<0.001, signal peak from 105±44 ms to 156±30 ms; p<0.001). The activation pattern during RVP was homogeneous and predictable by taking the grading on the CS ring into account: (% QRS) = 78−0.002 (grade−162)2, p<0.0001. This indicates that 78% of the QRS duration can be expected as a maximum peak delay at 162° on the CS ring.

Conclusion

Electrical delays within the CS vary during SR, but prolong and become predictable during RVP. A coordinate system helps predicting the local delays and facilitates interindividual comparison of lead positions irrespective of CS branch anatomy.  相似文献   

19.

Background and Purpose

Maternal glucocorticoid treatment for threatened premature delivery dramatically improves neonatal survival and short-term morbidity; however, its effects on neurodevelopmental outcome are variable. We investigated the effect of maternal glucocorticoid exposure after acute asphyxia on injury in the preterm brain.

Methods

Chronically instrumented singleton fetal sheep at 0.7 of gestation received asphyxia induced by complete umbilical cord occlusion for 25 minutes. 15 minutes after release of occlusion, ewes received a 3 ml i.m. injection of either dexamethasone (12 mg, n = 10) or saline (n = 10). Sheep were killed after 7 days recovery; survival of neurons in the hippocampus and basal ganglia, and oligodendrocytes in periventricular white matter were assessed using an unbiased stereological approach.

Results

Maternal dexamethasone after asphyxia was associated with more severe loss of neurons in the hippocampus (CA3 regions, 290±76 vs 484±98 neurons/mm2, mean±SEM, P<0.05) and basal ganglia (putamen, 538±112 vs 814±34 neurons/mm2, P<0.05) compared to asphyxia-saline, and with greater loss of both total (913±77 vs 1201±75/mm2, P<0.05) and immature/mature myelinating oligodendrocytes in periventricular white matter (66±8 vs 114±12/mm2, P<0.05, vs sham controls 165±10/mm2, P<0.001). This was associated with transient hyperglycemia (peak 3.5±0.2 vs. 1.4±0.2 mmol/L at 6 h, P<0.05) and reduced suppression of EEG power in the first 24 h after occlusion (maximum −1.5±1.2 dB vs. −5.0±1.4 dB in saline controls, P<0.01), but later onset and fewer overt seizures.

Conclusions

In preterm fetal sheep, exposure to maternal dexamethasone during recovery from asphyxia exacerbated brain damage.  相似文献   

20.

Objective

Gender differences in vulnerability for cocaine addiction have been reported. Though the mechanisms are not understood, here we hypothesize that gender differences in reactivity to conditioned-cues, which contributes to relapse, are involved.

Method

To test this we compared brain metabolism (using PET and 18FDG) between female (n = 10) and male (n = 16) active cocaine abusers when they watched a neutral video (nature scenes) versus a cocaine-cues video.

Results

Self-reports of craving increased with the cocaine-cue video but responses did not differ between genders. In contrast, changes in whole brain metabolism with cocaine-cues differed by gender (p<0.05); females significantly decreased metabolism (−8.6%±10) whereas males tended to increase it (+5.5%±18). SPM analysis (Cocaine-cues vs Neutral) in females revealed decreases in frontal, cingulate and parietal cortices, thalamus and midbrain (p<0.001) whereas males showed increases in right inferior frontal gyrus (BA 44/45) (only at p<0.005). The gender-cue interaction showed greater decrements with Cocaine-cues in females than males (p<0.001) in frontal (BA 8, 9, 10), anterior cingulate (BA 24, 32), posterior cingulate (BA 23, 31), inferior parietal (BA 40) and thalamus (dorsomedial nucleus).

Conclusions

Females showed greater brain reactivity to cocaine-cues than males but no differences in craving, suggesting that there may be gender differences in response to cues that are not linked with craving but could affect subsequent drug use. Specifically deactivation of brain regions from “control networks” (prefrontal, cingulate, inferior parietal, thalamus) in females could increase their vulnerability to relapse since it would interfere with executive function (cognitive inhibition). This highlights the importance of gender tailored interventions for cocaine addiction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号