首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
为探讨氮素添加对水分胁迫下毛竹幼苗地上生物量及地下根系形态的调控作用,选取1年生毛竹实生苗为材料,采用水分和施氮双因素完全随机区组设计,以田间持水量的80%~85%作为水分对照(CK)、50%~55%为中度干旱(MD)、30%~35%为重度干旱(HD)设置3个水分水平,氮处理分未施氮(N0,0 mg N·kg-1)和施氮(N1,100 mg N·kg-1)2个水平,通过盆栽试验,测定毛竹实生苗根系形态特征及各器官生物量。结果显示:施氮显著增加了同一水分下毛竹幼苗叶、根及整株生物量,其中,N1MD和N1HD分别较N0MD和N0HD地上生物量增加15.6%、11.9%,总生物量分别增加36.7%、25.0%(P<0.05);施氮降低了相同水分处理下毛竹的比根长、茎叶比,显著促进了中度和重度干旱下根冠比的增加(P<0.05);水分胁迫下,除根生物量比显著增加外,茎、叶生物量比均随氮素添加呈减小的趋势;施氮对毛竹幼苗根系形态特征(根长、根表面积、根体积)具有不同程度的促进作用;施氮对中度干旱下毛竹幼苗干物质积累的缓解作用比重度干旱大,但在...  相似文献   

2.
在塔克拉玛干沙漠腹地,采用分层分段挖掘法对不同灌溉量条件下(每株每次灌水35、24.5和14 kg)梭梭(Haloxylon ammodendron)幼苗根系的分布特征进行了研究。结果表明: 1)随着灌溉量的减少,梭梭幼苗根系生物量的分布格局有向深层发展的趋势,在不同灌溉量条件下地下垂直各层生物量与土壤垂直深度呈显著的负对数关系;2)各灌溉量梭梭幼苗的最大水平根长为垂直根长的2倍,但不同灌溉量根系生物量的水平分布趋势一致;3)吸收根生物量的垂直分布与土壤含水量的垂直变化基本一致,均呈“单峰型”曲线,但灌溉量不同,吸收根生物量峰值在土壤中出现的位置也不同,随着灌溉量的减少,吸收根集中分布区有向深层发展的趋势;4)根长、根表面积和根体积随着土壤深度的增加均呈“单峰型”曲线,灌溉量愈小,根长、根表面积和根体积的峰值愈位于土壤的深层;5)根冠比和垂直根深与株高之比随着灌溉量的减少而呈增加的趋势。  相似文献   

3.
水分胁迫和接种菌根真菌对青冈栎根系形态的影响   总被引:1,自引:0,他引:1  
以石漠化地区造林树种青冈栎幼苗为试验材料,在盆栽条件下,分别用内生菌根真菌摩西球囊霉(Glomus mosseae,Gm)、根内球囊霉(Glomus intraradices,Gi)、外生菌根真菌彩色豆马勃(Pisolithus tinctorius,Pt)和3种菌根真菌混合菌剂进行接种,利用根系扫描仪Epson Perfection V700和根系分析软件WinRhizo,研究了正常水分、中度干旱和重度干旱条件下菌根真菌对青冈栎幼苗根系形态的影响。结果表明:在土壤干旱条件下,接种菌根真菌使青冈栎根系生物量、总根长、根表面积和根体积显著增加,使根平均直径减小;在土壤中度干旱胁迫下,Pt处理根表面积显著高于Gm和Gi处理,而根平均直径显著小于Gm和Gi;在重度干旱胁迫下,Pt处理根生物量和根体积显著小于Gm和Gi,根平均直径显著大于Gm和Gi;相关性分析表明,菌根侵染率与根生物量和总根长呈极显著正相关。本研究表明,在干旱条件下,菌根真菌可改变青冈栎幼苗根系形态,促进碳水化合物向根系积累和分配。  相似文献   

4.
单立山  李毅  张荣  张正中  种培芳 《生态学报》2017,37(21):7324-7332
为探讨荒漠植物白刺幼苗根系形态对降雨格局变化的响应特征,设置3个降雨量梯度(W-、W、W+)和2个降雨间隔时间梯度(T、T+)进行人工模拟试验,结果表明,1)降雨量和降雨间隔时间对白刺幼苗根系形态有不同程度的影响,且降雨量的作用效应更大。2)降雨量相同时,延长降雨间隔时间均使白刺幼苗主根长、根系平均直径、根体积和根表面积减小,但总根长和根系生物量和总生物量却增加,在高降雨量条件下(W+)延长降雨间隔时间白刺幼苗比根长和比表面积分别增加了45.09%和20.20%,但差异均不显著。3)降雨间隔时间相同时,降雨量减少30%仅使主根长平均增加12.06%,总根长、根平均直径、根体积和根表面积等根系形态指标均显著减少,比根长和比表面积变化不大;降雨量增加30%仅使比表面积显著增加,其余各形态指标差异均不显著,低降雨量条件下(W-)主根长与根冠比达到最大,其他指标均在高降雨量条件下(W+)达到最大。4)对8个根系形态参数进行主成分分析,根系生物量、总根长、总根表面积、比根长、比表面积和根体积6个根系生态参数受降雨格局影响显著。  相似文献   

5.
为探求林木幼苗生物量分配和根系生长对空气断根的响应,以侧柏(Platycladus Orientalis)实生苗为材料,设置空气断根(T)和不断根(CK)处理,研究了空气断根10、30 d和50 d后对侧柏生物量、根系形态特征及吸收面积的影响。结果表明:(1)T处理的侧柏幼苗地上生物量、根生物量、总生物量、根长、根表面积、根体积及根尖数在断根10、30 d和50 d后均大于CK,且显著扩大了根系总吸收面积和活跃吸收面积。(2)空气断根显著影响了侧柏实生苗的生物量分配格局,其根冠比在整个试验阶段呈先增大后减小的趋势,而CK逐渐减小。(3)两种处理的侧柏幼苗根系直径集中在0-0.5 mm。与CK相比,T处理侧柏随空气断根时间延长,单株根系直径在0-0.5 mm的根数量急剧增多,占总根尖数的79%,根平均长度、根表面积、根体积和根尖数显著增大。(4)生物量参数和根形态参数之间关系密切。根生物量与地上生物量及总生物量呈显著正相关(P0.05)。除根系平均直径外,根生物量、地上生物量和总生物量分别与根长、根表面积、根体积、根尖数呈显著正相关,根冠比与地上生物量呈负相关。因此,空气断根有效改善了侧柏幼苗的根系形态特征,提高了吸收面积,显著促进侧柏实生苗在生长早期快速发育。  相似文献   

6.
为了探讨绿洲-荒漠过渡带上受损柽柳群落幼苗适宜生长的土壤水分条件,在塔南策勒绿洲外围设置A(不灌溉)、B(适度灌溉)、C(充分灌溉)3个处理的田间试验,于7~10月份考察了各处理柽柳幼苗粗根(>2 mm)和细根(<2 mm)生物量积累、空间分布等变化特征。结果显示:(1)随着灌溉量的增加,柽柳根系生物量积累不断增加,且在生长季末(10月份)增速最大,同时细根占总根重的比例从20.5%上升到29.8%,显著提高了幼苗吸收养分和水分的能力。(2)干旱胁迫(处理A)下柽柳幼苗根系的下扎深度大,但水平根幅的扩展却有限;适度灌溉(处理B)的生物量较处理A大,但小于处理C;根系扎根深度表现为处理A>处理B>处理C,各指标均处于中间状态;水分条件最好(处理C)时虽然垂直扎根深度小,但水平根幅最大,可以更有效利用浅层土壤资源。(3)柽柳幼苗大量根系集中在0~40 cm的土壤表层,而且水分条件越好,这种集中趋势越明显;根系生物量随土壤深度的增加呈递减变化,细根的根长密度也有相似变化,但细根的比根长变化规律不明显,这可能与各层土壤微观环境的变化有关。研究表明,灌溉对柽柳幼苗根系的生长和分布有显著影响,充分灌溉下柽柳幼苗根系生物量积累最多且空间分布最大,该灌溉量有利于柽柳幼苗根系的正常生长和合理分布。  相似文献   

7.
以种子来源于江西遂川的1年生刨花楠扦插苗为材料,设置田间持水量的80%、40% 2个水分水平,以及不添加(0 kg N·hm-2)、低氮(50 kg N·hm-2)、高氮(100 kg N·hm-2) 3个氮添加水平共6种处理的氮-水交互受控试验,测定不同处理刨花楠幼苗3个根序细根比根长、比表面积、平均直径和根组织密度,分析短期氮添加、干旱胁迫及两者交互作用对刨花楠幼苗细根的影响.结果表明: 刨花楠幼苗细根平均直径、比根长在不同根序间差异显著.随根序的增加,刨花楠幼苗细根平均直径增加,其中3级根最大,为0.97 mm;而比根长降低,3级根最小,为238.99 cm·g-1.氮添加对刨花楠细根的比表面积、平均直径、比根长和根组织密度无显著影响,而水分对刨花楠细根平均直径、比根长、根组织密度影响显著.干旱胁迫明显促进幼苗3级细根直径的增加,降低了1、2级细根根组织密度.干旱环境下幼苗3级根的比根长明显低于正常供水环境下幼苗.氮水交互作用对刨花楠细根形态影响不显著.  相似文献   

8.
湖南会同5个亚热带树种的细根构型及功能特征分析   总被引:9,自引:1,他引:8       下载免费PDF全文
细根(直径2mm)具有复杂的分枝系统,不同树种间的细根在空间分布、形态和大小上有较大差异,研究不同树种的细根构型及不同根序的养分特征,对认识不同树种的细根形态和化学成分的变异格局,及其对树种地下生态位分离(niche segregation)、共存和森林生态系统功能过程的影响有着重要意义。在湖南会同林区选择青冈(Cyclobalanopsis glauca)、枫香(Liquidanbar formosana)、拟赤杨(Alniphyllum fortunei)、杉木(Cunninghamia lanceolata)、马尾松(Pinus massoniana)等5个亚热带树种,用挖掘法采集完整的细根根系,按照Pregitzer细根分级方法对细根分级,用Win-RHIZO根系测定系统对细根构型的参数进行测定,同时测定各级根系的C、N含量,以探讨各树种各级细根的功能特征,揭示不同树种细根构型与养分策略之间的关系。结果表明:5个亚热带树种细根1级根比根长、比表面积最高,直径最细;3级根比根长、比表面积最低,直径最粗。不同树种之间细根形态特征和构型也表现出差异性:枫香的1级根序比根长最大,为31.45m·g-1,杉木的最小,为16.34m·g-1,枫香和杉木之间差异显著。马尾松的1、2级根序的比表面积最大,杉木的1级根序的比表面积最小,青冈2级根序的比表面积最小,3级根序比表面积杉木最大,青冈最小。不同树种之间的细根直径差异达到极显著水平,各根序的平均直径以杉木的最大,拟赤杨的最小。5个树种细根根尖密度大小顺序为马尾松青冈枫香杉木拟赤杨,各树种细根分叉数以拟赤杨和马尾松的较高,杉木最低。除杉木和枫香外,5个树种细根C含量均呈现出随着根序上升而增加的趋势,C/N比也随根序的上升而增加,而细根N含量呈现出随着根序上升而明显下降的趋势。细根平均C含量以杉木的最高,拟赤杨的最低,马尾松、青冈与枫香之间的差异不显著。细根平均N含量以拟赤杨的最高,马尾松的最低。C/N比以马尾松的最高,拟赤杨的最低。5个树种中,马尾松的外生菌根有很强的拓展能力,因此能显著地增强植物根系的养分、水分吸收能力,即使在贫瘠和干旱的土壤环境中,也能有效地利用有限的养分和水分,促进个体生长。而杉木细根吸收养分和水分的效率及能力最小。  相似文献   

9.
干旱胁迫下紫花苜蓿根系形态变化及与水分利用的关系   总被引:12,自引:0,他引:12  
李文娆  张岁岐  丁圣彦  山仑 《生态学报》2010,30(19):5140-5150
采用盆栽实验方法研究了紫花苜蓿(品种:陇东和阿尔冈金)根系形态、生物量、蒸腾耗水量等对持续干旱的反应及与水分利用效率(WUE)间的关系,以期揭示紫花苜蓿对干旱胁迫的适应机制。结果表明:干旱胁迫使得紫花苜蓿根系形态特征在年季间、茬次间和品种间发生了显著变化,主要表现为主根伸长生长受到抑制、主根直径变细、侧根和根系总长度伸长生长则被促进、根系表面积和直径≥1mm的侧根数目显著增加、根系生物量下降,这是紫花苜蓿对干旱逆境的适应策略,但这种适应性存在限度。另一方面,干旱胁迫条件下紫花苜蓿草产量和蒸腾耗水量也因生长年限、茬次和品种的不同而呈现不同程度的降低。紫花苜蓿根系形态性状(总根长、根系生物量与根冠比)与植株水分利用效率间具有显著的相关性,其中根重对水分效率的影响是第一位的。WUE在根系形态与冠层水分消耗的协同变化下得到有限提高。对干旱的耐性最终表现为第2年第1年、第1茬和第2茬第3茬、陇东阿尔冈金。  相似文献   

10.
不同水分处理对甘蒙柽柳幼苗根系生长特性的影响   总被引:2,自引:0,他引:2  
以1年生甘蒙柽柳幼苗为对象,采用人工壕沟挖掘法,对柽柳幼苗在不同水分处理条件下(干旱处理、适度灌溉、充分灌溉)根系生态学特征的季节变化进行了研究.结果表明,不同水分处理对柽柳幼苗根系生长影响显著,垂直根扎根深度和生长速率随着灌溉量的减小而增加.地面灌溉量的增加会导致根系分布的浅表化和根系消弱系数的减小,根系生物量与土壤深度呈显著负对数关系.不同水分处理条件下,7-10月的根/冠比平均值分别为0.43、0.60、0.90、1.12,其根、冠间存在典型的异速生长关系.根/冠比随土壤水分的减小而增加,且生长季后期大于初期.  相似文献   

11.
Plant growth, mycorrhizal development and vesicular arbuscular spore production were examined in five tropical crop host species inoculated with Glomus clarum and grown in a glasshouse. In one of the two experiments, sequential harvests of maize, sorghum and chickpea were made in order to study spore production in relation to plant growth and mycorrhizal development. Spore numbers in each of these hosts increased at a fairly constant rate until maximum plant dry weight, when spore production ceased. Sorghum and maize produced considerably more spores than chickpea, with spore numbers being closely correlated with mycorrhizal root length. In the second experiment, Glomus clarum was cultured on each of maize, millet, sorghum, groundnut and chickpea for three consecutive generations before cross-inoculation of the spores from each host onto all five hosts. Sporulation with respect to host size was generally greatest when the inoculum used to infect a host had been produced on that host. The growth-promoting effects of the fungus were not influenced by the source of the inoculum. More spores were produced on the cereals than the legumes. Differences in spore numbers amongst hosts and plant generations were apparently influenced mainly by infected root length and by the growth period.  相似文献   

12.
This paper discusses interspecific differences and phenotypic responses to nitrogen supply in various root parameters of five perennial grasses from contrasting habitats. The following root parameters were studied: root:shoot ratio, specific root length, specific root area, mean root diameter, frequency of fine roots, and the length and density of root hairs. Significant between-species variation was found in all of these features. Species from fertile sites had higher root:shoot ratios at high nitrogen supply than species from infertile habitats. All species growing at low nitrogen supply showed a significant increase in root:shoot ratio. Specific root length, specific root area, mean root diameter and frequency of fine roots were not affected significantly by nitrogen supply. Species from infertile sites responded to low nitrogen supply by a significant increase in root hair length and root hair density.  相似文献   

13.
A new method for analyzing growth is proposed to elucidate factors responsible for the differences in root depth ofLarix kaempferi andAbies veitchii seedlings. Root depth (D) divides into three factors;
  相似文献   

14.
To avoid the current water pollution from intensive glasshouse horticulture, closed systems have to be developed with recirculating drainage water. For crops with a high planting density, such as letuuce, shallow beds of coarse sand may be used if water and nutrient supply can be regulated adequately. The aim of the present study was to determine the rooting characteristics and root distribution of lettuce in sand beds, as affected by substrate depth, the distance to a drain, drip lines and drip points, and the excess of nutrient solution applied. The hypothesis was tested that a small excess and a large distance between drip points leads to local salt accumulations in the root environment and thus to a less homogeneous root distribution.The data confirmed both parts of the hypothesis: spatial patterns in salt distribution were found. Detailed measurements in a sand bed with only one drip line per two crop rows and an amount of fertigation solution added of 2 times the estimated evapotranspiration, showed that root length density was negatively correlated with salt content when comparisons were made within the same layer. Crop yield per row was influenced in the extreme treatment, i.e. one drip line per two crop rows and an amount of fertigation solution added of 1.3 times the estimated evapotranspiration, but yield per bed was still unaffected. The increased heterogeneity of the crop will cause problems at harvest and indicates that the most extreme treatment included in the comparison is just beyond the limit of acceptable heterogeneity in the root medium. Lettuce can be grown on sand beds with a recirculating nutrient solution provided that drip lines are well distributed in the bed and the daily nutrient solution excess is more than 30% of demand.  相似文献   

15.
The root morphology of ten temperate pasture species (four annual grasses, four perennial grasses and two annual dicots) was compared and their responses to P and N deficiency were characterised. Root morphologies differed markedly; some species had relatively fine and extensive root systems (Vulpia spp., Holcus lanatus L. and Lolium rigidum Gaudin), whilst others had relatively thick and small root systems (Trifolium subterraneum L. and Phalaris aquatica L.). Most species increased the proportion of dry matter allocated to the root system at low P and N, compared with that at optimal nutrient supply. Most species also decreased root diameter and increased specific root length in response to P deficiency. Only some of the species responded to N deficiency in this way. Root morphology was important for the acquisition of P, a nutrient for which supply to the plant depends on root exploration of soil and on diffusion to the root surface. Species with fine, extensive root systems had low external P requirements for maximum growth and those with thick, small root systems generally had high external P requirements. These intrinsic root characteristics were more important determinants of P requirement than changes in root morphology in response to P deficiency. Species with different N requirements could not be distinguished clearly by their root morphological attributes or their response to N deficiency, presumably because mass flow is relatively more important for N supply to roots in soil.Section editor: H. Lambers  相似文献   

16.
Fine root turnover is a major pathway for carbon and nutrient cycling in terrestrial ecosystems and is most likely sensitive to many global change factors. Despite the importance of fine root turnover in plant C allocation and nutrient cycling dynamics and the tremendous research efforts in the past, our understanding of it remains limited. This is because the dynamics processes associated with soil resources availability are still poorly understood. Soil moisture, temperature, and available nitrogen are the most important soil characteristics that impact fine root growth and mortality at both the individual root branch and at the ecosystem level. In temperate forest ecosystems, seasonal changes of soil resource availability will alter the pattern of carbon allocation to belowground. Therefore, fine root biomass, root length density (RLD) and specific root length (SRL) vary during the growing season. Studying seasonal changes of fine root biomass, RLD, and SRL associated with soil resource availability will help us understand the mechanistic controls of carbon to fine root longevity and turnover. The objective of this study was to understand whether seasonal variations of fine root biomass, RLD and SRL were associated with soil resource availability, such as moisture, temperature, and nitrogen, and to understand how these soil components impact fine root dynamics in Larix gmelinii plantation. We used a soil coring method to obtain fine root samples (⩽2 mm in diameter) every month from May to October in 2002 from a 17-year-old L. gmelinii plantation in Maoershan Experiment Station, Northeast Forestry University, China. Seventy-two soil cores (inside diameter 60 mm; depth intervals: 0–10 cm, 10–20 cm, 20–30 cm) were sampled randomly from three replicates 25 m × 30 m plots to estimate fine root biomass (live and dead), and calculate RLD and SRL. Soil moisture, temperature, and nitrogen (ammonia and nitrates) at three depth intervals were also analyzed in these plots. Results showed that the average standing fine root biomass (live and dead) was 189.1 g·m−2·a−1, 50% (95.4 g·m−2·a−1) in the surface soil layer (0–10 cm), 33% (61.5 g·m−2·a−1), 17% (32.2 g·m−2·a−1) in the middle (10–20 cm) and deep layer (20–30cm), respectively. Live and dead fine root biomass was the highest from May to July and in September, but lower in August and October. The live fine root biomass decreased and dead biomass increased during the growing season. Mean RLD (7,411.56 m·m−3·a−1) and SRL (10.83 m·g−1·a−1) in the surface layer were higher than RLD (1 474.68 m·m−3·a−1) and SRL (8.56 m·g−1·a−1) in the deep soil layer. RLD and SRL in May were the highest (10 621.45 m·m−3 and 14.83m·g−1) compared with those in the other months, and RLD was the lowest in September (2 198.20 m·m−3) and SRL in October (3.77 m·g−1). Seasonal dynamics of fine root biomass, RLD, and SRL showed a close relationship with changes in soil moisture, temperature, and nitrogen availability. To a lesser extent, the temperature could be determined by regression analysis. Fine roots in the upper soil layer have a function of absorbing moisture and nutrients, while the main function of deeper soil may be moisture uptake rather than nutrient acquisition. Therefore, carbon allocation to roots in the upper soil layer and deeper soil layer was different. Multiple regression analysis showed that variation in soil resource availability could explain 71–73% of the seasonal variation of RLD and SRL and 58% of the variation in fine root biomass. These results suggested a greater metabolic activity of fine roots living in soil with higher resource availability, which resulted in an increased allocation of carbohydrate to these roots, but a lower allocation of carbohydrate to those in soil with lower resource availability. __________ Translated from Acta Phytoecologica Sinica, 2005, 29(3): 403–410 [译自: 植物生态学报, 2005, 29(3): 403–410]  相似文献   

17.
Randy Moore  James D. Smith 《Planta》1985,164(1):126-128
The abscisic-acid (ABA) content of roots of the carotenoid-deficient w-3, vp-5, and vp-7 mutants of Z. mays was analyzed using gas chromatography-mass spectrometry with an analysis sensitivity of 6 ng ABA g–1 fresh weight (FW). Roots of normal seedlings of the same lines were characterized by the following amounts of ABA (as ng ABA g–1 FW,±standard deviation): w-3, 279±43; vp-5, 237±26; vp-7, 338±61. We did not detect any ABA in roots of any of the mutants. Thus, the lack of carotenoids in these mutants correlated positively with the apparent absence of ABA. Primary roots of normal and mutant seedlings were positively gravitropic, with no significant differences in the curvatures of roots of normal as compared with mutant seedlings. These results indicate that ABA 1) is synthesized in maize roots via the carotenoid pathway, and 2) is not necesary for positive gravitropism by primary roots of Z. mays.Abbreviation ABA abscisic acid  相似文献   

18.
Leuschner  Christoph  Hertel  Dietrich  Schmid  Iris  Koch  Oliver  Muhs  Annette  Hölscher  Dirk 《Plant and Soil》2004,258(1):43-56
Only very limited information exists on the plasticity in size and structure of fine root systems, and fine root morphology of mature trees as a function of environmental variation. Six northwest German old-growth beech forests (Fagus sylvatica L.) differing in precipitation (520 – 1030 mm year–1) and soil acidity/fertility (acidic infertile to basic fertile) were studied by soil coring for stand totals of fine root biomass (0–40 cm plus organic horizons), vertical and horizontal root distribution patterns, the fine root necromass/biomass ratio, and fine root morphology (root specific surface area, root tip frequency, and degree of mycorrhizal infection). Stand total of fine root biomass, and vertical and horizontal fine root distribution patterns were similar in beech stands on acidic infertile and basic fertile soils. In five of six stands, stand fine root biomass ranged between 320 and 470 g m–2; fine root density showed an exponential decrease with soil depth in all profiles irrespective of soil type. An exceptionally small stand fine root biomass (<150 g m–2) was found in the driest stand with 520 mm year–1 of rainfall. In all stands, fine root morphological parameters changed markedly from the topsoil to the lower profile; differences in fine root morphology among the six stands, however, were remarkably small. Two parameters, the necromass/biomass ratio and fine root tip density (tips per soil volume), however, were both much higher in acidic than basic soils. We conclude that variation in soil acidity and fertility only weakly influences fine root system size and morphology of F. sylvatica, but affects root system structure and, probably, fine root mortality. It is hypothesized that high root tip densities in acidic infertile soils compensate for low nutrient supply rates, and large necromasses are a consequence of adverse soil chemical conditions. Data from a literature survey support the view that rainfall is another major environmental factor that influences the stand fine root biomass of F. sylvatica.  相似文献   

19.
Balance trials were performed to investigate the effects of experimental Eimeria bovis coccidiosis on the metabolism of water, sodium and potassium in calves. Non-infected pair-fed controls and controls fed according to plan were included in the study to allow differentiation between the effects due to infection and due to changes in feed intake. Primary infection with 5 × 104 (group A) or 1 × 105 (group B) oocysts caused mild diarrhoea in three out of four group A calves and mild to severe haemorrhagic diarrhoea in all five group B calves. Losses of sodium and potassium via faeces tended to increase in the infected calves during patency and apparent digestibility (AD) of these minerals was comparably low. In the urine of the infected calves the Na/K-ratio decreased due to a reduced urinary excretion of sodium. The retention (RT) of sodium was particularly high in the calves that had received the higher oocyst dose. Potassium RT did not underlie significant changes during the course of coccidiosis. In the infected calves the plasma level of sodium was reduced transiently while the level of potassium remained fairly stable. Infections with the higher oocyst dose caused a distinct reduction of fluid excretion via urine which compensated for the increased faecal water losses during severe diarrhoea. Reinfection of the group A calves with 1 × 105 oocysts did not cause any significant metabolic impairment. The results of this study indicate that although acute sublethal bovine coccidiosis alters electrolyte and water metabolism the overall balance of electrolytes and water is largely maintained by physiologic adaptation.  相似文献   

20.
采用水葫芦琼脂平板和氨氮平板初筛及点种于水葫芦茎处的方法,得到使水葫芦茎部病变黑斑的菌株,考察其对光照培养箱中培养水葫芦的生长抑制效果,获得对水葫芦生长有强抑制作用的菌株S63,鉴定为假单胞菌属。露天培养的试验结果表明,加入该菌液0.5%~2%(体积分数)的试验组发病率为41.2%~100%,高于对照组19.4%~33.3%的发病率;试验组叶片的丙二醛(MDA)含量、超氧化物歧化酶(SOD)、过氧化物酶(POD)、过氧化氢酶(CAT)的酶活均显著高于对照组。表明该菌对水葫芦有一定的除草活性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号