首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 649 毫秒
1.
1. In relatively low concentrations of NaCl, KCl, and CaCl2 the rate of respiration of Bacillus subtilis remains fairly constant for a period of several hours, while in the higher concentrations, there is a gradual decrease in the rate. 2. NaCl and KCl increase the rate of respiration of Bacillus subtilis somewhat at concentrations of 0.15 M and 0.2 M respectively; in sufficiently high concentrations they decrease the rate. CaCl2 increases the rate of respiration of Bacillus subtilis at a concentration of 0.05 M and decreases the rate at somewhat higher concentrations. 3. The effects of salts upon respiration show a well marked antagonism between NaCl and CaCl2, and between KCl and CaCl2. The antagonism between NaCl and KCl is slight and the antagonism curve shows two maxima.  相似文献   

2.
The pH of a 0.01 molar solution of glycine, half neutralized with NaOH, is 9.685. Addition of only one of the salts NaCl, KCl, MgCl2, or CaCl2 will lower the pH of the solution (at least up to 1 µ). If a given amount of KCl is added to a glycine solution, the subsequent addition of increasing amounts of NaCl will first raise the pH (up to 0.007 M NaCl). Further addition of NaCl (up to 0.035 M NaCl) will lower the pH, and further additions slightly raise the pH. The same type of curve is obtained by adding NaCl to glycine solution containing MgCl2 or CaCl2 except that the first and second breaks occur at 0.015 M and 0.085 M NaCl, respectively. Addition of CaCl2 to a glycine solution containing MgCl2 gives the same phenomena with breaks at 0.005 M and 0.025 M CaCl; or at ionic strengths of 0.015 µCaCl2 and 0.075 µCaCl2. This indicates that the effect is a function of the ionic strength of the added salt. These effects are sharp and unmistakable. They are almost identical with the effects produced by the same salt mixtures on the pH of gelatin solutions. They are very suggestive of physiological antagonisms, and at the same time cannot be attributed to colloidal phenomena.  相似文献   

3.
1. In the presence of 0.05 per cent dextrose the respiration of Aspergillus niger is increased by NaCl in concentrations of 0.25 to 0.5M, and by 0.5M CaCl2. 2. Stronger concentrations, as 2M NaCl and 1.25M CaCl2, decrease the respiration. The decrease in the higher concentrations is probably an osmotic effect of these salts. 3. A mixture of 19 cc. of NaCl and 1 cc. of CaCl2 (both 0.5M) showed antagonism, in that the respiration was normal, although each salt alone caused an increase. 4. Spores of Aspergillus niger did not germinate on 0.5M NaCl (plus 0.05 per cent dextrose) while they did on 0.5M CaCl2 (plus 0.05 per cent dextrose) and on various mixtures of the two. This shows that a substance may have different effects on respiration from those which it has upon growth.  相似文献   

4.
1. Concentrations of MgCl2 up to 0.01 M have little effect upon the rate or respiration of Bacillus subtilis; at 0.03 M there is an increase in the rate, while in the higher concentrations there is a gradual decrease. 2. There is a well marked antagonism between MgCl2 and NaCl, and a very slight antagonism between MgCl2 and CaCl2.  相似文献   

5.
1.25 per cent gelatin solutions containing enough NaOH to bring them to pH 7.367 (or KOH to pH 7.203) were made up with various concentrations of NaCl, KCl and MgCl2, alone and in mixtures, up to molar ionic strength. The effects of these salts on the pH were observed. MgCl2 and NaCl alone lower the pH of the Na gelatinate or the K gelatinate, in all amounts of these salts. KCl first lowers the pH (up to 0.01 M K+), then raises the pH. Mixtures of NaCl and KCl (up to 0.09 M of the salt whose concentration is varied) raise the pH; then (up to 0.125 M Na+ or K+) lower the pH; and finally (above 0.125 M) behave like KCl alone. Mixtures of MgCl2 and NaCl raise the pH up to 0.10 M Na+, and lower it up to 0.15 M Na+ regardless of the amount of MgCl 2. Higher concentrations of NaCl have little effect, but the pH in this range of NaCl concentration is lowered with increase of MgCl2. Mixtures of MgCl2 and KCl behave as above described (for MgCl2 and NaCl) and the addition of NaCl plus KCl to gelatin containing MgCl2 produces essentially the same effect as the addition of either alone, except that the first two breaks in this curve come at 0.07 M and 0.08 M [Na+ + K+] and there is a third break at 0.12 M. In this pH range the free groups of the dicarboxylic acids and of lysine are essentially all ionized and the prearginine and histidine groups are essentially all non-ionized. The arginine group is about 84 per cent ionized. Hence we are studying a solution with two ionic species in equilibrium, one with the arginine group ionized, and one with it non-ionized. It is shown that the effect of each salt alone depends upon the effect of the cation on the activity of these two species due to combination. The anomalous effects of cation mixtures may be qualitatively accounted for if one or both of these species fail to combine with the cations in a mixture in proportion to the relative combination in solutions of each cation alone. Special precautions were taken to ensure accuracy in the pH measurements. The mother solutions gave identical readings to 0.001 pH and the readings with salts were discarded when not reproducible to 0.003 pH. All doubtful data were discarded.  相似文献   

6.
1. It is shown that NaCl acts like CaCl2 or LaCl3 in preventing the diffusion of strong acids through the membrane of the egg of Fundulus with this difference only that a M/8 solution of NaCl acts like a M/1,000 solution of CaCl2 and like a M/30,000 solution of LaCl3. 2. It is shown that these salts inhibit the diffusion of non-dissociated weak acid through the membrane of the Fundulus egg but slightly if at all. 3. Both NaCl and CaCl2 accelerate the diffusion of dissociated strong alkali through the egg membrane of Fundulus and CaCl2 is more efficient in this respect than NaCl. 4. It is shown that in moderate concentrations NaCl accelerates the rate of diffusion of KCl through the membrane of the egg of Fundulus while CaCl2 does not.  相似文献   

7.
1. The question of the critical pore diameter for streaming potential is discussed. 2. The surface charge is calculated for cellulose in contact with solutions of K3PO4, K2CO3, K2SO4, KCl, and ThCl4. 3. The surface charge of cellulose in contact with a solution of 2 x 10–4 N NaCl is calculated as a function of temperature and is found to show a sharp break at 39°. This is interpreted in terms of the change of the specific heat of water. 4. A marked ion antagonism is found in NaCl:KCl, KCl:MgCl2, NaCl:MgCl2, NaCl:CaCl2, KCl:CaCl2, CaCl2:MgCl2 mixtures when the surface charge is calculated as a function of concentration.  相似文献   

8.
1. Experiments on anomalous osmosis suggested that salts with trivalent cations, e.g. LaCl3, caused isoelectric gelatin to be positively charged, and salts with tetravalent anions, e.g. Na4Fe(CN)6, caused isoelectric gelatin to be negatively charged. In this paper direct measurements of the P.D. between gels of isoelectric gelatin and an aqueous solution as well as between solutions of isoelectric gelatin in a collodion bag and an aqueous solution are published which show that this suggestion was correct. 2. Experiments on anomalous osmosis suggested that salts like MgCl2, CaCl2, NaCl, LiCl, or Na2SO4 produce no charge on isoelectric gelatin and it is shown in this paper that direct measurements of the P.D. support this suggestion. 3. The question arose as to the nature of the mechanism by which trivalent and tetravalent ions cause the charge of isoelectric proteins. It is shown that salts with such ions act on isoelectric gelatin in a way similar to that in which acids or alkalies act, inasmuch as in low concentrations the positive charge of isoelectric gelatin increases with the concentration of the LaCl3 solution until a maximum is reached at a concentration of LaCl3 of about M/8,000; from then on a further increase in the concentration of LaCl3 diminishes the charge again. It is shown that the same is true for the action of Na4Fe(CN)6. From this it is inferred that the charge of the isoelectric gelatin under the influence of LaCl3 and Na4Fe(CN)6 at the isoelectric point is due to an ionization of the isoelectric protein by the trivalent or tetravalent ions. 4. This ionization might be due to a change of the pH of the solution, but experiments are reported which show that in addition to this influence on pH, LaCl3 causes an ionization of the protein in some other way, possibly by the formation of a complex cation, gelatin-La. Na4Fe(CN)6 might probably cause the formation of a complex anion of the type gelatin-Fe(CN)6. Isoelectric gelatin seems not to form such compounds with Ca, Na, Cl, or SO4. 5. Solutions of LaCl3 and Na4Fe(CN)6 influence the osmotic pressure of solutions of isoelectric gelatin in a similar way as they influence the P.D., inasmuch as in lower concentrations they raise the osmotic pressure of the gelatin solution until a maximum is reached at a concentration of about M/2,048 LaCl3 and M/4,096 Na4Fe(CN)6. A further increase of the concentration of the salt depresses the osmotic pressure again. NaCl, LiCl, MgCl2, CaCl2, and Na2SO4 do not act in this way. 6. Solutions of LaCl3 have only a depressing effect on the P.D. and osmotic pressure of gelatin chloride solutions of pH 3.0 and this depressing effect is quantitatively identical with that of solutions of CaCl2 and NaCl of the same concentration of Cl.  相似文献   

9.
The cells of Halicystis impaled on capillaries reach a steady P.D. of 60 to 80 millivolts across the protoplasm from sap to sea water. The outer surface of the protoplasm is positive in the electrometer to the inner surface. The P.D. is reduced by contact with sap and balanced NaCl-CaCl2 mixtures; it is abolished completely in solutions of NaCl, CaCl2, KCl, MgSO4, and MgCl2. There is prompt recovery of P.D. in sea water after these exposures.  相似文献   

10.
1. The equations which serve to predict the injury of tissue in 0.52 M NaCl and in 0.278 M CaCl2 and its subsequent recovery (when it is replaced in sea water) also enable us to predict the behavior of tissue in mixtures of these solutions, as well as its recovery in sea water after exposure to mixtures. 2. The reactions which are assumed in order to account for the behavior of the tissue proceed as if they were inhibited by a salt compound formed by the union of NaCl and CaCl2 with some constituent of the protoplasm (certain of these reactions are accelerated by CaCl2). 3. In this and preceding papers a quantitative theory is developed in order to explain: (a) the toxicity of NaCl and CaCl2; (b) the antagonism between these substances; (c) the fact that recovery (in sea water) may be partial or complete, depending on the length of exposure to the toxic solution.  相似文献   

11.
Guaiacol was applied at two spots on the same cell of Nitella. At one spot it was dissolved in 0.01 M NaCl, at the other in 0.01 M CaCl2 or BaCl2. The effect was practically the same in all cases, i.e. a similar change of P.D. in a negative direction, involving a more or less complete loss of P.D. (depolarization). When hexylresorcinol was used in place of guaiacol the result was similar. That Ca++ and Ba++ do not inhibit the effect of these organic depolarizing substances may be due to a lack of penetration of Ca++ and Ba++. The organic substances penetrate more rapidly and their effect is chiefly on the inner protoplasmic surface which is the principal seat of the P.D.  相似文献   

12.
Treatment with distilled water removes from Nitella the ability to give the large potential difference between 0.01 M KCl and 0.01 M NaCl which is known as the potassium effect. The potassium effect may be restored by action currents. This might be explained by saying that distilled water removes from the surface a substance, R, which is responsible for the potassium effect and which moves into the surface during the action current and thereby restores the potassium effect.  相似文献   

13.
By means of micro-dissection and injection Amœba proteus was treated with the chlorides of Na, K, Ca, and Mg alone, in combination, and with variations of pH. I. The Plasmalemma. 1. NaCl weakens and disrupts the surface membrane of the ameba. Tearing the membrane accelerates the disruption which spreads rapidly from the site of the tear. KCl has no disruptive effect on the membrane but renders it adhesive. 2. MgCl2 and CaCl2 have no appreciable effect on the integrity of the surface membrane of the ameba when applied on the outside. No spread of disruption occurs when the membrane is torn in these salts. When these salts are introduced into the ameba they render the pellicle of the involved region rigid. II. The Internal Protoplasm. 3. Injected water either diffuses through the protoplasm or becomes localized in a hyaline blister. Large amounts when rapidly injected produce a "rushing effect". 4. HCl at pH 1.8 solidifies the internal protoplasm and at pH 2.2 causes solidification only after several successive injections. The effect of the subsequent injections may be due to the neutralization of the cell-buffers by the first injection. 5. NaCl and KCl increase the fluidity of the internal protoplasm and induce quiescence. 6. CaCl2 and MgCl2 to a lesser extent solidify the internal protoplasm. With CaCl2 the solidification tends to be localized. With MgCl2 it tends to spread. The injection of CaCl2 accelerates movement in the regions not solidified whereas the injection of MgCl2 induces quiescence. III. Pinching-Off Reaction. 7. A hyaline blister produced by the injection of water may be pinched off. The pinched-off blister is a liquid sphere surrounded by a pellicle. 8. Pinching off always takes place with injections of HCl when the injected region is solidified. 9. The injection of CaCl2 usually results in the pinching off of the portion solidified. The rate of pinching off varies with the concentration of the salt. The injection of MgCl2 does not cause pinching off. IV. Reparability of Torn Surfaces. 10. The repair of a torn surface takes place readily in distilled water. In the different salt solutions, reparability varies specifically with each salt, with the concentration of the salt, and with the extent of the tear. In NaCl and in KCl repair occurs less readily than in water. In MgCl2 repair takes place with great difficulty. In CaCl2 a proper estimate of the process of repair is complicated by the pinching-off phenomenon. However, CaCl2 is the only salt found to increase the mobility of the plasmalemma, and this presumably enhances its reparability. 11. The repair of the surface is probably a function of the internal protoplasm and depends upon an interaction of the protoplasm with the surrounding medium. V. Permeability. 12. NaCl and KCl readily penetrate the ameba from the exterior. CaCl2 and MgCl2 do not. 13. All four salts when injected into an ameba readily diffuse through the internal protoplasm. In the case of CaCl2 the diffusion may be arrested by the pinching-off process. VI. Toxicity. 14. NaCl and KCl are more toxic to the exterior of the cell than to the interior, and the reverse is true for CaCl2 and MgCl2. 15. The relative non-toxicity of injected NaCl to the interior of the ameba is not necessarily due to its diffusion outward from the cell. 16. HCl is much more toxic to the exterior of a cell than to the interior; at pH 5.5 it is toxic to the surface whereas at pH 2.5 it is not toxic to the interior. NaOH to pH 9.8 is not toxic either to the surface or to the interior. VII. Antagonism. 17. The toxic effects of NaCl and of KCl on the exterior of the cell can be antagonized by CaCl2 and this antagonism occurs at the surface. Although the lethal effect of NaCl is thus antagonized, NaCl still penetrates but at a slower rate than if the ameba were immersed in a solution of this salt alone. 18. NaCl and HCl are mutually antagonistic in the interior of the ameba. No antagonism between the salts and HCl was found on the exterior of the ameba. No antagonism between the salts and NaOH was found on the interior or exterior of the ameba. 19. The pinching-off phenomenon can be antagonized by NaCl or by KCl, and the rate of the retardation of the pinching-off process varies with the concentration of the antagonizing salt. 20. The prevention of repair of a torn membrane by toxic solutions of NaCl or KCl can be antagonized by CaCl2. These experiments show directly the marked difference between the interior and the exterior of the cell in their behavior toward the chlorides of Na, K, Ca, and Mg.  相似文献   

14.
When protoplasm dies it becomes completely and irreversibly permeable and this may be used as a criterion of death. On this basis we may say that when 0.2 M formaldehyde plus 0.001 M NaCl is applied to Nitella death arrives sooner at the inner protoplasmic surface than at the outer. If, however, we apply 0.17 M formaldehyde plus 0.01 M KCl death arrives sooner at the outer protoplasmic surface. The difference appears to be due largely to the conditions at the two surfaces. With 0.2 M formaldehyde plus 0.001 M NaCl the inner surface is subject to a greater electrical pressure than the outer and is in contact with a higher concentration of KCl. In the other case these conditions are more nearly equal so that the layer first reached by the reagent is the first to become permeable. The outer protoplasmic surface has the ability to distinguish electrically between K+ and Na+ (potassium effect). Under the influence of formaldehyde this ability is lost. This is chiefly due to a falling off in the partition coefficient of KCl in the outer protoplasmic surface. At about the same time the inner protoplasmic surface becomes completely permeable. But the outer protoplasmic surface retains its ability to distinguish electrically between different concentrations of the same salt, showing that it has not become completely permeable. After the potential has disappeared the turgidity (hydrostatic pressure inside the cell) persists for some time, probably because the outer protoplasmic surface has not become completely permeable.  相似文献   

15.
1. The strain of Bacterium coli used in these experiments multiplies in distilled water at pH 6.0 and pH 8.0 and in Ringer-Locke solution at pH 6.0. Under all the other conditions studied the numbers decrease with the passage of time. 2. The electrophoretic charge of the cells is highest in distilled water at pH 6.0 and pH 8.0. Under all other conditions studied the velocity of migration is decreased, but the decrease is immediate and is not affected by more prolonged exposure. 3. A strongly acid solution (pH 2.0) causes a rapid death of the cells and a sharp decrease in electrophoretic charge, sometimes leading to complete reversal. 4. A strongly alkaline solution (pH 11.0) is almost as toxic as a strongly acid one, although in distilled water the organisms survive fairly well at this reaction. Electrophoretic charge, on the other hand, is only slightly reduced in such an alkaline medium. 5. In distilled water, reactions near the neutral point are about equally favorable to both viability and electrophoretic charge, pH 8.0 showing slightly greater multiplication and a slightly higher charge than pH 11.0. In the presence of salts, however, pH 8.0 is much less favorable to viability and somewhat more favorable to electrophoretic charge than is pH 6.0. 6. Sodium chloride solutions, in the concentrations studied, all proved somewhat toxic and all tended to depress electrophoretic charge. Very marked toxicity was, however, exhibited only in a concentration of .725 M strength or over and at pH 8.0, while electrophoretic migration velocity was only slightly decreased at a concentration of .0145 M strength. 7. Calcium chloride was more toxic than NaCl, showing very marked effects in .145 M strength at pH 8.0 and in 1.45 M strength at pH 6.0. It greatly depressed electrophoretic charge even in .0145 M concentration. 8. Ringer-Locke solution proved markedly stimulating to the growth of the bacteria at pH 6.0 while at pH 8.0 it was somewhat toxic, though less so than the solutions of pure salts. It depressed migration velocity at all pH values, being more effective than NaCl in this respect, but less effective than CaCl2. 9. It would appear from these experiments that a balanced salt solution (Ringer-Locke''s) may be distinctly favorable to bacterial viability in water at an optimum reaction while distinctly unfavorable in a slightly more alkaline solution. 10. Finally, while there is a certain parallelism between the influence of electrolytes upon viability and upon electrophoretic charge, the parallelism is not a close one and the two effects seem on the whole to follow entirely different laws.  相似文献   

16.
Many forms of irregular rhythm and of partial block occurring in the vertebrate heart can be duplicated in Nitella. In order to observe these phenomena the cells of Nitella are kept for 6 weeks or more in a nutrient solution. They are then exposed for 3 hours or less to 0.01 M NaCl, NaSCN, or guanidine chloride, which reduce the time required for the action current to about 1 second (the normal time is 15 to 30 seconds). A pacemaker is established at one end of the cell by placing it in contact with 0.01 M KCl. This produces action currents at the rate of about 1 a second. Apparently some parts of the cell are unable to follow this rapid pace and hence fall into irregular rhythms (arrhythmia) and fail to register all the impulses (partial block).  相似文献   

17.
In Nitella the substitution of KCl for NaCl changes the P.D. in a negative direction. In some cases this change is lessened by adding solid CaCl2 to the solution of KCl. This may be due to lessening the partition coefficient of KCl or to decreasing the solubility of an organic substance which sensitizes the cell to the action of KCl. Little or no correlation exists between this effect of calcium and its ordinary antagonistic action in producing a balanced solution which preserves the life of the cell indefinitely. CaCl2 is negative to NaCl but positive to KCl. The effects of mixtures of KCl, NaCl, and CaCl2 are discussed. The concentration effect of a mixture of KCl + CaCl2 shows certain peculiarities due to action currents: these resemble those found with pure KCl. These studies and others on Nitella, Valonia, and Halicystis indicate that mobilities and partition coefficients are variable and can be brought under experimental control.  相似文献   

18.
1. The effect of eight salts, NaCl, Na2SO4, Na4Fe(CN)6, CaCl2, LaCl3, ThCl4, and basic and acid fuchsin on the cataphoretic P.D. between solid particles and aqueous solutions was measured near the point of neutrality of water (pH 5.8). It was found that without the addition of electrolyte the cataphoretic P.D. between particles and water is very minute near the point of neutrality (pH 5.8), often less than 10 millivolts, if care is taken that the solutions are free from impurities. Particles which in the absence of salts have a positive charge in water near the point of neutrality (pH 5.8) are termed positive colloids and particles which have a negative charge under these conditions are termed negative colloids. 2. If care is taken that the addition of the salt does not change the hydrogen ion concentration of the solution (which in these experiments was generally pH 5.8) it can be said in general, that as long as the concentration of salts is not too high, the anions of the salt have the tendency to make the particles more negative (or less positive) and that cations have the opposite effect; and that both effects increase with the increasing valency of the ions. As soon as a maximal P.D. is reached, which varies for each salt and for each type of particles, a further addition of salt depresses the P.D. again. Aside from this general tendency the effects of salts on the P.D. are typically different for positive and negative colloids. 3. Negative colloids (collodion, mastic, Acheson''s graphite, gold, and metal proteinates) are rendered more negative by low concentrations of salts with monovalent cation (e.g. Na) the higher the valency of the anion, though the difference in the maximal P.D. is slight for the monovalent Cl and the tetravalent Fe(CN)6 ions. Low concentrations of CaCl2 also make negative colloids more negative but the maximal P.D. is less than for NaCl; even LaCl3 increases the P.D. of negative particles slightly in low concentrations. ThCl4 and basic fuchsin, however, seem to make the negative particles positive even in very low concentrations. 4. Positive colloids (ferric hydroxide, calcium oxalate, casein chloride—the latter at pH 4.0) are practically not affected by NaCl, are rendered slightly negative by high concentrations of Na2SO4, and are rendered more negative by Na4Fe(CN)6 and acid dyes. Low concentrations of CaCl2 and LaCl3 increase the positive charge of the particles until a maximum is reached after which the addition of more salt depresses the P.D. again. 5. It is shown that alkalies (NaOH) act on the cataphoretic P.D. of both negative and positive particles as Na4Fe(CN)6 does at the point of neutrality. 6. Low concentrations of HCl raise the cataphoretic P.D. of particles of collodion, mastic, graphite, and gold until a maximum is reached, after which the P.D. is depressed by a further increase in the concentration of the acid. No reversal in the sign of charge of the particle occurs in the case of collodion, while if a reversal occurs in the case of mastic, gold, and graphite, the P.D. is never more than a few millivolts. When HCl changes the chemical nature of the colloid, e.g. when HCl is added to particles of amphoteric electrolytes like sodium gelatinate, a marked reversal will occur, on account of the transformation of the metal proteinate into a protein-acid salt. 7. A real reversal in the sign of charge of positive particles occurs, however, at neutrality if Na4Fe(CN)6 or an acid dye is added; and in the case of negative colloids when low concentrations of basic dyes or minute traces of ThCl4 are added. 8. Flocculation of the suspensions by salts occurs when the cataphoretic P.D. reaches a critical value which is about 14 millivolts for particles of graphite, gold, or mastic or denatured egg albumin; while for collodion particles it was about 16 millivolts. A critical P.D. of about 15 millivolts was also observed by Northrop and De Kruif for the flocculation of certain bacteria.  相似文献   

19.
The nucleoprotamine of trout sperm can be extracted completely with 1 M sodium chloride. On reducing the salt concentration to 0.14 M, physiological saline, the nucleoprotamine precipitates in long, fibrous strands. When the nucleoprotamine, dissolved in M NaCl, is dialyzed all the protamine diffuses through the membrane leaving behind highly polymerized, protein-free desoxyribose nucleic acid. The nucleoprotamine constitutes 91 per cent of the lipid-free mass of the sperm nucleus. While nucleoprotamine is being extracted by M NaCl a stage is reached at which the sperm chromosomes are clearly visible.  相似文献   

20.
The theoretical aspects of the problem of sieve-like membranes are developed. The method of preparing the dried collodion membrane is described, and the method of defining the property of a particular membrane is given. It consists of the measurement of the Co P, that is the P.D. between an 0.1 and an 0.01 M KCl solution separated by the membrane. Co P is in the best dried membranes 50 to 53 millvolts, the theoretically possible maximum value being 55 millivolts. Diffusion experiments have been carried out with several arrangements, one of which is, for example, the diffusion of 0.1 M KNO3 against 0.1 M NaCl across the membrane. The amount of K+ diffusing after a certain period was in membranes with a sufficiently high Co P (about 50 millivolts or more) on the average ten times as much as the amount of diffused Cl-. In membranes with a lower Co P the ratio was much smaller, down almost to the proportion of 1:1 which holds for the mobility of these two ions in a free aqueous solution. When higher concentrations were used, e.g. 0.5 M solution, the difference of the rate of diffusion for K+ and Cl- was much smaller even in the best membranes, corresponding to the fact that the P.D. of two KCl solutions whose concentrations are 10:1 is much smaller in higher ranges of concentration than in lower ones. These observations are confirmed by experiments arranged in other ways. It has been shown that, in general, the diffusion of an anion is much slower than the one of a cation across the dried collodion membrane. The ratio of the two diffusion coefficients would be expected to be calculable in connection with the potential difference of such a membrane when interposed between these solutions. The next problem is to show in how far this can be confirmed quantitatively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号