首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Plants fractionate Si isotopes which provides a useful Si tracer in the Si soil-plant cycle. This study reports plant Si content and Si-isotopic signatures in mature banana plants grown on soils with different weathering degree, but all developed from basaltic pyroclasts in the Mungo area, Cameroon. The δ30Si compositions were determined in various plant parts and soil surface horizons by MC-ICP-MS in dry plasma mode with external Mg doping to a precision of ± 0.15‰ (± 2σSD). The Si-isotopic compositions in banana plants grown on weathered clayey soils (+0.54 ± 0.15‰) are heavier than on weakly developed soils rich in fresh ash and pumice (+0.02 ± 0.15‰). The corresponding bulk soils display lower δ30Si value in weathered soil (?1.41‰) than in poorly developed soil (?0.41‰). We suggest that the dissolved Si source for the plant, governed firstly by dissolution of easily weatherable minerals, was isotopically enriched in heavy isotopes through clay formation over long periods. At seasonal to annual time scale, this source is influenced by a combination of following processes: Si adsorption of light isotopes onto Fe oxides, plant Si uptake and recycling in surface horizons. This would provide an isotopically heavier Si source in the more weathered soil since the Fe oxides content increases with weathering. Plant Si-isotopic signature might thus reflect the soil weathering degree. This study further suggests that in addition to weathering processes, rivers isotopic signatures likely depend on the fate of phytoliths in the soil-plant-river system.  相似文献   

2.
Banana plantlets (Musa acuminata cv Grande Naine) cultivated in hydroponics take up silicon proportionally to the concentration of Si in the nutrient solution (0–1.66 mM Si). Here we study the Si status of banana plantlets grown under controlled greenhouse conditions on five soils developed from andesitic volcanic ash, but differing in weathering stage. The mineralogical composition of soils was inferred from X-ray diffraction, elemental analysis and selective chemical/mineralogical extractions. With increasing weathering, the content of weatherable primary minerals decreased. Conversely, clay content increased and stable secondary minerals were increasingly dominant: gibbsite, Fe oxides, allophane, halloysite and kaolinite. The contents of biogenic Si in plant and soil were governed by the reserve of weatherable primary minerals. The largest concentrations of biogenic Si in plant (6.9–7 g kg−1) and soil (50–58 g kg−1) occurred in the least weathered soils, where total Si content was above 225 g kg−1. The lowest contents of biogenic Si in plant (2.8–4.3 g kg−1) and soil (8–31 g kg−1) occurred in the most weathered desilicated soils enriched with secondary oxides and clay minerals. Our data imply that soil weathering stage directly impacted the soil-to-plant transfer of silicon, and thereby the stock of biogenic Si in a soil–plant system involving a Si-accumulating plant. They further imply that soil type can influence the silicon soil–plant cycle and its hydrological output.  相似文献   

3.
L. Sun  L. H. Wu  T. P. Ding  S. H. Tian 《Plant and Soil》2008,304(1-2):291-300
Silicon (Si) isotope composition and Si distribution among different rice plant organs and different parts of rice leaf at maturity were studied, which may provide new insights into the mechanism of Si accumulation in plants and biogeochemical Si cycle. An isotope ratio mass spectrometer (IRMS) was used to examine Si isotope fractionation by rice plant grown in a hydroponic system. The observed 30Si-depletion (about 0.3‰) of whole plant relative to external nutrient solutions suggested biologically mediated Si isotope fractionation occurred during uptake. However, it was not possible to judge the Si uptake mechanism with the data. For δ30Si variation within plant, there was a consistent increasing trend from lower to upper tissues (stem < leaf < husk < grain; leaf sheath < leaf blade base <leaf blade middle < leaf blade top). The phenomenon, reflecting kinetic isotope effects, could be explained that isotope fractionation during Si deposition in rice plant was a Rayleigh-like behavior. The range (−2.7‰ to 2.3‰) of δ30Si variation among rice plant tissues in present experiment exceeded that (−1.7‰ to 2.5‰) of phytoliths observed previously in continents, which would enhance understanding the role of phytoliths on globe Si isotope balance.  相似文献   

4.
Hydrogen isotope fractionation during water uptake by woody xerophytes   总被引:8,自引:0,他引:8  
Stable isotope measurements are employed extensively in plant–water relations research to investigate physiological and hydrological processes from whole plant to ecosystem scales. Stable isotopes of hydrogen and oxygen are routinely measured to identify plant source water. This application relies on the assumption that no fractionation of oxygen and hydrogen isotopes in water occurs during uptake by roots. However, a large fraction of the water taken up through roots in halophytic and xerophytic plants transverses cell membranes in the endodermis before entering the root xylem. Passage of water through this symplastic pathway has been hypothesized to cause fractionation leading to a decrease in 2H of root xylem water relative to that in the surrounding soil medium. We examined 16 woody halophytic and xerophytic plant species in controlled conditions for evidence of hydrogen isotope fractionation during uptake at the root–soil interface. Isotopic separation (Δ2H = δ2Hsoil water − δ2Hxylem water) ranging from 3‰ to 9‰ was observed in 12 species. A significant positive correlation between salinity tolerance and the magnitude of Δ2H was observed. Water in whole stem segments, sapwood, and roots had significantly lower δ2H values relative to soil water in Prosopis velutina Woot., the species expressing the greatest Δ2H values among the 16 species examined. Pressurized water flow through intact root systems of Artemisia tridentata Nutt. and Atriplex canescens (Pursh) Nutt. caused the δ2H values to decrease as flow rate increased. This relationship was not observed in P. velutina. Destroying the plasma membranes of root cells by excessive heat from boiling did not significantly alter the relationship between δ2H of expressed water and flow rate. In light of these results, care should be taken when using the stable isotope method to examine source-water use in halophytic and xerophytic species.  相似文献   

5.
Silicate (Si) can enhance plant resistance or tolerance to the toxicity of heavy metals. However, it remains unclear whether Si can ameliorate lead (Pb) toxicity in banana (Musa xparadisiaca) roots. In this study, treatment with 800 mg kg−1 Pb decreased both the shoot and root weight of banana seedlings. The amendment of 800 mg kg−1 Si (sodium metasilicate, Na2SiO3·9H2O) to the Pb-contaminated soil enhanced banana biomass at two growth stages significantly. The amendment of 800 mg kg−1 Si significantly increased soil pH and decreased exchangeable Pb, thus reducing soil Pb availability, while Si addition of 100 mg kg−1 did not influence soil pH. Results from Pb fractionation analysis indicated that more Pb were in the form of carbonate and residual-bound fractions in the Si-amended Pb-contaminated soils. The ratio of Pb-bound carbonate to the total Pb tended to increase with increasing growth stages. Treatment with 100 mg kg−1 Si had smaller effects on Pb forms in the Si-amended soils than that of 800 mg kg−1 Si. Pb treatment decreased the xylem sap greatly, but the addition of Si at both levels increased xylem sap and reduced Pb concentration in xylem sap significantly in the Si-amended Pb treatments. The addition of Si increased the activities of POD, SOD, and CAT in banana roots by 14.2% to 72.1% in the Si-amended Pb treatments. The results suggested that Si-enhanced tolerance to Pb toxicity in banana seedlings was associated with Pb immobilization in the soils, the decrease of Pb transport from roots to shoots, and Si-mediated detoxification of Pb in the plants.  相似文献   

6.
In marine food web studies, stable isotopes of nitrogen (δ15N) and carbon (δ13C) are widely used to estimate organisms’ trophic levels (TL) and carbon sources, respectively. For smaller organisms, whole specimens are commonly analyzed. However, this “bulk method” involves several pitfalls since different tissues may fractionate stable isotopes differently. We compared the δ15N and δ13C values of exoskeleton versus soft tissue, in relation to whole specimens, of three common Arctic amphipods in Svalbard waters: the benthic Anonyx nugax, the sympagic (ice-associated) Gammarus wilkitzkii and the pelagic Themisto libellula. The δ15N values of the exoskeletons were significantly lower than those of the soft tissues for A. nugax (10.5 ± 0.7‰ vs. 15.7 ± 0.7‰), G. wilkitzkii (3.3 ± 0.3‰ vs. 8.3 ± 0.4‰) and T. libellula (8.6 ± 0.3‰ vs.10.8 ± 0.3‰). The differences in δ13C values between exoskeletons and soft tissues were insignificant, except for A. nugax (−21.2 ± 0.2‰ vs. −20.3 ± 0.2‰, respectively). The δ15N values of whole organisms were between those of the exoskeletons and the soft tissues, being similarly enriched in 15N as the exoskeletons (except G. wilkitzkii) and depleted in 15N by 1.2–3.7‰ compared to the soft tissues. The δ15N-derived TLs of the soft tissues agreed best with the known feeding preferences of the three amphipods, which suggest a potential underestimation of 0.5–1.0 TL when stable isotope analyses are performed on whole crustaceans with thick exoskeletons. The insignificant or small differences in δ13C values among exoskeletons, soft tissues and whole specimens, however, suggest low probability for misinterpretations of crustaceans’ primary carbon source in marine ecosystems with distinctly different δ13C-carbon sources.  相似文献   

7.
Natural 15N abundance measurements of ecosystem nitrogen (N) pools and 15N pool dilution assays of gross N transformation rates were applied to investigate the potential of δ15N signatures of soil N pools to reflect the dynamics in the forest soil N cycle. Intact soil cores were collected from pure spruce (Picea abies (L.) Karst.) and mixed spruce-beech (Fagus sylvatica L.) stands on stagnic gleysol in Austria. Soil δ15N values of both forest sites increased with depth to 50 cm, but then decreased below this zone. δ15N values of microbial biomass (mixed stand: 4.7 ± 0.8‰, spruce stand: 5.9 ± 0.9‰) and of dissolved organic N (DON; mixed stand: 5.3 ± 1.7‰, spruce stand: 2.6 ± 3.3‰) were not significantly different; these pools were most enriched in 15N of all soil N pools. Denitrification represented the main N2O-producing process in the mixed forest stand as we detected a significant 15N enrichment of its substrate NO3 (3.6 ± 4.5‰) compared to NH4+ (−4.6 ± 2.6‰) and its product N2O (−11.8 ± 3.2‰). In a 15N-labelling experiment in the spruce stand, nitrification contributed more to N2O production than denitrification. Moreover, in natural abundance measurements the NH4+ pool was slightly 15N-enriched (−0.4 ± 2.0 ‰) compared to NO3 (−3.0 ± 0.6 ‰) and N2O (−2.1 ± 1.1 ‰) in the spruce stand, indicating nitrification and denitrification operated in parallel to produce N2O. The more positive δ15N values of N2O in the spruce stand than in the mixed stand point to extensive microbial N2O reduction in the spruce stand. Combining natural 15N abundance and 15N tracer experiments provided a more complete picture of soil N dynamics than possible with either measurement done separately.  相似文献   

8.
Estimates of diet derived from stable isotope analyses are sensitive to the accuracy of corrections made for diet-tissue fractionation. In particular, diet-tissue fractionation in reindeer Rangifer tarandus may be expected to differ significantly from the generic values often used in stable isotope dietary calculations, given the known values obtained from other ungulates and the complex digestive system and nutrient recycling characteristic of the species. We fed domestic reindeer a homogenous artificial diet of known isotopic value in order to directly determine diet-tissue isotopic fractionation of carbon and nitrogen, the main elements used in stable isotope dietary analyses. Diet-tissue fractionation values for blood plasma were +3.5 ± 0.1‰ (δ13C) and +4.2 ± 0.3‰ (δ15N). Diet-tissue fractionation values for whole blood were +3.7 ± 0.2‰ (δ13C) and +2.5 ± 0.3‰ (δ15N). Metabolic turnover rates were clearly sufficient for complete tissue replacement over the period of artificial feeding for blood plasma, but may not have been so for whole blood, especially for δ15N. Our values, except for whole blood δ15N, differ considerably from the generic values often used in dietary studies and interspecific comparisons of trophic niche. The results underline the importance of obtaining as specific as possible fractionation values for the species, tissue, and in some cases sex and physiological status of animals under examination, and the potential problems associated with assuming ‘generic’ fractionation values when comparing species, especially where digestive processes are dissimilar.  相似文献   

9.
We report abundance of 13C and 15N contents in terrestrial plants (mosses, lichens, liverworts, algae and grasses) from the area of Barton Peninsula (King George Island, maritime Antarctic). The investigated plants show a wide range of δ13C and δ15N values between −29.0 and −20.0‰ and between −15.3 and 22.8‰, respectively. The King George Island terrestrial plants show species specificity of both carbon and nitrogen isotope compositions, probably due to differences in plant physiology and biochemistry, related to their sources and in part to water availability. Carbon isotope compositions of Antarctic terrestrial plants are typical of the C3 photosynthetic pathway. Lichens are characterized by the widest carbon isotope range, from −29.0 to −20.0‰. However, the average δ13C value of lichens is the highest (−23.6 ± 2.8‰) among King George Island plants, followed by grasses (−25.6 ± 1.7‰), mosses (−25.9 ± 1.6‰), liverworts (−26.3 ± 0.5‰) and algae (−26.3 ± 1.2‰), partly related to habitats controlled by water availability. The δ15N values of moss samples range widest (−9.0 to 22.8‰, with an average of 4.6 ± 6.6‰). Lichens are on the average most depleted in 15N (mean = −7.4 ± 6.4‰), whereas algae are most enriched in 15N (10.0 ± 3.3‰). The broad range of nitrogen isotope compositions suggest that the N source for these Antarctic terrestrial plants is spatially much variable, with the local presence of seabird colonies being particularly significant.  相似文献   

10.
Semiarid areas in the US have realized extensive and persistent exotic plant invasions. Exotics may succeed in arid regions by extracting soil water at different times or from different depths than native plants, but little data is available to test this hypothesis. Using estimates of root mass, gravimetric soil water, soil-water potential, and stable isotope ratios in soil and plant tissues, we determined water-use patterns of exotic and native plant species in exotic- and native-dominated communities in Washington State, USA. Exotic and native communities both extracted 12 ± 2 cm of water from the top 120 cm of soil during the growing season. Exotic communities, however, shifted the timing of water use by extracting surface (0–15 cm) soil water early in the growing season (i.e., April to May) before native plants were active, and by extracting deep (0–120 cm) soil water late in the growing season (i.e., June to July) after natives had undergone seasonal senescence. We found that δ 18O values of water in exotic annuals (e.g., −11.8 ± 0.4 ‰ for Bromus tectorum L.) were similar to δ 18O values of surface soil water (e.g., −13.3 ± 1.4 ‰ at −15 cm) suggesting that transpiration by these species explained early season, surface water use in exotic communities. We also found that δ 18O values of water in taprooted exotics (e.g., −17.4 ± 0.3 ‰ for Centaurea diffusa Lam.) were similar to δ 18O values of deep soil water (e.g., −18.4 ± 0.1 ‰ at −120 cm) suggesting that transpiration by these species explained late season, deep water use. The combination of early-season, shallow water-use by exotic winter-actives and late-season, deep water-use by taprooted perennials potentially explains how exotic communities resist establishment of native species that largely extracted soil water only in the middle of the growing season (i.e., May to June). Early season irrigation or the planting of natives with established root systems may allow native plant restoration.  相似文献   

11.
We report the use of stable isotope and crop content analyses to quantify the use of saguaro (Carnegiea gigantea) nectar and fruit by migratory desert white-winged doves (Zenaida asiatica mearsnii). Saguaro resources had characteristically 13C-enriched CAM values (δ13C=–12.8±0.7‰ SD VPDB and –13.1±0.5‰ SD VPDB for nectar and fruit, respectively) relative to other food plants used by doves (δ13CC3=–24.9±3.3‰ SD VPDB). The water contained in saguaro nectar and fruit was deuterium enriched (δD=19.6±2.0‰ SD VSMOW and 48.4±1.6‰ SD VSMOW for nectar and fruit, respectively) relative to other water sources (ranging from –41 to –19‰ VSMOW). During the fruiting season, there was a positive correlation between δ13C in dove liver tissues and percent of saguaro in crop contents. A two-point mixing model indicated that during the peak of saguaro fruit use, most of the carbon incorporated in dove tissues was from saguaro. Desert white-winged doves appear to be saguaro specialists. Averaged over the period when doves were resident, saguaro comprised about 60% of the total carbon incorporated into dove tissues. Tissue δ13C and δD of body water showed a significant positive correlation, indicating that doves were using saguaro as a source of both nutrients and water. However, at the peak of saguaro utilization, the doves’ body-water δD was more positive (by about 20‰) than saguaro fruit water. We hypothesize that this enrichment is due to fractionated evaporative water losses by doves. Using dove carbon isotope data and a two end-point mixing model we estimate that, on average, doves consume the equivalent of 128 saguaro fruits per season; each fruit contains on average 26.0±14.8 g SD of pulp (wet mass) of which 19.4 g is water. Stable isotopes have been used to produce qualitative re-constructions of animal diets. Our study shows that they can be used to provide quantitative estimates of the flow of nutrients from resources into consumers as well. Received: 30 September 1999 / Accepted: 23 March 2000  相似文献   

12.
Abstract Freshwater ecosystems derive organic carbon from both allochthonous and autochthonous sources. We studied the relative contributions of different carbon sources to zooplankton in a small, polyhumic, steeply stratified lake, using six replicate surface-to-sediment enclosures established during summer and autumn 2004. We added 13C-enriched bicarbonate to the epilimnion of half the enclosures for three weeks during each season and monitored carbon stable isotope ratios of DIC, DOC, POC and Daphnia, along with physical, chemical and biological variables. During summer, 13C-enriched DIC (δ13C up to 44 ± 7.2‰) was soon taken up by phytoplankton (δ13C up to −5.1 ± 13.6‰) and was transmitted to Daphnia13C up to −1.7 ± 7.2‰), demonstrating consumption of phytoplankton. In contrast, during autumn, 13C-enriched DIC (δ13C up to 56.3 ± 9.8‰) was not transmitted to Daphnia, whose δ13C became progressively lower (δ13C down to −45.6 ± 3.3‰) concomitant with decreasing methane concentration. Outputs from a model suggested phytoplankton contributed 64–84% of Daphnia diet during summer, whereas a calculated pelagic carbon mass balance indicated only 30–40% could have come from phytoplankton. Although autumn primary production was negligible, zooplankton biomass persisted at the summer level. The model suggested methanotrophic bacteria contributed 64–87% of Daphnia diet during autumn, although the calculated carbon mass balance indicated a contribution of 37–112%. Thus methanotrophic bacteria could supply virtually all the carbon requirement of Daphnia during autumn in this lake. The strongly 13C-depleted Daphnia values, together with the outputs from the models and the calculated carbon mass balance showed that methanotrophic bacteria can be a greater carbon source for Daphnia in lakes than previously suspected.  相似文献   

13.
Sulfur isotope fractionation during reduction of thiosulfate was investigated with growing batch cultures of Desulfovibrio desulfuricans CSN (DSM 9104) at 30 °C. The sulfide produced was depleted in 34S by 10‰ as compared to total thiosulfate sulfur. The depletion was equal to that during sulfate reduction under similar conditions. The two sulfur atoms of the thiosulfate molecule were affected differently by fractionation. Sulfide produced from sulfonate sulfur was depleted by 15.4‰, sulfide produced from sulfane sulfur by 5.0‰. Received: 29 October 1997 / Accepted: 18 December 1997  相似文献   

14.
The sources of water used by woody vegetation growing on karst soils in seasonally dry tropical regions are little known. In northern Yucatan (Mexico), trees withstand 4–6 months of annual drought in spite of the small water storage capacity of the shallow karst soil. We hypothesized that adult evergreen trees in Yucatan tap the aquifer for a reliable supply of water during the prolonged dry season. The naturally occurring concentration gradients in oxygen and hydrogen stable isotopes in soil, bedrock, groundwater and plant stem water were used to determine the sources of water used by native evergreen and drought-deciduous tree species. While the trees studied grew over a permanent water table (9–20 m depth), pit excavation showed that roots were largely restricted to the upper 2 m of the soil/bedrock profile. At the peak of the dry season, the δ18O signatures of potential water sources for the vegetation ranged from 4.1 ± 1.1‰ in topsoil to −4.3 ± 0.1‰ in groundwater. The δ18O values of tree stem water ranged from −2.8 ± 0.3‰ in Talisia olivaeformis to 0.8 ± 1‰ in Ficus cotinifolia, demonstrating vertical partitioning of soil/bedrock water among tree species. Stem water δ18O values were significantly different from that of groundwater for all the tree species investigated. Stem water samples plotted to the right of the meteoric water line, indicating utilization of water sources subject to evaporative isotopic enrichment. Foliar δ13C in adult trees varied widely among species, ranging from −25.3 ± 0.3‰ in Enterolobium cyclocarpum to −28.7 ± 0.4‰ in T. olivaeformis. Contrary to initial expectations, data indicate that native trees growing on shallow karst soils in northern Yucatan use little or no groundwater and depend mostly on water stored within the upper 2–3 m of the soil/bedrock profile. Water storage in subsurface soil-filled cavities and in the porous limestone bedrock is apparently sufficient to sustain adult evergreen trees throughout the pronounced dry season.  相似文献   

15.
O'Grady SP  Dearing MD 《Oecologia》2006,150(3):355-361
Nitrogen isotopes have been widely used to investigate trophic levels in ecological systems. Isotopic enrichment of 2–5‰ occurs with trophic level increases in food webs. Host–parasite relationships deviate from traditional food webs in that parasites are minimally enriched relative to their hosts. Although this host–parasite enrichment pattern has been shown in multiple systems, few studies have used isotopic relationships to examine other potential symbioses. We examined the relationship between two gut-nematodes and their lizard hosts. One species, Physaloptera retusa, is a documented parasite in the stomach, whereas the relationship of the other species, Parapharyngodon riojensis (pinworms), to the host is putatively commensalistic or mutualistic. Based on the established trophic enrichments, we predicted that, relative to host tissue, parasitic nematodes would be minimally enriched (0–1‰), whereas pinworms, either as commensals or mutualists, would be significantly enriched by 2–5‰. We measured the 15N values of food, digesta, gut tissue, and nematodes of eight lizard species in the family Liolaemidae. Parasitic worms were enriched 1±0.2‰ relative to host tissue, while the average enrichment value for pinworms relative to gut tissue was 6.7±0.2‰. The results support previous findings that isotopic fractionation in a host–parasite system is lower than traditional food webs. Additionally, the larger enrichment of pinworms relative to known parasites suggests that they are not parasitic and may be several trophic levels beyond the host.  相似文献   

16.
We used the dual isotope method to study differences in nitrate export in two subwatersheds in Vermont, USA. Precipitation, soil water and streamwater samples were collected from two watersheds in Camels Hump State Forest, located within the Green Mountains of Vermont. These samples were analyzed for the δ15N and δ18O of NO3. The range of δ15N–NO3 values overlapped, with precipitation −4.5‰ to +2.0‰ (n = 14), soil solution −10.3‰ to +6.2‰ (n = 12) and streamwater +0.3‰ to +3.1‰ (n = 69). The δ18O of precipitation NO3 (mean 46.8 ± 11.5‰) was significantly different (P < 0.001) from that of the stream (mean 13.2 ± 4.3‰) and soil waters (mean 14.5 ± 4.2‰) even during snowmelt periods. Extracted soil solution and streamwater δ18O of NO3 were similar and within the established range of microbially produced NO3, demonstrating that NO3 was formed by microbial processes. The δ15N and δ18O of NO3 suggests that although the two tributaries have different seasonal NO3 concentrations, they have a similar NO3 source.  相似文献   

17.
Fractionation of stable carbon isotopes 12C and 13C by three pure cultures of photoautotrophic purple sulfur bacteria (Ectothiorhodospira shaposhnikovii, Lamprocystis purpureus, and Thiocapsa sp.) (PSB) and the green sulfur bacterium Prosthecochloris sp. (GSB) was investigated in 13–15-day experiments. The cultivation was carried out in a luminostat (2000 lx) on mineral media with 1–1.5 g/l NaHCO3 (inoculum) with the subsequent transfer to the medium with up to 10 g/l NaHCO3. For PSB, the difference in the quantitative characteristics of the isotopic composition of suspended carbon (including bacterial cells) and mineral carbon of the medium (Δ13C = δ13Csubstrate − δ13Cbiomass) changed from 15.0 to 34.3‰. For GSB, the range of Δ13C changes was significantly less (18.3–22.7‰). These data suggested the possibility of a pool of soluble mineral carbon in PSB cells. The pool of intracellular mineral carbon was calculated; depending on the PSB species and growth stage, it varied from 0 to 68% of the total cell carbon. The α coefficients reflecting the carbon isotope fractionation by PSB and GBS and calculated from the changes of the bicarbonate carbon isotopic composition in the medium depending on its consumption were 1.029 ± 0.003 and 1.019 ± 0.001, respectively. These α values did not depend on the growth rate. CO2 fixation on ribulose-bisphosphate was shown to be the major factor determining the carbon isotope fractionation by PSB; at the stage of CO2 penetration into the cell, fractionation was insignificant. In GSB, fractionation occurred mostly at CO2 penetration into the cell, while it was insignificant at the stage of carbon dioxide fixation in the reverse TCA cycle. Analysis of the isotopic data of the photosynthesis by PSB and GSB in meromictic lakes also revealed that in PSB-dominated natural communities suspended organic matter was more enriched with light 13C (Δ13C = 23.4−24.6‰) than in the communities with more active GSB (Δ13C = 10.2−14.0‰)  相似文献   

18.
Opsahl SP  Chanton JP 《Oecologia》2006,150(1):89-96
Anecdotal observations of the Dougherty plain cave crayfish (Cambarus cryptodytes), the Georgia blind cave salamander (Haideotriton wallacei), and albinistic isopods (Caecidotea sp.) at great depths below the land surface and distant from river corridors suggest that obligate aquifer-dwelling (troglobitic) organisms are widely distributed throughout the limestone Upper Floridan aquifer (UFA). One mechanism by which subterranean life can proliferate in an environment void of plant productivity is through a microbial food web that includes chemosynthesis. We examined this possibility in the UFA by measuring the isotopic composition (13C, 14C, and 15N) of tissues from troglobitic macrofauna. Organisms that were captured by cave divers entering into spring conduits had δ13C values that suggested plant matter as a primary food resource (cave crayfish, –24.6 ± 2.7‰, n = 9). In contrast, δ13C values were significantly depleted in organisms retrieved from wells drilled into areas of the UFA remote from spring and sinkhole conduits (cave crayfish −34.7 ± 9.8‰, n = 10). Depleted 13C values in crayfish were correlated with radiocarbon (Δ14C) depletion relative to modern values. The results suggest that methane-based microbial chemosynthetic pathways support organisms living in the remote interior of the aquifer, at least in part.  相似文献   

19.
This study investigated the nitrogen (N) acquisition from soil and insect capture during the growth of three species of pitcher plants, Nepenthes mirabilis, Cephalotus follicularis and Darlingtonia californica. 15N/14N natural abundance ratios (δ15N) of plants and pitchers of different age, non-carnivorous reference plants, and insect prey were used to estimate proportional contributions of insects to the N content of leaves and whole plants. Young Nepenthes leaves (phyllodes) carrying closed pitchers comprised major sinks for N and developed mainly from insect N captured elsewhere on the plant. Their δ15N values of up to 7.2‰ were higher than the average δ15N value of captured insects (mean δ15N value = 5.3‰). In leaves carrying old pitchers that are acting as a N source, the δ15N decreased to 3.0‰ indicating either an increasing contribution of soil N to those plant parts which in fact captured the insects or N gain from N2 fixation by microorganisms which may exist in old pitchers. The δ15N value of N in water collected from old pitchers was 1.2‰ and contained free amino acids. The fraction of insect N in young and old pitchers and their associated leaves decreased from 1.0 to 0.3 mg g−1. This fraction decreased further with the size of the investigated tiller. Nepenthes contained on average 61.5 ± 7.6% (mean ± SD, range 50–71%) insect N based on the N content of a whole tiller. In the absence of suitable non-carnivorous reference plants for Cephalotus, δ15N values were assessed across a developmental sequence from young plants lacking pitchers to large adults with up to 38 pitchers. The data indicated dependence on soil N until 4 pitchers had opened. Beyond that stage, plant size increased with the number of catching pitchers but the fraction of soil N remained high. Large Cephalotus plants were estimated to derive 26 ± 5.9% (mean ± SD of the three largest plants; range: 19–30%) of the N from insects. In Cephalotus we observed an increased δ15N value in sink versus source pitchers of about 1.2‰ on average. Source and sink pitchers of Darlingtonia had a similar δ15N value, but plant N in this species showed δ15N signals closer to that of insect N than in either Cephalotus or Nepenthes. Insect N contributed 76.4 ± 8.4% (range 57–90%) to total pitcher N content. The data suggest complex patterns of partitioning of insect and soil-derived N between source and sink regions in pitcher plants and possibly higher dependence on insect N than recorded elsewhere for Drosera species. Received: 14 April 1997 / Accepted: 18 August 1997  相似文献   

20.
Pan BS  Wolyniak CJ  Brenna JT 《Amino acids》2007,33(4):631-638
Summary. Presented here is the first experimental evidence that natural, intramolecular, isotope ratios are sensitive to physiological status, based on observations of intramolecular δ15N of lysine in the mitochondrial mimic Paracoccus denitrificans. Paracoccus denitrificans, a versatile, gram-negative bacterium, was grown either aerobically or anaerobically on isotopically-characterized ammonium as sole cell-nitrogen source. Nitrogen isotope composition of the biomass with respect to source ammonium was = −6.2 ± 1.2‰ for whole cells under aerobic respiration, whereas cells grown anaerobically produced no net fractionation ( = −0.3 ± 0.23‰). Fractionation of 15N between protein nitrogen and total cell nitrogen increased during anaerobic respiration and suggests that residual nitrogen-containing compounds in bacterial cell membranes are isotopically lighter under anaerobic respiration. In aerobic cells, the lysine intramolecular difference between peptide and sidechain nitrogen is negligible, but in anaerobic cells was a remarkable Δ15Np − s = δ15Npeptide − δ15Nsidechain = +11.0‰, driven predominantly by enrichment at the peptide N. Consideration of known lysine pathways suggests this to be likely due to enhanced synthesis of peptidoglycans in the anaerobic state. These data indicate that distinct pathway branching ratios associated with microbial respiration can be detected by natural intramolecular Δδ15N measurements, and are the first in vivo observations of position-specific measurements of nitrogen isotope fractionation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号