首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 21 毫秒
1.
The role of selection in the evolution of human mitochondrial genomes   总被引:27,自引:0,他引:27  
High mutation rate in mammalian mitochondrial DNA generates a highly divergent pool of alleles even within species that have dispersed and expanded in size recently. Phylogenetic analysis of 277 human mitochondrial genomes revealed a significant (P < 0.01) excess of rRNA and nonsynonymous base substitutions among hotspots of recurrent mutation. Most hotspots involved transitions from guanine to adenine that, with thymine-to-cytosine transitions, illustrate the asymmetric bias in codon usage at synonymous sites on the heavy-strand DNA. The mitochondrion-encoded tRNAThr varied significantly more than any other tRNA gene. Threonine and valine codons were involved in 259 of the 414 amino acid replacements observed. The ratio of nonsynonymous changes from and to threonine and valine differed significantly (P = 0.003) between populations with neutral (22/58) and populations with significantly negative Tajima's D values (70/76), independent of their geographic location. In contrast to a recent suggestion that the excess of nonsilent mutations is characteristic of Arctic populations, implying their role in cold adaptation, we demonstrate that the surplus of nonsynonymous mutations is a general feature of the young branches of the phylogenetic tree, affecting also those that are found only in Africa. We introduce a new calibration method of the mutation rate of synonymous transitions to estimate the coalescent times of mtDNA haplogroups.  相似文献   

2.
The activity of complex I of the mitochondrial respiratory chain has been found to be decreased in patients with Parkinsons disease (PD), but no mutations have been identified in genes encoding complex I subunits. Recent studies have suggested that polymorphisms in mitochondrial DNA (mtDNA)-encoded complex I genes (MTND) modify susceptibility to PD. We hypothesize that the risk of PD is conveyed by the total number of nonsynonymous substitutions in the MTND genes in various mtDNA lineages rather than by single mutations. To test this possibility, we determined the number of nonsynonymous substitutions of the seven MTND genes from 183 Finns. The differences in the total number of nonsynonymous substitutions and the nonsynonymous to synonymous substitution rate ratio (Ka/Ks) of MTND genes between the European mtDNA haplogroup clusters (HV, JT, KU, IWX) were analysed by using a statistical approach. Patients with PD (n=238) underwent clinical examination together with mtDNA haplogroup analysis and the clinical features between patient groups defined by the number of nonsynonymous substitutions were compared. Our analysis revealed that the haplogroup clusters HV and KU had a lower average number of amino acid replacements and a lower Ka/Ks ratio in the MTND genes than clusters JT and IWX. Supercluster JTIWX with the highest number of amino acid replacements was more frequent among PD patients and even more frequent among patients with PD who developed dementia. Our results suggest that a relative excess of nonsynonymous mutations in MTND genes in supercluster JTWIX is associated with an increased risk of PD and the disease progression to dementia.  相似文献   

3.
We sequenced the nearly complete mtDNA of 3 species of parasitic wasps, Nasonia vitripennis (2 strains), Nasonia giraulti, and Nasonia longicornis, including all 13 protein-coding genes and the 2 rRNAs, and found unusual patterns of mitochondrial evolution. The Nasonia mtDNA has a unique gene order compared with other insect mtDNAs due to multiple rearrangements. The mtDNAs of these wasps also show nucleotide substitution rates over 30 times faster than nuclear protein-coding genes, indicating among the highest substitution rates found in animal mitochondria (normally <10 times faster). A McDonald and Kreitman test shows that the between-species frequency of fixed replacement sites relative to silent sites is significantly higher compared with within-species polymorphisms in 2 mitochondrial genes of Nasonia, atp6 and atp8, indicating directional selection. Consistent with this interpretation, the Ka/Ks (nonsynonymous/synonymous substitution rates) ratios are higher between species than within species. In contrast, cox1 shows a signature of purifying selection for amino acid sequence conservation, although rates of amino acid substitutions are still higher than for comparable insects. The mitochondrial-encoded polypeptides atp6 and atp8 both occur in F0F1ATP synthase of the electron transport chain. Because malfunction in this fundamental protein severely affects fitness, we suggest that the accelerated accumulation of replacements is due to beneficial mutations necessary to compensate mild-deleterious mutations fixed by random genetic drift or Wolbachia sweeps in the fast evolving mitochondria of Nasonia. We further propose that relatively high rates of amino acid substitution in some mitochondrial genes can be driven by a "Compensation-Draft Feedback"; increased fixation of mildly deleterious mutations results in selection for compensatory mutations, which lead to fixation of additional deleterious mutations in nonrecombining mitochondrial genomes, thus accelerating the process of amino acid substitutions.  相似文献   

4.
5.
One of the principal goals of population genetics is to understand the processes by which genetic variation within species (polymorphism) becomes converted into genetic differences between species (divergence). In this transformation, selective neutrality, near neutrality, and positive selection may each play a role, differing from one gene to the next. Synonymous nucleotide sites are often used as a uniform standard of comparison across genes on the grounds that synonymous sites are subject to relatively weak selective constraints and so may, to a first approximation, be regarded as neutral. Synonymous sites are also interdigitated with nonsynonymous sites and so are affected equally by genomic context and demographic factors. Hence a comparison of levels of polymorphism and divergence between synonymous sites and amino acid replacement sites in a gene is potentially informative about the magnitude of selective forces associated with amino acid replacements. We have analyzed 56 genes in which polymorphism data from D. simulans are compared with divergence from a reference strain of D. melanogaster. The framework of the analysis is Bayesian and assumes that the distribution of selective effects (Malthusian fitnesses) is Gaussian with a mean that differs for each gene. In such a model, the average scaled selection intensity (gamma = N(e)s) of amino acid replacements eligible to become polymorphic or fixed is -7.31, and the standard deviation of selective effects within each locus is 6.79 (assuming homoscedasticity across loci). For newly arising mutations of this type that occur in autosomal or X-linked genes, the average proportion of beneficial mutations is 19.7%. Among the amino acid polymorphisms in the sample, the expected average proportion of beneficial mutations is 47.7%, and among amino acid replacements that become fixed the average proportion of beneficial mutations is 94.3%. The average scaled selection intensity of fixed mutations is +5.1. The presence of positive selection is pervasive with the single exception of kl-5, a Y-linked fertility gene. We find no evidence that a significant fraction of fixed amino acid replacements is neutral or nearly neutral or that positive selection drives amino acid replacements at only a subset of the loci. These results are model dependent and we discuss possible modifications of the model that might allow more neutral and nearly neutral amino acid replacements to be fixed.  相似文献   

6.
Mitochondrial DNA (mtDNA)-encoded proteins function in eukaryotes as subunits of respiratory complexes that also contain nuclear DNA (nDNA)-encoded subunits. The importance of functional interactions between mtDNA- and nDNA-encoded proteins was previously demonstrated by testing the survivability of cybrid cells or individuals containing nDNA and mtDNA from different populations or species. This report focuses on the multisubunit respiratory complex cytochrome c oxidase (COX), made up of both mtDNA-encoded and nDNA-encoded subunits. A combination of evolutionary and crystallographic data is employed to determine whether rates of nonsynonymous substitutions have been higher, the same, or lower for residues in close proximity that are encoded by a different genome (nDNA or mtDNA). This determination is performed by simply taking the ratio, called the interaction ratio i, of the nonsynonymous substitution rate of the close-contact residues to the nonsynonymous substitution rate of the noncontact residues. We assume that the close-contact residues (which are more likely to interact) are functionally important and that, therefore, amino acid replacements among these residues cannot escape the scrutiny of natural selection. i = 1 indicates that the close-contact residues have been under neither greater purifying selection nor greater positive selection than the noncontact residues as a specific consequence of their being encoded by separate genomes. i < 1 indicates that the close-contact residues have been under greater purifying selection but less positive selection than have the noncontact residues. Conversely, i > 1 indicates that the close-contact residues have been under less purifying but greater positive selection than have the noncontact residues. i < 1 may be referred to as a constraining interaction; i.e., the close-contact residues compared with the noncontact residues appear to be under greater structural-functional constraints. On the other hand, i > 1 may be referred to as an optimizing interaction; i.e., apparently many different amino acid replacements are required to optimize this subunit's interaction with the other subunit. A major finding is that the nDNA-encoded residues in close physical proximity to mtDNA-encoded residues evolve more slowly than the other nuclear-encoded residues (and thus display a constraining interaction), whereas the mtDNA-encoded residues in close physical proximity to nDNA-encoded residues evolve more rapidly than the other mitochondrial-encoded residues (and thus display an optimizing interaction). A possible reason for this striking difference between the nuclear- and mitochondrial-encoded COX subunits in how their functional interaction evolves is discussed.  相似文献   

7.
Polymerase chain reaction (PCR) products corresponding to 803 bp of the cytochrome oxidase subunits I and II region of mitochondrial DNA (mtDNA COI-II) were deduced to consist of multiple haplotypes in three Sitobion species. We investigated the molecular basis of these observations. PCR products were cloned, and six clones from one individual per species were sequenced. In each individual, one sequence was found commonly, but also two or three divergent sequences were seen. The divergent sequences were shown to be nonmitochondrial by sequencing from purified mtDNA and Southern blotting experiments. All seven nonmitochondrial clones sequenced to completion were unique. Nonmitochondrial sequences have a high proportion of unique sites, and very few characters are shared between nonmitochondrial clones to the exclusion of mtDNA. From these data, we infer that fragments of mtDNA have been transposed separately (probably into aphid chromosomes), at a frequency only known to be equalled in humans. The transposition phenomenon appears to occur infrequently or not at all in closely related genera and other aphids investigated. Patterns of nucleotide substitution in mtDNA inferred over a parsimony tree are very different from those in transposed sequences. Compared with mtDNA, nonmitochondrial sequences have less codon position bias, more even exchanges between A, G, C and T, and a higher proportion of nonsynonymous replacements. Although these data are consistent with the transposed sequences being under less constraint than mtDNA, changes in the nonmitochondrial sequences are not random: there remains significant position bias, and probable excesses of synonymous replacements and of conservative inferred amino acid replacements. We conclude that a proportion of the inferred change in the nonmitochondrial sequences occurred before transposition. We believe that Sitobion aphids (and other species exhibiting mtDNA transposition) may be important for studying the molecular evolution of mtDNA and pseudogenes. However, our data highlight the need to establish the true evolutionary relationships between sequences in comparative investigations.   相似文献   

8.
Adaptive evolution of 12 protein-coding mitochondrial genes in members of genus Homo (Denisova hominin (H. sp. Altai), Neanderthals (H. neanderthalensis) and modern humans (H. sapiens)) has been evaluated by assessing the pattern of changes in the physicochemical properties of amino acid replacements during primate evolution. It has been found that molecular adaptation (positive destabilizing selection) in Homo becomes apparent in the form of 12 radical amino acid replacements accompanied with statistically significant (P < 0.001) changes of physicochemical properties that probably had functional consequences. These replacements occurred at the stage of a common ancestor of Homo (in CO2 and CytB genes) as well as with the appearance of the common ancestor of Neanderthals and modern humans (in CO1 and ND5 genes). Radical amino acid replacements were mainly revealed in the cytochrome c oxidase complex IV and cytochrome bc1 complex III, thus coinciding with the general trend of increasing nonsynonymous changes in mtDNA genes coding subunits of complexes’ III and IV proteins in anthropoid primates.  相似文献   

9.
Human mitochondrial DNA (mtDNA) is a nonrecombining genome that codes for 13 subunits of the mitochondrial oxidative phosphorylation system, 2 rRNAs, and 22 tRNAs. Mutations have accumulated sequentially in mtDNA lineages that diverged tens of thousands of years ago. The genes in mtDNA are subject to different functional constraints and are therefore expected to evolve at different rates, but the rank order of these rates should be the same in all lineages of a phylogeny. Previous studies have indicated, however, that specific regions of mtDNA may have experienced different histories of selection in different lineages, possibly because of lineage-specific interactions or environmental factors such as climate. We report here on a survey for lineage-specific patterns of nucleotide polymorphism in human mtDNA. We calculated molecular polymorphism indices and neutrality tests for classes of functional sites and genes in 837 human mtDNA sequences, compared the results between continent-specific mtDNA lineages, and used two sliding window methods to identify differences in the patterns of polymorphism between haplogroups. A general correlation between nucleotide position and the level of nucleotide polymorphism was identified in the coding region of the mitochondrial genome. Nucleotide diversity in the protein-coding sequence of mtDNA was generally not much higher than that found for many genes in nuclear DNA. A comparison of nonsynonymous/synonymous rate ratios in the 13 protein-coding genes suggested differences in the relative levels of selection between haplogroups, including the European haplogroup clusters. Interestingly, a segment of the MTND5 gene was found to be almost void of segregating sites and nonsynonymous mutations in haplogroup J, which has been associated with susceptibility to certain complex diseases. Our results suggest that there are haplogroup-specific differences in the intensity of selection against particular regions of the mitochondrial genome, indicating that some mutations may be non-neutral within specific phylogenetic lineages but neutral within others.  相似文献   

10.
A problem with studying evolutionary dynamics of mitochondrial (mt) DNA is that classical population genetic techniques cannot identify selected substitutions because of genetic hitchhiking. We circumvented this problem by employing a candidate complex approach to study sequence variation in cytochrome c oxidase (COX) genes within and among three distinct Drosophila simulans mtDNA haplogroups. First, we determined sequence variation in complete coding regions for all COX mtDNA and nuclear loci and their isoforms. Second, we constructed a quaternary structure model of D. simulans COX. Third, we predicted that six of nine amino acid changes in D. simulans mtDNA are likely to be functionally important. Of these seven, genetic crosses can experimentally determine the functional significance of three. Fourth, we identified two single amino acid changes and a deletion of two consecutive amino acids in nuclear encoded COX loci that are likely to influence cytochrome c oxidase activity. These data show that linking population genetics and quaternary structure modeling can lead to functional predictions of specific mtDNA amino acid mutations and validate the candidate complex approach. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

11.
Since modern Europeans appear to be descendants of the Late Pleistocene European peoples who survived the last glacial period, it is quite reasonable to expect the presence of adaptive genetic variants that originated in the Ice Age in the modern gene pool of Europeans. To find such adaptive variants, mitochondrial genomes have been analyzed of the modern population from Eastern and Central Europe belonging to haplogroups U4, U5, and V, that diversified during the Late Pleistocene and Holocene periods. Analysis of distribution of nonsynonymous and synonymous substitutions, as well as results of search for radical amino acid changes that arose under the influence of adaptation (positive destabilizing selection) allowed us to detect signals of molecular adaptation in different mitochondrial genes and haplogroups of mtDNA. However, there were very few strong adaptive signals (z > 3.09, P < 0.001) that could be due to the loss of adaptive mtDNA haplotypes during the Holocene warming.  相似文献   

12.
Wild brook charr populations (Salvelinus fontinalis) completely introgressed with the mitochondrial genome (mtDNA) of arctic charr (Salvelinus alpinus) are found in several lakes of northeastern Québec, Canada. Mitochondrial respiratory enzymes of these populations are thus encoded by their own nuclear DNA and by arctic charr mtDNA. In the present study we performed a comparative sequence analysis of the whole mitochondrial genome of both brook and arctic charr to identify the distribution of mutational differences across these two genomes. This analysis revealed 47 amino acid replacements, 45 of which were confined to subunits of the NADH dehydrogenase complex (Complex I), one in the cox3 gene (Complex IV), and one in the atp8 gene (Complex V). A cladistic approach performed with brook charr, arctic charr, and two other salmonid fishes (rainbow trout [Oncorhynchus mykiss] and Atlantic salmon [Salmo salar]) revealed that only five amino acid replacements were specific to the charr comparison and not shared with the other two salmonids. In addition, five amino acid substitutions localized in the nad2 and nad5 genes denoted negative scores according to the functional properties of amino acids and, therefore, could possibly have an impact on the structure and functional properties of these mitochondrial peptides. The comparison of both brook and arctic charr mtDNA with that of rainbow trout also revealed a relatively constant mutation rate for each specific gene among species, whereas the rate was quite different among genes. This pattern held for both synonymous and nonsynonymous nucleotide positions. These results, therefore, support the hypothesis of selective constraints acting on synonymous codon usage.  相似文献   

13.
Phylogenetic network for European mtDNA   总被引:44,自引:0,他引:44       下载免费PDF全文
The sequence in the first hypervariable segment (HVS-I) of the control region has been used as a source of evolutionary information in most phylogenetic analyses of mtDNA. Population genetic inference would benefit from a better understanding of the variation in the mtDNA coding region, but, thus far, complete mtDNA sequences have been rare. We determined the nucleotide sequence in the coding region of mtDNA from 121 Finns, by conformation-sensitive gel electrophoresis and subsequent sequencing and by direct sequencing of the D loop. Furthermore, 71 sequences from our previous reports were included, so that the samples represented all the mtDNA haplogroups present in the Finnish population. We found a total of 297 variable sites in the coding region, which allowed the compilation of unambiguous phylogenetic networks. The D loop harbored 104 variable sites, and, in most cases, these could be localized within the coding-region networks, without discrepancies. Interestingly, many homoplasies were detected in the coding region. Nucleotide variation in the rRNA and tRNA genes was 6%, and that in the third nucleotide positions of structural genes amounted to 22% of that in the HVS-I. The complete networks enabled the relationships between the mtDNA haplogroups to be analyzed. Phylogenetic networks based on the entire coding-region sequence in mtDNA provide a rich source for further population genetic studies, and complete sequences make it easier to differentiate between disease-causing mutations and rare polymorphisms.  相似文献   

14.
We humans have many characteristics that are different from those of the great apes. These human-specific characters must have arisen through mutations accumulated in the genome of our direct ancestor after the divergence of the last common ancestor with chimpanzee. Gene trees of human and great apes are necessary for extracting these human-specific genetic changes. We conducted a systematic analysis of 103 protein-coding genes for human, chimpanzee, gorilla, and orangutan. Nucleotide sequences for 18 genes were newly determined for this study, and those for the remaining genes were retrieved from the DDBJ/EMBL/GenBank database. The total number of amino acid changes in the human lineage was 147 for 26,199 codons (0.56%). The total number of amino acid changes in the human genome was, thus, estimated to be about 80,000. We applied the acceleration index test and Fisher's synonymous/nonsynonymous exact test for each gene tree to detect any human-specific enhancement of amino acid changes compared with ape branches. Six and two genes were shown to have significantly higher nonsynonymous changes at the human lineage from the acceleration index and exact tests, respectively. We also compared the distribution of the differences of the nonsynonymous substitutions on the human lineage and those on the great ape lineage. Two genes were more conserved in the ape lineage, whereas one gene was more conserved in the human lineage. These results suggest that a small proportion of protein-coding genes started to evolve differently in the human lineage after it diverged from the ape lineage.  相似文献   

15.
Mitochondrial DNAs (mtDNAs) of 54 Tibetans residing at altitudes ranging from 3,000–4,500 m were amplified by polymerase chain reaction (PCR), examined by high-resolution restriction endonuclease analysis, and compared with those previously described in 10 other Asian and Siberian populations. This comparison revealed that more than 50% of Asian mtDNAs belong to a unique mtDNA lineage which is found only among Mongoloids, suggesting that this lineage most likely originated in Asia at an early stage of the human colonization of that continent. Within the Tibetan mtDNAs, sets of additional linked polymorphic sites defined seven minor lineages of related mtDNA haplotypes (haplogroups). The frequency and distribution of these haplogroups in modern Asian populations are supportive of previous genetic evidence that Tibetans, although located in southern Asia, share common ancestral origins with northern Mongoloid populations. This analysis of Tibetan mtDNAs also suggests that mtDNA mutations are unlikely to play a major role in the adaptation of Tibetans to high altitudes. © 1994 Wiley-Liss, Inc.  相似文献   

16.
Mitochondrial DNA (mtDNA) samples of 70 Native Americans, most of whom had been found not to belong to any of the four common Native American haplogroups (A, B, C, and D), were analyzed for the presence of Dde I site losses at np 1715 and np 10394. These two mutations are characteristic of haplogroup X which might be of European origin. The first hypervariable segment (HVSI) of the non-coding control region (CR) of mtDNA of a representative selection of samples exhibiting these mutations was sequenced to confirm their assignment to haplogroup X. Thirty-two of the samples exhibited the restriction site losses characteristic of haplogroup X and, when sequenced, a representative selection (n = 11) of these exhibited the CR mutations commonly associated with haplogroup X, C --> T transitions at np 16278 and 16223, in addition to as many as three other HVSI mutations. The wide distribution of this haplogroup throughout North America, and its prehistoric presence there, are consistent with its being a fifth founding haplogroup exhibited by about 3% of modern Native Americans. Its markedly nonrandom distribution with high frequency in certain regions, as for the other four major mtDNA haplogroups, should facilitate establishing ancestor/descendant relationships between modern and prehistoric groups of Native Americans. The low frequency of haplogroups other than A, B, C, D, and X among the samples studied suggests a paucity of both recent non-Native American maternal admixture in alleged fullblood Native Americans and mutations at the restriction sites that characterize the five haplogroups as well as the absence of additional (undiscovered) founding haplogroups.  相似文献   

17.
The neuS-encoded polysialytransferase (polyST) in Escherichia coli K1 catalyzes synthesis of polysialic acid homopolymers composed of unbranched sialyl alpha 2,8 linkages. Subcloning and complementation experiments showed that the K1 neuS was functionally interchangeable with the neuS from E. coli K92 (S. M. Steenbergen, T. J. Wrona, and E. R. Vimr, J. Bacteriol. 174:1099-1108, 1992), which synthesizes polysialic acid capsules with alternating sialyl alpha 2,8-2,9 linkages. To better understand the relationship between these polySTs, the complete K92 neuS sequence was determined. The results demonstrated that K1 and K92 neuS genes are homologous and indicated that the K92 copy may have evolved from its K1 homolog. Both K1 and K92 structural genes comprised 1,227 bp. There were 156 (12.7%) differences between the two sequences; among these mutations, 55 did not affect the derived primary structure of K92 polyST and hence were synonymous with the K1 sequence. Assuming maximum parsimony, another estimated 17 synonymous mutations plus 84 nonsynonymous mutations could account for the 70 amino acid replacements in K92 polyST; 36 of these replacements were judged to be conservative when compared with those of K1 polyST. There were no changes detected in the first 146 5' or last 129 3' bp of either gene, suggesting, in addition to the observed mutational differences, the possibility of a past recombination event between neuS loci of two different kps clusters. The results indicate that relatively few amino acid changes can account for the evolution of a glycosyltransferase with novel linkage specificity.  相似文献   

18.
Repeated bottleneck passages result in fitness losses of RNA viruses. In the case of human immunodeficiency virus type 1 (HIV-1), decreases in fitness after a limited number of plaque-to-plaque transfers in MT-4 cells were very drastic. Here we report an analysis of entire genomic nucleotide sequences of four HIV-1 clones derived from the same HIV-1 isolate and their low-fitness progeny following 7 to 15 plaque-to-plaque passages. Clones accumulated 4 to 28 mutations per genome, with dominance of A --> G and G --> A transitions (57% of all mutations) and 49% nonsynonymous replacements. One clone-but not three sibling clones-showed an overabundance of G --> A transitions, evidencing the highly stochastic nature of some types of mutational bias. The distribution of mutations along the genome was very unusual in that mutation frequencies in gag were threefold higher than in env. Particularly striking was the complete absence of replacements in the V3 loop of gp120, confirmed with partial nucleotide sequences of additional HIV-1 clones subjected to repeated bottleneck passages. The analyses revealed several amino acid replacements that have not been previously recorded among natural HIV-1 isolates and illustrate how evolution of an RNA virus genome, with regard to constant and variable regions, can be profoundly modified by alterations in population dynamics.  相似文献   

19.
The evolution of the human mitochondrial genome is characterized by the emergence of ethnically distinct lineages or haplogroups. Nine European, seven Asian (including Native American), and three African mitochondrial DNA (mtDNA) haplogroups have been identified previously on the basis of the presence or absence of a relatively small number of restriction-enzyme recognition sites or on the basis of nucleotide sequences of the D-loop region. We have used reduced-median-network approaches to analyze 560 complete European, Asian, and African mtDNA coding-region sequences from unrelated individuals to develop a more complete understanding of sequence diversity both within and between haplogroups. A total of 497 haplogroup-associated polymorphisms were identified, 323 (65%) of which were associated with one haplogroup and 174 (35%) of which were associated with two or more haplogroups. Approximately one-half of these polymorphisms are reported for the first time here. Our results confirm and substantially extend the phylogenetic relationships among mitochondrial genomes described elsewhere from the major human ethnic groups. Another important result is that there were numerous instances both of parallel mutations at the same site and of reversion (i.e., homoplasy). It is likely that homoplasy in the coding region will confound evolutionary analysis of small sequence sets. By a linkage-disequilibrium approach, additional evidence for the absence of human mtDNA recombination is presented here.  相似文献   

20.

Background

MtDNA haplogroups could have important implication for understanding of the relationship between the mutations of the mitochondrial genome and diseases. Distribution of a variety of diseases among these haplogroups showed that some of the mitochondrial haplogroups are predisposed to disease. To examine the susceptibility of mtDNA haplogroups to ROU, we sequenced the mtDNA HV1, HV2 and HV3 in Chinese ROU.

Methodology/Principal Findings

MtDNA haplogroups were analyzed in the 249 cases of ROU patients and the 237 cases of healthy controls respectively by means of primer extension analysis and DNA sequencing. Haplogroups G1 and H were found significantly more abundant in ROU patients than in healthy persons, while haplogroups D5 and R showed a trend toward a higher frequency in control as compared to those in patients. The distribution of C-stretch sequences polymorphism in mtDNA HV1, HV2 and HV3 regions was found in diversity.

Conclusions/Significance

For the first time, the relationship of mtDNA haplogroups and ROU in Chinese was investigated. Our results indicated that mtDNA haplogroups G1 and H might constitute a risk factor for ROU, which possibly increasing the susceptibility of ROU. Meanwhile, haplogroups D5 and R were indicated as protective factors for ROU. The polymorphisms of C-stretch sequences might being unstable and influence the mtDNA replication fidelity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号