首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
During the end-Permian mass extinction, marine ecosystems suffered a major drop in diversity, which was maintained throughout the Early Triassic until delayed recovery during the Middle Triassic. This depressed diversity in the Early Triassic correlates with multiple major perturbations to the global carbon cycle, interpreted as either intrinsic ecosystem or external palaeoenvironmental effects. In contrast, the terrestrial record of extinction and recovery is less clear; the effects and magnitude of the end-Permian extinction on non-marine vertebrates are particularly controversial. We use specimen-level data from southern Africa and Russia to investigate the palaeodiversity dynamics of non-marine tetrapods across the Permo-Triassic boundary by analysing sample-standardized generic richness, evenness and relative abundance. In addition, we investigate the potential effects of sampling, geological and taxonomic biases on these data. Our analyses demonstrate that non-marine tetrapods were severely affected by the end-Permian mass extinction, and that these assemblages did not begin to recover until the Middle Triassic. These data are congruent with those from land plants and marine invertebrates. Furthermore, they are consistent with the idea that unstable low-diversity post-extinction ecosystems were subject to boom-bust cycles, reflected in multiple Early Triassic perturbations of the carbon cycle.  相似文献   

2.
预言鱼目是近鲱形类的一个绝灭支系,被认为是弓鳍鱼目的姐妹群.预言鱼目化石过去主要发现于欧洲的中三叠世拉丁期和晚侏罗世地层以及新大陆的早白垩世地层.近年来,在云南和贵州的中三叠世安尼期地层中分别发现了一种预言鱼目鱼类化石(强壮鱼和盘县鱼),代表了该目在中国的首次发现.根据产于云南罗平中三叠世安尼期(~244 Ma)海相地层中的6块保存良好的鱼化石,命名了预言鱼目一个新的属种,三叠复兴鱼(Subortichthys triassicus gen.et sp.nov.).三叠复兴鱼是罗平生物群中发现的第二种预言鱼目鱼类,代表了预言鱼目最古老的化石记录之一,为研究该目的起源和早期分异提供了重要信息.复兴鱼无疑可以归入近鲱形类,因为它具有近鲱形类两个共近裔性状,续骨与下颌关节以及上颌骨后缘具有凹缺.分支分析结果表明,复兴鱼位于预言鱼目的基部,因为它具有该目的重要鉴定特征,上颌骨具有感觉管,但它不具有其他预言鱼目鱼类的进步特征.特别的是,复兴鱼具有一些独特的性状,如额外肩胛骨3或4对、第三眶下骨特别宽大并与前鳃盖骨前缘相接等.复兴鱼的发现表明预言鱼目鱼类在华南地区(三叠纪时期位于古特提斯洋的东部)的早期分异至少发生在中三叠世早期(安尼期).  相似文献   

3.
A sample of marine invertebrates from the Late Triassic Cassian Formation (north Italy) yielded one of the most diverse Early Mesozoic fossil assemblages ever reported (c. 170 species). The assemblage was found in basin clays, but was transported from nearby carbonate platforms as indicated by fragmentation, microbial encrustation and the presence of coated grains and ooids. Most of the specimens are small (< 1 cm) reflecting both, small adult sizes and size sorting during transport. Rarefaction analysis suggests that diversity of surface collection and bulk sampling is the same. However, rank abundance, species richness and taxonomic composition differ strongly according to sampling method. Low‐grade lithification of the sediments is the main reason that high diversity can be recognized, because it facilitates disaggregation and finding of small molluscs. Sample standardization shows that the studied assemblage is much more diverse than known Early Triassic assemblages. However, its diversity is similar to that of Anisian assemblages. This suggests that recovery from the end‐Permian mass‐extinction was quite advanced in the Middle Triassic and alpha‐diversity remained high until the Late Triassic. According to current models, Early Triassic and Anisian faunas match the niche overlap phase of recovery during which diversity is built up by increasing alpha‐diversity, whereas beta‐diversity rises slowly. Subsequently, habitat width of species contracts because of increasing competition, making beta‐diversity the principal drive of overall diversity increase. The diversity pattern of various Late Triassic Cassian associations meets the predictions for the transition from the niche overlap to the habitat contraction phase.: Triassic, Cassian Formation, palaeoecology, diversity, mollusc dominance.  相似文献   

4.
Unlike the high-abundance, low-diversity macrofaunas that characterize many Early Triassic benthic palaeocommunities, ichnofossils were relatively common in the aftermath of the end-Permian mass extinction worldwide. Ichnofossils therefore are a good proxy for ecosystem recovery after the end-Permian biotic crisis. This paper documents 14 ichnogenera and one problematic form from Lower Triassic successions exposed in the Lower Yangtze region, South China. Post-extinction ichnodiversity remained rather low throughout the Griesbachian–early Smithian period and abruptly increased in the late Smithian. However, several lines of evidence, including extent of bioturbation, burrow size, trace-fossil complexity, and tiering levels, indicate that diversification of ichnotaxa in the late Smithian did not signal full marine ecosystem recovery from the Permian/Triassic (P/Tr) mass extinction. Marine ichnocoenoses did not recover until the late Spathian in South China. The marginal sea provided hospitable habitats for tracemakers to proliferate in the aftermath of the end-Permian mass extinction.  相似文献   

5.
The end-Permian biotic crisis (∼252.5 Ma) represents the most severe extinction event in Earth''s history. This paper investigates diversity patterns in Anomodontia, an extinct group of therapsid synapsids (‘mammal-like reptiles’), through time and in particular across this event. As herbivores and the dominant terrestrial tetrapods of their time, anomodonts play a central role in assessing the impact of the end-Permian extinction on terrestrial ecosystems. Taxonomic diversity analysis reveals that anomodonts experienced three distinct phases of diversification interrupted by the same number of extinctions, i.e. an end-Guadalupian, an end-Permian, and a mid-Triassic extinction. A positive correlation between the number of taxa and the number of formations per time interval shows that anomodont diversity is biased by the Permian-Triassic terrestrial rock record. Normalized diversity curves indicate that anomodont richness continuously declines from the Middle Permian to the Late Triassic, but also reveals all three extinction events. Taxonomic rates (origination and extinction) indicate that the end-Guadalupian and end-Permian extinctions were driven by increased rates of extinction as well as low origination rates. However, this pattern is not evident at the final decline of anomodont diversity during the Middle Triassic. Therefore, it remains unclear whether the Middle Triassic extinction represents a gradual or abrupt event that is unique to anomodonts or more common among terrestrial tetrapods. The end-Permian extinction represents the most distinct event in terms of decline in anomodont richness and turnover rates.  相似文献   

6.
The Palaeozoic–Mesozoic transition is characterized not only by the most massive Phanerozoic mass extinction at the end of the Permian period, but also its extensive aftermath and a prolonged period of major biotal recovery during the succeeding Middle to Late Triassic. Particularly, Anisian insect species from units of the Lower to Middle Muschelkalk from the Central European Basin are rare. The specimens described here originated from the Anisian Wellenkalk facies (Lower Muschelkalk), Vossenveld Formation of the Winterswijk quarry, The Netherlands, and from the orbicularis Member (lowermost Middle Muschelkalk, Anisian) of Esperstedt near Querfurt (Saxony-Anhalt). Thus, the described insect remains from Winterwijk and Esperstedt expand our knowledge about Middle Triassic terrestrial arthropod communities and their palaeodiversity. A new species of Chauliodites (C. esperstedti sp. nov) is introduced.  相似文献   

7.
Restudy of the unique diapsid reptile Mesosuchus browni Watson, from the Cynognathus Assemblage Zone (late Early Triassic to early Middle Triassic) of the Burgersdorp Formation (Tarkastad Subgroup; Beaufort Group) of South Africa, confirms that it is the most plesiomorphic known member of the Rhynchosauria. A new phylogenetic analysis of basal taxa of Archosauromorpha indicates that Choristodera falls outside of the Sauria, Prolacertiformes is a paraphyletic taxon with Prolacerta sharing a more recent common ancestor with Archosauriformes than with any other clade, Megalancosaurus and Drepanosaurus are sister taxa in the clade Drepanosauridae within Archosauromorpha, and are the sister group to the clade Tanystropheidae composed of Tanystropheus, Macrocnemus, and Langobardisaurus. Combination of the phylogenetic relationships of basal archosauromorphs and their known stratigraphic ranges reveals significant gaps in the fossil records of Late Permian and Triassic diapsids. Extensions of the temporal ranges of several lineages of diapsids into the Late Permian suggests that more groups of terrestrial reptiles survived the end-Permian mass extinction than thought previously.  相似文献   

8.
The timing of recovery after the end‐Permian mass extinction has been a matter of debate, with some authors favouring a more rapid faunal recovery during the Early Triassic and others considering a more protracted biotic reestablishment spanning until the Middle Triassic. In this work, we investigated the lowermost Middle Triassic (Ladinian) carbonate deposits in the Catalan Basin to evaluate the potential environmental mechanisms and evolutionary constrains involved in the kilometre‐scale predominance of microbialites and the low‐diversity and high‐density Planolites association in a low‐latitude epicontinental setting. The studied sedimentary succession records the development from a low‐gradient, homoclinal microbial‐dominated carbonate ramp evolving towards a slightly inclined swell‐dominated type. Sedimentological analysis suggests that facies heterogeneity was controlled by pulses of syn‐rift tectonic activity, which compromised Peri‐Tethyan basin connectivity, reducing palaeobathymetry gradients. Although the monospecific nature of the studied trace‐fossil association may reflect the delayed recovery after the end‐Permian mass extinction, this is inconsistent with widespread, relatively high‐diversity ichnofaunas in carbonates elsewhere in the region. Since other Ladinian basins were characterized by the recurrence of microbial carbonates, low‐diversity ichnoassemblages and limited skeletal production, we hypothesize that shallow and restricted carbonate ramp settings harboured limited ecological complexity and widespread opportunistic colonization of the sediment when compared to coeval open marine locations.  相似文献   

9.
Adaptive radiations are central to macroevolutionary theory. Whether triggered by acquisition of new traits or ecological opportunities arising from mass extinctions, it is debated whether adaptive radiations are marked by initial expansion of taxic diversity or of morphological disparity (the range of anatomical form). If a group rediversifies following a mass extinction, it is said to have passed through a macroevolutionary bottleneck, and the loss of taxic or phylogenetic diversity may limit the amount of morphological novelty that it can subsequently generate. Anomodont therapsids, a diverse clade of Permian and Triassic herbivorous tetrapods, passed through a bottleneck during the end-Permian mass extinction. Their taxic diversity increased during the Permian, declined significantly at the Permo–Triassic boundary and rebounded during the Middle Triassic before the clade''s final extinction at the end of the Triassic. By sharp contrast, disparity declined steadily during most of anomodont history. Our results highlight three main aspects of adaptive radiations: (i) diversity and disparity are generally decoupled; (ii) models of radiations following mass extinctions may differ from those triggered by other causes (e.g. trait acquisition); and (iii) the bottleneck caused by a mass extinction means that a clade can emerge lacking its original potential for generating morphological variety.  相似文献   

10.
《Palaeoworld》2020,29(1):126-136
Permian–Triassic boundary microbialites (PTBMs) are organosedimentary carbonates formed immediately after the end-Permian mass extinction. All those reported PTBMs constrained by convincing conodont biozones are present stratigraphycally not higher than the Hindeodus parvus zone and most of them are dominated by thrombolites. This paper provides the first record of a brief, but spectacular development of stromatolite-dominated PTBMs within the basal Isarcicella isarcica conodont zone of the earliest Triassic from the Xikou section of South Qinling Block that was at the margin of the North China Block during the Permian–Triassic transition and was geographically separated from the major occurrence of post-extinction microbialites in the South China Block. This stromatolite cap overlies a 3.7-m-thick oolitic limestone and is composed of a lower 0.2-m-thick bed and an upper 0.5-m-thick bed, separated by a 0.2-m-thick greyish green siliciclastic mudstone. These two stromatolite beds mainly consist of columnar stromatolites with subordinate domal stromatolites. The intercolumn and interstitial spaces within the stromatolites are filled with oolitic grainstones. At the microscopic scale, laminoid structures in stromatolites comprise wavy, millimetric-domical and tangled laminae. The increased grain and fossil contents and/or bioturbation in the domical and tangled laminae indicate that the formation of these laminae is likely related to an increase in the populations and the disruptions by benthic metazoans, as well as an influx of sediment grains. The δ13Ccarb values fluctuate between 2‰ and 3‰ in the uppermost Permian strata; a distinct negative shift of 1.9‰ occurs at the topmost oolitic grainstone, just below the lower stromatolite bed, and the lowest value of −0.1‰ is located at the base of the upper stromatolite bed. The stratigraphic succession from stromatolites to thrombolites of the PTBMs may represent a transgressive succession and/or a transient ecosystem recovery immediately after the end-Permian mass extinction. The thrombolites-dominated PTBMs mainly developed in near-equator shallow marine geographic locations, and stromatolite-dominated PTBMs mainly developed at higher latitude settings, which probably indicates that a relatively lower diversity and abundance of marine benthic metazoans existed at higher latitudes after the end-Permian mass extinction.  相似文献   

11.
The Pha Kan Formation that crops out at the Phra That Muang Kham section, south of Lampang city, was measured and sampled for ostracod analysis. We here report the occurrence of 29 species distributed among 14 genera. Four new species are described: Triassocypris phakanella Forel nov. sp., Leviella lampangensis Forel nov. sp., Bektasia yawella Forel nov. sp. and Hungarella poli Chitnarin nov. sp. The present data represent the first detailed report of Middle Triassic (Anisian) ostracods from the Sukhothai terrane and the first insight into diversity dynamics following the end-Permian extinction in this area. The ostracod assemblages of the Phra That Muang Kham section are discussed and document an important shift from siliciclastic to carbonate conditions, from a protected to an open marine environment, followed by a slight regressive trend up-section associated with repeated salinity fluctuations. This fauna illustrates the post-crisis recovery during the Middle Triassic and some hypothesis are issued on the distribution pathways of several taxa.  相似文献   

12.
Large perturbations to the global carbon cycle occurred during the Permian–Triassic boundary mass extinction, the largest extinction event of the Phanerozoic Eon (542 Ma to present). Controversy concerning the pattern and mechanism of variations in the marine carbonate carbon isotope record of the Permian–Triassic crisis interval (PTCI) and their relationship to the marine mass extinction has not been resolved to date. Herein, high-resolution carbonate carbon isotope profiles (δ13Ccarb), accompanied by lithofacies, were generated for four sections with microbialite (Taiping, Zuodeng, Cili, and Chongyang) in South China to better constrain patterns and controls on δ13Ccarb variation in the PTCI and to test hypotheses about the temporal relationship between perturbations to the global carbon cycle and the marine mass extinction event. All four study sections exhibit a stepwise negative shift in δ13Ccarb during the Late Permian–Early Triassic, with the shift preceding the end-Permian crisis being larger (> 3‰) than that following it (1–2‰). The pre-crisis shifts in δ13Ccarb are widely correlatable and, hence, represent perturbations to the global carbon cycle. The comparatively smaller shifts following the crisis demonstrate that the marine mass extinction event itself had at most limited influence on the global carbon cycle, and that both Late Permian δ13Ccarb shifts and the mass extinction must be attributed to some other cause. Their origin cannot be uniquely determined from C-isotopic data alone but appears to be most compatible with a mechanism based on episodic volcanism in combination with collapse of terrestrial ecosystems and soil erosion.  相似文献   

13.
The Halecomorphi are a major subdivision of the ray-finned fishes. Although living halecomorphs are represented solely by the freshwater bowfin, Amia calva, this clade has a rich fossil history, and the resolution of interrelationships among extinct members is central to the problem of understanding the origin of the Teleostei, the largest clade of extant vertebrates. The Ionoscopiformes are extinct marine halecomorphs that were inferred to have originated in the Late Jurassic of Europe, and subsequently dispersed to the Early Cretaceous of the New World. Here, we report the discovery of a new ionoscopiform, Robustichthys luopingensis gen. et sp. nov., based on eight well-preserved specimens from the Anisian (242–247 Ma), Middle Triassic marine deposits of Luoping, eastern Yunnan Province, China. The new species documents the oldest known ionoscopiform, extending the stratigraphic range of this group by approximately 90 Ma, and the geographical distribution of this group into the Middle Triassic of South China, a part of eastern Palaeotethys Ocean. These new data provide a minimum estimate for the split of Ionoscopiformes from its sister clade Amiiformes and shed new light on the origin of ionoscopiform fishes.  相似文献   

14.
Flying fishes are extraordinary aquatic vertebrates capable of gliding great distances over water by exploiting their enlarged pectoral fins and asymmetrical caudal fin. Some 50 species of extant flying fishes are classified in the Exocoetidae (Neopterygii: Teleostei), which have a fossil record no older than the Eocene. The Thoracopteridae is the only pre-Cenozoic group of non-teleosts that shows an array of features associated with the capability of over-water gliding. Until recently, however, the fossil record of the Thoracopteridae has been limited to the Upper Triassic of Austria and Italy. Here, we report the discovery of exceptionally well-preserved fossils of a new thoracopterid flying fish from the Middle Triassic of China, which represents the earliest evidence of an over-water gliding strategy in vertebrates. The results of a phylogenetic analysis resolve the Thoracopteridae as a stem-group of the Neopterygii that is more crown-ward than the Peltopleuriformes, yet more basal than the Luganoiiformes. As the first record of the Thoracopteride in Asia, this new discovery extends the geographical distribution of this group from the western to eastern rim of the Palaeotethys Ocean, providing new evidence to support the Triassic biological exchanges between Europe and southern China. Additionally, the Middle Triassic date of the new thoracopterid supports the hypothesis that the re-establishment of marine ecosystems after end-Permian mass extinction is more rapid than previously thought.  相似文献   

15.
Permian–Triassic event is usually regarded as the greatest mass extinction in the Earth’s history, although detailed studies have shown that it was not very severe. Localities of fossil insects in European Russia, Tunguska and Kuznetsk basins, and Mongolia provide a unique (the best in the world) opportunity to study the preparation, course of the crisis, and restoration of the biota after it. It is generally believed that climatic changes causing the crisis resulted from eruption of the Siberian traps, so that localities of intertrappean deposits were undoubtedly formed during the crisis. Sedimentation conditions of volcanogenic deposits provide the most detailed time resolution, so that the crisis processes can be investigated in detail. The dynamics of insect diversity in the Paleozoic and basal Mesozoic shows that mass extinctions were absent, although many groups disappeared for some time from the taphonomic window. The crisis events in ecosystems appear earlier than events usually considered as the reason for crisis. The analysis of oryctocoenoses from localities of the intertrappean beds has shown that, during the formation of traps on the mountain plateau, rather diverse ecosystems were retained, including those of the forest formations. They are a source of information, allowing restoration of ecosystems at the end of the Early Triassic.  相似文献   

16.
The oldest Mesozoic nearshore Zoophycos: evidence from the German Triassic   总被引:1,自引:0,他引:1  
The trace fossil Zoophycos has been described from the Middle Triassic carbonates of the German Basin for the first time. It occurs in a calcilutite bed at the top of a shallowing-upward cycle (parasequence) in the transgressive systems tract of the Middle to Upper Muschelkalk sequence of Thuringia (Germany). Based on sedimentological and palaeontological features, the studied interval is interpreted as deposited in a marine nearshore environment with proximal storm deposits (tempestites). Zoophycos occurs in a very simple planar form with lobate spreiten, which were most likely produced by a worm-like animal by strip mining. The upper tier of the ichnofabric consists of Zoophycos, whereas the lower tier is occupied by cylindrical trace fossils of unknown taxonomic affiliation and with decreasing size towards the bottom. Associated trace fossils such as Rhizocorallium, Balanoglossites and Trypanites indicate a partly firm to hard substrate. No mixed layer is developed at the top of the trace fossil bearing succession. The ichnofabric together with the sedimentological features (disseminated pyrite, blue-grey colour) and palaeontological circumstances (poor benthic fauna, meiofauna with a small body size) support an interpretation of a dysaerobic environment. In the view of evolutionary change, Palaeozoic Zoophycos occurs in both deep and shallow marine deposits, whereas Mesozoic and Cenozoic Zoophycos is only common in shelfal and deeper-marine deposits. The new finding from the shallow-marine Middle Triassic represents the first reliable occurrence of Zoophycos after the end-Permian mass extinction and shows close similarities to its Palaeozoic precursors. It demonstrates that the producer survived the end-Permian mass extinction, became re-established in the nearshore realm and progressively colonized deeper-marine environments during the Mesozoic and Cenozoic.  相似文献   

17.
This paper compares the relative contributions of within-habitat diversity [alpha-diversity] and between-habitat-diversity [beta-diversity] to regional diversity [gamma-diversity] in marine benthic communities of the western US before and after the end-Permian mass extinction. We found that presumably cool-water faunas from the Permian Gerster Limestone and the Park City Formation had low alpha- and beta-diversities, comparable to those of low diverse faunas of the Early Triassic. In contrast, tropical Permian faunas had much higher alpha-diversities and a variable pattern of beta-diversity: Whereas faunas of space-limited bioherms show a positive correlation between beta-diversity and gamma-diversity, beta-diversity in level-bottom faunas is elevated only when gamma-diversity is very high (>250 species). This contrasting pattern probably reflects differential effects of interspecific competition on habitat partitioning. In low-competitive level-bottom faunas, species are able to coexist until competition forces species into their ecological optima, thereby increasing beta-diversity. This effect occurs at much lower gamma-diversities in more competitive reef-bound faunas, causing the observed positive correlation between beta- and gamma-diversity. We suggest that differences in the level of interspecific competition and hence diversity partitioning between Permian and Triassic benthic communities result from the higher average metabolic rates in the Mesozoic mollusc-dominated benthos in contrast to their Permian counterparts.  相似文献   

18.
《Palaeoworld》2021,30(4):593-601
Fires are an integral part of modern and ancient ecosystems, serving as friends for renewal or foes for complete destruction and extinction. Indicators of palaeowildfire were so far absent from the Lower Triassic. Lack of plants in the Early Triassic due to the end-Permian mass extinction event and low atmospheric oxygen levels were proposed as the major reasons for the scarcity of wildfires. We present macroscopic charcoals from the Olenekian (Lower Triassic) in northwestern China, indicating probable ground/smoldering fires occurred on landscapes in mid-latitudes of northeastern Pangaea. Atmospheric oxygen concentration during the Olenekian would have been above 18.5%. These findings demonstrate that wildfires continued to be a source of disturbance of terrestrial ecosystems in Bogda Mountains after the end-Permian marine biotic crisis. There were adequate supplies of fuels and oxygen during this critical time period in the Earth history.  相似文献   

19.
After the end-Permian mass extinction, the Early Triassic (∼251.9 to 247 Ma) is characterized by several biotic crises that particularly affected marine faunas; accordingly, marine ecosystems from this unstable interval have been often described as heavily depauperate. This assumption, however, may relate to a biased fossil record. The discovery of taphonomic windows, like Konservat-Lagerstätten, in the Early Triassic would help to better understand the composition and diversity of ecosystems at that time. The Paris Biota (Idaho, USA) is a highly diverse fossil assemblage from the earliest Spathian (early late Olenekian, ∼250.6 Ma), indicating a rapid rediversification for many groups after the end-Permian crisis and pointing toward a remarkably complex marine ecosystem ∼1.3 m.y. after the Permian-Triassic boundary. However, its detailed taphonomy has not yet been investigated. Here we present the mineral characterization of four of its most abundant taxa: discinoid and linguloid brachiopods, leptomitid sponges, and caridean shrimps. For this purpose, we combined data from Raman microspectroscopy, Fourier Transform InfraRed spectroscopy, and SEM-EDXS. Although all taxa were preserved in calcium phosphate, the morphology, structuring and size of crystals are highly dissimilar at a nano- to micrometric scale. In brachiopods, the ultrastructure of calcium phosphate shows unorganized bacillary-like crystals, while in crustaceans their size is considerably smaller and round-shaped. Similar small crystals are observed in sponges. However, the ultrastructure of calcium phosphate in sponges exhibits a well-defined preferential orientation. In addition, sponges show some compressed but preserved three-dimensional features, with an inner surface better preserved. Such analyses are essential to understand the taphonomic pathways enabling exceptional preservation. The further comprehension of preservation features would help to understand potential bias on observed diversity signals and their interpretation.  相似文献   

20.
The first Mesozoic representative of the extinct archostematan beetle family Permocupedidae, Frankencupes ultimus, gen. et sp. nov., is described based on two isolated elytra from the Lower Anisian (Middle Triassic) Röt Formation of Lower Franconia, Germany. The new fossil occurrence extends the range of the family from the Lower Wuchiapingian (Upper Permian) up to the Anisian, and represents a fine example of a Lazarus taxon in the fossil record of beetles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号