首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Eliot AC  Sandmark J  Schneider G  Kirsch JF 《Biochemistry》2002,41(42):12582-12589
7,8-diaminopelargonic acid (DAPA) synthase (EC 2.6.1.62) is a pyridoxal phosphate (PLP)-dependent transaminase that catalyzes the transfer of the alpha-amino group from S-adenosyl-L-methionine (SAM) to 7-keto-8-aminopelargonic acid (KAPA) to form DAPA in the antepenultimate step in the biosynthesis of biotin. The wild-type enzyme has a steady-state kcat value of 0.013 s(-1), and the K(m) values for SAM and KAPA are 150 and <2 microM, respectively. The k(max) and apparent K(m) values for the half-reaction of the PLP form of the enzyme with SAM are 0.016 s(-1) and 300 microM, respectively, while those for the reaction with DAPA are 0.79 s(-1) and 1 microM. The R391A mutant enzyme exhibits near wild-type kinetic parameters in the reaction with SAM, while the apparent K(m) for DAPA is increased 180-fold. The 2.1 A crystal structure of the R391A mutant enzyme shows that the mutation does not significantly alter the structure. These results indicate that the conserved arginine residue is not required for binding the alpha-amino acid SAM, but it is important for recognition of DAPA.  相似文献   

2.
Biotin is an essential enzyme cofactor required for carboxylation and transcarboxylation reactions. The absence of the biotin biosynthesis pathway in humans suggests that it can be an attractive target for the development of novel drugs against a number of pathogens. 7-Keto-8-aminopelargonic acid (KAPA) synthase (EC 2.3.1.47), the enzyme catalyzing the first committed step in the biotin biosynthesis pathway, is believed to exhibit high substrate stereospecificity. A comparative kinetic characterization of the interaction of the mycobacterium tuberculosis KAPA synthase with both L- AND D-alanine was carried out to investigate the basis of the substrate stereospecificity exhibited by the enzyme. The formation of the external aldimine with D-alanine (k = 82.63 m(-1) s(-1)) is approximately 5 times slower than that with L-alanine (k = 399.4 m(-1) s(-1)). In addition to formation of the external aldimine, formation of substrate quinonoid was also observed upon addition of pimeloyl-CoA to the preformed d-alanine external aldimine complex. However, the formation of this intermediate was extremely slow compared with the substrate quinonoid with L-alanine and pimeloyl-CoA (k = 16.9 x 10(4) m(-1) s(-1)). Contrary to earlier reports, these results clearly show that D-alanine is not a competitive inhibitor but a substrate for the enzyme and thereby demonstrate the broad substrate stereospecificity of the M. tuberculosis KAPA synthase. Further, d-KAPA, the product of the reaction utilizing D-alanine inhibits both KAPA synthase (Ki = 114.83 microm) as well as 7,8-diaminopelargonic acid synthase (IC50 = 43.9 microm), the next enzyme of the pathway.  相似文献   

3.
Escherichia coli serA-encoded 3-phosphoglycerate (3PG) dehydrogenase catalyzes the first step of the major phosphorylated pathway of L-serine (Ser) biosynthesis. The SerA enzyme is evolutionarily related to the pdxB gene product, 4-phosphoerythronate dehydrogenase, which catalyzes the second step in one branch of pyridoxal 5'-phosphate coenzyme biosynthesis. Both the Ser and pyridoxal 5'-phosphate biosynthetic pathways use the serC(pdxF)-encoded transaminase in their next steps. In an analysis of these parallel pathways, we attempted to couple the transaminase and dehydrogenase reactions in the reverse direction. Unexpectedly, we found that the SerA enzyme catalyzes a previously undetected reduction of alpha-ketoglutarate (alpha KG) to 2-hydroxyglutaric acid (HGA). Numerous criteria ruled out the possibility that this SerA alpha KG reductase activity was caused by contamination in the substrate or purified enzyme preparations. HGA was confirmed as the product of the SerA alpha KG reductase reaction by thin-layer chromatography and by enzyme assays showing that both the D- and L-isomers of HGA were substrates for the reverse (dehydrogenase) reaction. Detailed steady-state kinetic analyses showed that alpha KG reduction (apparent Michaelis-Menten constant [Km(app)] = 88 microM; apparent catalytic constant [kcat(app)] = 33.3 s-1) and 3-phosphohydroxypyruvate reduction (Km(app) = 3.2 microM; kcatapp = 27.8 s-1), which is the reverse reaction of 3PG oxidation, were the major in vitro activities of the SerA enzyme. The SerA alpha KG reductase was inhibited by Ser, D-HGA, 3PG, and glycine (Gly), whereas the D-HGA dehydrogenase was inhibited by Ser, alpha KG, 3-phosphohydroxypyruvate, and Gly. The implications of these findings for the regulation of Ser biosynthesis, the recycling of NADH, and the enzymology of 2-hydroxyacid dehydrogenases are discussed. Since the same pathway of Ser biosynthesis seems to be present in all organisms, these results suggest that a mutation in the human SerA homolog may contribute to the neurometabolic diseases D- and L-2-hydroxyglutaric aciduria, which lead to the accumulation of D-HGA and L-HGA, respectively.  相似文献   

4.
The emergence of drug-resistant forms of Plasmodium falciparum emphasizes the need to develop new antimalarials. In this context, the fatty acid biosynthesis (FAS) pathway of the malarial parasite has recently received a lot of attention. Due to differences in the fatty acid biosynthesis systems of Plasmodium and man, this pathway is a good target for the development of new and selective therapeutic drugs directed against malaria. In continuation of these efforts we report cloning and overexpression of P. falciparum beta-hydroxyacyl-acyl carrier protein (ACP) dehydratase (PffabZ) gene that codes for a 17-kDa protein. The enzyme catalyzes the dehydration of beta-hydroxyacyl-ACP to trans-2-acyl-ACP, the third step in the elongation phase of the FAS cycle. It has a Km of 199 microM and kcat/Km of 80.4 m-1 s-1 for the substrate analog beta-hydroxybutyryl-CoA but utilizes crotonoyl-CoA, the product of the reaction, more efficiently (Km = 86 microM, kcat/Km = 220 m-1 s-1). More importantly, we also identify inhibitors (NAS-91 and NAS-21) for the enzyme. Both the inhibitors prevented the binding of crotonoyl-CoA to PfFabZ in a competitive fashion. Indeed these inhibitors compromised the growth of P. falciparum in cultures and inhibited the parasite fatty acid synthesis pathway both in cell-free extracts as well as in situ. We modeled the structure of PfFabZ using Escherichia coli beta-hydroxydecanoyl thioester dehydratase (EcFabA) as a template. We also modeled the inhibitor complexes of PfFabZ to elucidate the mode of binding of these compounds to FabZ. The discovery of the inhibitors of FabZ, reported for the first time against any member of this family of enzymes, essential to the type II FAS pathway opens up new avenues for treating a number of infectious diseases including malaria.  相似文献   

5.
Mycobacterium tuberculosis utilizes the methylerythritol phosphate (MEP) pathway for biosynthesis of isopentenyl diphosphate and its isomer, dimethylallyl diphosphate, precursors of all isoprenoid compounds. This pathway is of interest as a source of new drug targets, as it is absent from humans and disruption of the responsible genes has shown a lethal phenotype for Escherichia coli. In the MEP pathway, 4-diphosphocytidyl-2-C-methyl-D-erythritol is formed from 2-C-methyl-D-erythritol 4-phosphate (MEP) and CTP in a reaction catalyzed by a 4-diphosphocytidyl-2-C-methyl-D-erythritol synthase (IspD). In the present work, we demonstrate that Rv3582c is essential for M. tuberculosis: Rv3582c has been cloned and expressed, and the encoded protein has been purified. The purified M. tuberculosis IspD protein was capable of catalyzing the formation of 4-diphosphocytidyl-2-C-methyl-D-erythritol in the presence of MEP and CTP. The enzyme was active over a broad pH range (pH 6.0 to 9.0), with peak activity at pH 8.0. The activity was absolutely dependent upon divalent cations, with 20 mM Mg2+ being optimal, and replacement of CTP with other nucleotide 5'-triphosphates did not support activity. Under the conditions tested, M. tuberculosis IspD had Km values of 58.5 microM for MEP and 53.2 microM for CTP. Calculated kcat and kcat/Km values were 0.72 min(-1) and 12.3 mM(-1) min(-1) for MEP and 1.0 min(-1) and 18.8 mM(-1) min(-1) for CTP, respectively.  相似文献   

6.
We have recently demonstrated that Plasmodium falciparum, unlike its human host, has the type II fatty acid synthase, in which steps of fatty acid biosynthesis are catalyzed by independent enzymes. This difference could be successfully exploited in the design of drugs specifically targeted at the different enzymes of this pathway in P. falciparum, without affecting the corresponding enzymes in humans. The importance of enoyl-ACP reductase (FabI) in the fatty acid biosynthesis pathway makes it an important target in antimalarial therapy. We report here the initial characterization of Plasmodium FabI expressed in Escherichia coli. The K(m) values of the enzyme for crotonyl-CoA and NADH were derived as 165 and 33 microM, respectively. Triclosan shows competitive kinetics with respect to NADH but is uncompetitive with respect to NAD(+), which shows that the binding of triclosan to the enzyme is facilitated in the presence of NAD(+).  相似文献   

7.
Pinon V  Ravanel S  Douce R  Alban C 《Plant physiology》2005,139(4):1666-1676
Biochemical and molecular characterization of the biotin biosynthetic pathway in plants has dealt primarily with biotin synthase. This enzyme catalyzing the last step of the pathway is localized in mitochondria. Other enzymes of the pathway are however largely unknown. In this study, a genomic-based approach allowed us to clone an Arabidopsis (Arabidopsis thaliana) cDNA coding 7-keto-8-aminopelargonic acid (KAPA) synthase, the first committed enzyme of the biotin synthesis pathway, which we named AtbioF. The function of the enzyme was demonstrated by functional complementation of an Escherichia coli mutant deficient in KAPA synthase reaction, and by measuring in vitro activity. Overproduction and purification of recombinant AtbioF protein enabled a thorough characterization of the kinetic properties of the enzyme and a spectroscopic study of the enzyme interaction with its substrates and product. This is the first characterization of a KAPA synthase reaction in eukaryotes. Finally, both green fluorescent protein-targeting experiments and western-blot analyses showed that the Arabidopsis KAPA synthase is present in cytosol, thus revealing a unique compartmentation of the plant biotin synthesis, split between cytosol and mitochondria. The significance of the complex compartmentation of biotin synthesis and utilization in the plant cell and its potential importance in the regulation of biotin metabolism are also discussed.  相似文献   

8.
The enzyme encoded by Rv2682c in Mycobacterium tuberculosis is a functional 1-deoxy-D-xylulose 5-phosphate synthase (DXS), suggesting that the pathogen utilizes the mevalonate-independent pathway for isopentenyl diphosphate and subsequent polyprenyl phosphate synthesis. These key precursors are vital in the biosynthesis of many essential aspects of the mycobacterial cell wall. Rv2682c encodes the conserved DRAG sequence that has been proposed as a signature motif for DXSs and also all 13 conserved amino acid residues thought to be important to the function of transketolase enzymes. Recombinant Rv2682c is capable of utilizing glyceraldehyde 3-phosphate and erythrose 4-phosphate as well as D- and L-glyceraldehyde as aldose substrates. The enzyme has K(m) values of 40 microM, 6.1 microM, 5.6 mM, and 4.5 mM for pyruvate, D-glyceraldehyde 3-phosphate, D-glyceraldehyde, and L-glyceradehyde, respectively. Rv2682c has an absolute requirement for divalent cation and thiamin diphosphate as cofactors. The K(d) (thiamin diphosphate )for the native M. tuberculosis DXS activity partially purified from M. tuberculosis cytosol is 1 microM in the presence of Mg(2+).  相似文献   

9.
In biotin biosynthesis, DAPA aminotransferase encoded by the bioA gene catalyzes the formation of the intermediate 7,8-diaminopelargonic acid (DAPA) from 7-keto-8-aminopelargonic acid (KAPA). DAPA aminotransferases from Escherichia coli, Serratia marcescens, and Bacillus sphaericus use S-adenosylmethionine (SAM) as the amino donor. Our observation that SAM is not an amino donor for B. subtilis DAPA aminotransferase led to a search for an alternative amino donor for this enzyme. Testing of 26 possible amino acids in a cell-free extract assay revealed that only l-lysine was able to dramatically stimulate the in vitro conversion of KAPA to DAPA by the B. subtilis DAPA aminotransferase. The K(m) for lysine and KAPA was estimated to be between 2 and 25 mM, which is significantly higher than the K(m) of purified E. coli BioA for SAM (0.15 mM). This higher requirement for lysine resulted in accumulation of KAPA during fermentation of B. subtilis biotin producing strains. However, this pathway bottleneck could be relieved by either addition of exogenous lysine to the medium or by introduction of lysine deregulated mutations into the production strains.  相似文献   

10.
Interaction of DNA-(N4-cytosine)-methyltransferase from the Bacillus amyloliquefaciens (BamHI MTase, 49 kDa) with a 20-mer oligonucleotide duplex containing the palindrome recognition site GGATCC was studied by methods of steady-state and presteady-state kinetics of the methyl group transfer, gel retardation, and crosslinking of the enzyme subunits with glutaric aldehyde. In steady-state conditions, BamHI MTase displays a simple kinetic behavior toward a 20-mer oligonucleotide substrate. A linear dependence was observed for the reaction rate on the enzyme concentration and a Michaelis dependence of the reaction rate on the concentration of both substrates: S-adenosyl-L-methionine (SAM), the methyl group donor, and DNA, the methyl group acceptor. In independent experiments, the concentration of the 20-mer duplex or SAM was changed, the enzyme concentration being substantially lower then the concentrations of substrates. The kcat values determined in these conditions are in good agreement with one another and approximately equal to 0.05 s-1. The Km values for the duplex and SAM are 0.35 and 1.6 microM, respectively. An analysis of single turnover kinetics (at limiting concentration of the 20-mer oligonucleotide duplex) revealed the following characteristics of the BamHI MTase-dependent methylation of DNA. The value of rate constant of the DNA methylation step at the enzyme saturating concentration is on average 0.085 s-1, which is only 1.6 times higher than the value determined in steady-state conditions. Only one of two target cytidine residues was methylated in the course of the enzyme single turnover, which coincides with the earlier data on EcoRI MTase. Regardless of the order of the enzyme preincubation with SAM and DNA, both curves for the single turnover methylation are comparable. These results are consistent with the model of the random order of the productive ternary enzyme-substrate complex formation. In contrast to the relatively simple kinetic behavior of BamHI MTase in the steady-state reaction are the data on the enzyme binding of DNA. In gel retardation experiments, there was no stoichiometrically simple complexes with the oligonucleotide duplex even at low enzyme concentrations. The molecular mass of the complexes was so high that they did not enter 12% PAG. In experiments on crosslinking of the BamHI MTase subunits, it was shown that the enzyme in a free state exists as a dimer. Introduction of substoichiometric amounts of DNA into the reaction mixture results in pronounced multimerization of the enzyme. However, addition of SAM in saturating concentration at an excess of the oligonucleotide duplex over BamHI MTase converts most of the enzyme into a monomeric state.  相似文献   

11.
The reaction of human myeloperoxidase with its product, hypochlorous acid was investigated using both rapid-scan spectrophotometry and the stopped-flow technique. In the reaction of myeloperoxidase with hypochlorous acid a primary compound is found with properties similar to that of compound I and which is converted into compound II. The primary reaction is strongly pH-dependent. At pH 7.2 the reaction is too fast to be measured but at higher pH values it is possible to determine the apparent second-order rate constant. Its value decreases to about 2 x 10(7) M-1.s-1 at pH 8.3 and to 2.3 (+/- 0.4) x 10(6) M-1.s-1 at pH 9.2, respectively. The dissociation constant for the formation of the primary compound is 25.7 (+/- 15.3) microM at pH 9.2 and about 2.5 microM at pH 8.3. The apparent second-order rate constant for the formation of compound II is hardly affected by pH and varies between 2 to 5 x 10(4) M-1.s-1 at pH 10.2 and pH 8.3, respectively. Reaction of myeloperoxidase with hypochlorous acid also resulted in irreversible partial bleaching of the chromophore. Chloride, which is a substrate of the enzyme not only protects myeloperoxidase against bleaching by hypochlorous acid but also competitively inhibits the binding of hypochlorous acid to myeloperoxidase, a process which also has been observed in the reaction with hydrogen peroxide. It is concluded that hypochlorous acid binds at the heme iron to form compound I.  相似文献   

12.
Mycobacterium tuberculosis and many other members of the Actinomycetes family produce mycothiol, i.e., 1-d-myo-inosityl-2-(N-acetyl-l-cysteinyl)amido-2-deoxy-alpha-d-glucopyranoside (MSH or AcCys-GlcN-Ins), to act against oxidative and antibiotic stress. The biosynthesis of MSH is essential for cell growth and has been proposed to proceed via a biosynthetic pathway involving four key enzymes, MshA-MshD. The MSH biosynthetic enzymes present potential targets for inhibitor design. With this as a long-term goal, we have carried out a kinetic and mechanistic characterization, using steady-state and pre-steady-state approaches, of the recombinant Mycobacterium smegmatis MshC. MshC catalyzes the ATP-dependent condensation of GlcN-Ins and cysteine to form Cys-GlcN-Ins. Initial velocity and inhibition studies show that the steady-state kinetic mechanism of MshC is a Bi Uni Uni Bi Ping Pong mechanism, with ATP binding followed by cysteine binding, release of PPi, binding of GlcN-Ins, followed by the release of Cys-GlcN-Ins and AMP. The steady-state kinetic parameters were determined to be kcat equal to 3.15 s-1, and Km values of 1.8, 0.1, and 0.16 mM for ATP, cysteine, and GlcN-Ins, respectively. A stable bisubstrate analogue, 5'-O-[N-(l-cysteinyl)sulfamonyl]adenosine, exhibits competitive inhibition versus ATP and noncompetitive inhibition versus cysteine, with an inhibition constant of approximately 306 nM versus ATP. Single-turnover reactions of the first and second half reactions were determined using rapid-quench techniques, giving rates of approximately 9.4 and approximately 5.2 s-1, respectively, consistent with the cysteinyl adenylate being a kinetically competent intermediate in the reaction by MshC.  相似文献   

13.
Cell-free extracts prepared from a biotin auxotroph of Escherichia coli were active in catalyzing the synthesis of 7,8-diaminopelargonic acid, an intermediate of the biotin pathway, from 7-oxo-8-aminopelargonic acid. The product was identified on the basis of its chromatographic characteristics and its biotin activities for biotin auxotrophs of E. coli. Enzyme activity was determined in a reaction coupled with the desthiobiotin synthetase system, which is required for the conversion of 7,8-diaminopelargonic acid to desthiobiotin, and by measuring the amount of desthiobiotin formed by microbiological assay. The reaction was stimulated by l-methionine and pyridoxal-5'-phosphate. l-Methionine could not be replaced by any other amino acids tested. Pyridoxamine and pyridoxamine-5'-phosphate were as active as pyridoxal phosphate. The enzyme, presumably an aminotransferase, was demonstrable in the parent strain of E. coli and all mutant strains tested with the exception of a strain which is able to grow on diaminopelargonic acid but not on 7-oxo-8-aminopelargonic acid. Furthermore, the enzyme was repressible by biotin. The results were consistent with the hypothesis that the biosynthesis of 7,8-diaminopelargonic acid from 7-oxo-8-aminopelargonic acid is an obligatory step in the biosynthetic pathway of biotin in E. coli.  相似文献   

14.
Cell-free extracts of Escherichia coli were active in catalyzing the synthesis of a biotin vitamer from 7,8-diaminopelargonic acid. The vitamer was identified as desthiobiotin on the basis of its chromatographic and electrophoretic characteristics and its biotin activities for a variety of microorganisms. The reaction was stimulated five-fold by bicarbonate, suggesting that an "active CO(2)" was incorporated into the carbonyl carbon of desthiobiotin. The enzyme was demonstrable in a wild-type (K-12) and in all biotin mutants of E. coli that were tested, with the exception of a strain which was able to grow on desthiobiotin but not on diaminopelargonic acid. Furthermore, the enzyme was repressible by biotin in all of the strains tested. These results are consistent with the hypothesis that the biosynthesis of desthiobiotin from 7,8-diaminopelargonic acid is an obligatory step in the biosynthetic pathway of biotin in E. coli.  相似文献   

15.
S-Adenosyl-L-methionine:benzoic acid carboxyl methyltransferase (BAMT) catalyzes the transfer of the methyl group of S-adenosyl-L-methionine (SAM) to the carboxyl group of benzoic acid to make the volatile ester methyl benzoate, one of the most abundant scent compounds of snapdragon, Antirrhinum majus. The enzyme was purified from upper and lower petal lobes of 5- to 10-day-old snapdragon flowers using DE53 anion exchange, Phenyl-Sepharose 6FF, and Mono-Q chromatography. The purified protein has a pH optimum of 7.5 and is highly specific for benzoic acid, with no activity toward several other naturally occurring substrates such as salicylic acid, cinnamic acid, and their derivatives. The molecular mass values for native and denatured protein were 100 and 49 kDa, respectively, suggesting that the active enzyme is a homodimer. The addition of monovalent cations K+ and NH4+ stimulates BAMT activity by a factor of 2, whereas the addition of Fe2+ and Cu2+ has a strong inhibitory effect. Plant-purified BAMT has Km values of 28 microM and 1.1 mM for SAM and benzoic acid, respectively (87 microM and 1.6 mM, respectively, for plant BAMT expressed in Escherichia coli). Product inhibition studies showed competitive inhibition between SAM and S-adenosyl-L-homocysteine (SAH), with a Ki of 7 microM, and noncompetitive inhibition between benzoic acid and SAH, with a Ki of 14 microM.  相似文献   

16.
Protein methylesterase (PME) amino acid composition and substrate specificity towards methylated normal and deamidated protein substrates were investigated. The enzyme contained 23% acidic and 5% basic residues. These values are consistent with a pI of 4.45. The product formed from methylated protein by PME was confirmed as methanol by h.p.l.c. The kcat. and Km values for several methylated protein substrates ranged from 20 x 10(-6) to 560 x 10(-6) s-1 and from 0.5 to 64 microM respectively. However, the kcat./Km ratios ranged within one order of magnitude from 11 to 52 M-1.s-1. Results with the irreversible cysteine-proteinase inhibitor E-64 suggested that these low values were in part due to the fact that only one out of 25 molecules in the PME preparations was enzymically active. When PME was incubated with methylated normal and deamidated calmodulin, the enzyme hydrolysed the latter substrate at a higher rate. The Km and kcat. for methylated normal calmodulin were 0.9 microM and 31 x 10(-6) s-1, whereas for methylated deamidated calmodulin values of 1.6 microM and 188 x 10(-6) s-1 were obtained. The kcat./Km ratios for methylated normal and deamidated calmodulin were 34 and 118 M-1.s-1 respectively. By contrast, results with methylated adrenocorticotropic hormone (ACTH) substrates indicated that the main difference between native and deamidated substrates resides in the Km rather than the kcat. The Km for methylated deamidated ACTH was 5-fold lower than that for methylated native ACTH. The kcat./Km ratios for methylated normal and deamidated ACTH were 43 and 185 M-1.s-1 respectively. These results indicate that PME recognizes native and deamidated methylated substrates as two different entities. This suggests that the methyl groups on native calmodulin and ACTH substrates may not be on the same amino acid residues as those on deamidated calmodulin and ACTH substrates.  相似文献   

17.
K Duncan  C T Walsh 《Biochemistry》1988,27(10):3709-3714
In Salmonella typhimurium, D-alanine:D-alanine ligase (ADP) (EC 6.3.2.4) is the second enzyme in the three enzyme D-alanine branch pathway of peptidoglycan biosynthesis. The interaction of this enzyme with a possible transition-state analogue, the (aminoalkyl)phosphinate D-3-[(1-aminoethyl)phosphinyl]-2-heptylpropionic acid [Parsons et al. (1987) Abstracts of Papers, 193rd National Meeting of the American Chemical Society, Denver, CO, MEDI 63, American Chemical Society, Washington, DC], has been studied. This compound is a potent active site directed inhibitor and is competitive with D-alanine (Ki = 1.2 microM); it exhibits time-dependent inhibition in the presence of ATP. Kinetic analysis revealed a rapid onset of steady-state inhibition (kon = 1.35 X 10(4) M-1 s-1) followed by slow dissociation of inhibitory complex(es) with a half-life of 8.2 h. The inhibitory complex was shown to consist of E...I...ATP in equilibrium with E...I, Pi, and ADP. Similar time-dependent inhibition was also observed with D-(1-aminoethyl)phosphonic acid (D-Ala-P) (Ki = 0.5 mM; kon = 27 M-1 s-1; t1/2 for regain = 1.73 min) but not with D-(1-aminoethyl)phosphinic acid, which behaved as a simple competitive inhibitor (Ki = 0.4 mM). The mechanism of inhibition is discussed in the light of the precedents of glutamine synthase inhibition by methionine sulfoximine and phosphinothricin.  相似文献   

18.
The gene encoding the second enzyme of the 2C-methyl-D-erythritol 4-phosphate (MEP) pathway for isopentenyl diphosphate biosynthesis, 1-deoxy-D-xylulose 5-phosphate (DXP) reductoisomerase, was cloned and sequenced from Zymomonas mobilis. The deduced amino acid sequence showed the highest identity (48.2%) to the DXP reductoisomerase of Escherichia coli. Biochemical characterization of the purified DXP reductoisomerase showed a strict dependence of the enzyme on NADPH and divalent cations (Mn(2+), Co(2+) or Mg(2+)). The enzyme is a dimer with a molecular mass of 39 kDa per subunit and has a specific activity of 19.5 U mg protein(-1). Catalysis of the intramolecular rearrangement and reduction of DXP to MEP is competitively inhibited by the antibiotic fosmidomycin with a K(i) of 0.6 microM.  相似文献   

19.
Biotin Transport Through the Blood-Brain Barrier   总被引:6,自引:4,他引:2  
The unidirectional influx of biotin across cerebral capillaries, the anatomical locus of the blood-brain barrier, was measured with an in situ rat brain perfusion technique employing [3H]biotin. Biotin was transported across the blood-brain barrier by a saturable system with a one-half saturation concentration of approximately 100 microM. The permeability-surface area products were 10(-4) s-1 with a biotin concentration of 0.02 microM in the perfusate. Probenecid, pantothenic acid, and nonanoic acid but not biocytin or biotin methylester (all 250 microM) inhibited biotin transfer through the blood-brain barrier. The isolated rabbit choroid plexus was unable to concentrate [3H]biotin from medium containing 1 nM [3H]biotin. These observations provide evidence that: biotin is transported through the blood-brain barrier by a saturable transport system that depends on a free carboxylic acid group, and the choroid plexus is probably not involved in the transfer of biotin between blood and cerebrospinal fluid.  相似文献   

20.
The enzyme cofactor and essential vitamin biotin is biosynthesized in bacteria, fungi, and plants through a pathway that culminates with the addition of a sulfur atom to generate the five-membered thiophane ring. The immediate precursor, dethiobiotin, has methylene and methyl groups at the C6 and C9 positions, respectively, and formation of a thioether bridging these carbon atoms requires cleavage of unactivated CH bonds. Biotin synthase is an S-adenosyl-l-methionine (SAM or AdoMet) radical enzyme that catalyzes reduction of the AdoMet sulfonium to produce 5'-deoxyadenosyl radicals, high-energy carbon radicals that can directly abstract hydrogen atoms from dethiobiotin. The available experimental and structural data suggest that a [2Fe-2S](2+) cluster bound deep within biotin synthase provides a sulfur atom that is added to dethiobiotin in a stepwise reaction, first at the C9 position to generate 9-mercaptodethiobiotin, and then at the C6 position to close the thiophane ring. The formation of sulfur-containing biomolecules through a radical reaction involving an iron-sulfur cluster is an unprecedented reaction in biochemistry; however, recent enzyme discoveries suggest that radical sulfur insertion reactions may be a distinct subgroup within the burgeoning Radical SAM superfamily. This article is part of a Special Issue entitled: Radical SAM enzymes and Radical Enzymology.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号