首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
The proteolytic actions of elastases have been implicated in extracellular matrix damage, which is characteristic of a variety of pathological conditions including emphysema and rheumatoid arthritis. In order to elucidate the molecular events involved in elastase interaction with connective tissue cells, the present study was designed to investigate the association of elastase with human fibroblasts at 4 degrees C. Elastase bound saturably to binding sites that were present on the surface of these cells. Analysis of cell-bound elastase by sodium dodecyl sulfate-polyacrylamide gel electrophoresis revealed the presence of a high molecular weight complex (Mr 54,000) that was not formed with elastase whose catalytic site serine was derivatized with a diisopropylphosphate group. The complex did not represent elastase bound to either protease nexin or contaminating serum. The cellular component with which elastase formed a complex could not be detected in the cell culture medium. Unexpectedly, elastase that had been pre-bound at 4 degrees C was not internalized after cells were warmed to 37 degrees C. The elastase binding site described in this report is therefore distinct from high affinity binding sites involved in receptor-mediated endocytosis and intracellular degradation.  相似文献   

2.
3.
Thyroxine binding globulin (TBG) is the major carrier of the thyroid hormones triiodothyronine (T3) and thyroxine (T4) in plasma. TBG is member of the serpin family of proteins although it has no proteinase inhibitory activity. In this study we show that TBG has properties typical of a metastable serpin and provide evidence that occupancy of the hormone binding site alters the conformation of the reactive center loop. After reactive center loop cleavage by endoproteinase Asp-N or neutrophil elastase the protein became more stable to guanidine hydrochloride denaturation compared to the native protein, as a result of loop insertion. In addition, incubation of the native protein with a reactive center loop peptide, caused a change in mobility on a native gel. This is consistent with the idea that thyroxine binding globulin is able to form a binary complex with the peptide as a result of beta-sheet A expansion. To assess the effect of cleavage and loop insertion on the hormone binding site we used the specific binding of a fluorophore, 1,8-anilinonaphthalene sulfonic acid (ANS). Loop insertion itself had no effect on ANS affinity, but cleavage with elastase at the P4'-P5' bond caused a reduction in affinity, presumably because this cleavage site is located within the hormone binding site. These data support the concept that cleavage of TBG by proteinases released in inflammation is a mechanism to deliver thyroid hormones to target tissues. A linkage between the occupancy state of the hormone binding site and the conformation of the reactive center loop was indicated by the observation that binding of T3 to native TBG reduced proteolytic susceptibility by both endoproteinase Asp-N and elastase.  相似文献   

4.
The three members of the serpin family, corticosteroid binding globulin, alpha1-antitrypsin, and C1 inhibitor are secreted apically from Madin-Darby canine kidney (MDCK) cells, whereas two homologous family members, antithrombin and plasminogen activator inhibitor-1, are secreted in a nonpolarized fashion. cDNAs coding for chimeras composed of complementary portions of an apically targeted serpin and a nonsorted serpin were generated, expressed in MDCK cells, and the ratio between apical and basolateral secretion was analyzed. These experiments identified an amino-terminal sequence of corticosteroid binding globulin (residues 1-19) that is sufficient to direct a chimera with antithrombin mainly to the apical side. A deletion/mutagenesis analysis showed that no individual amino acid is absolutely required for the apical targeting ability of amino acids 1-30 of corticosteroid binding globulin. The corresponding amino-terminal sequences of alpha1-antitrypsin and C1 inhibitor were also sufficient to confer apical sorting. Based on our results we suggest that the apical targeting ability is encoded in the conformation of the protein.  相似文献   

5.
Studying protease/peptide inhibitor interactions is a useful tool for understanding molecular recognition in general and is particularly relevant for the rational design of inhibitors with therapeutic potential. An inhibitory peptide (PMTLEYR) derived from the third domain of turkey ovomucoid inhibitor and optimized for specific porcine pancreatic elastase inhibition was introduced into an inhibitor scaffold to increase the proteolytic stability of the peptide. The trypsin-specific squash inhibitor EETI II from Ecballium elaterium was chosen as the scaffold. The resulting hybrid inhibitor HEI-TOE I (hybrid inhibitor from E. elaterium and the optimized binding loop of the third domain of turkey ovomucoid inhibitor) shows a specificity and affinity to porcine pancreatic elastase similar to the free inhibitory peptide but with significantly higher proteolytic stability. Isothermal titration calorimetry revealed that elastase binding of HEI-TOE I occurs with a small unfavorable positive enthalpy contribution, a large favorable positive entropy change, and a large negative heat capacity change. In addition, the inhibitory peptide and the hybrid inhibitor HEI-TOE I protected endothelial cells against degradation following treatment with porcine pancreatic elastase.  相似文献   

6.
Ferritin is a protein principally known for its role in iron storage. We have previously shown that ferritin can bind high-molecular-weight kininogen (HK). Upon proteolytic cleavage by the protease kallikrein, HK releases the proinflammatory peptide bradykinin (BK) and other biologically active products, such as two-chain high-molecular-weight kininogen, HKa. At inflammatory sites, HK is oxidized, which renders it a poor substrate for kallikrein. However, oxidized HK remains a good substrate for elastase and tryptase, thereby providing an alternative cleavage mechanism for HK during inflammation. Here we report that ferritin can retard the cleavage of both native HK and oxidized HK by elastase and tryptase. Initial rates of cleavage were reduced 45-75% in the presence of ferritin. Ferritin is not a substrate for elastase or tryptase and does not interfere with the ability of either protease to digest a synthetic substrate, suggesting that ferritin may impede HK cleavage through direct interaction with HK. Immunoprecipitation and solid phase binding studies reveal that ferritin and HK bind directly with a Kd of 134 nM. To test whether ferritin regulates HK cleavage in vivo, we used THP-1 cells, a human monocyte/macrophage cell line that has been used to model pulmonary inflammatory cells. We observed that ferritin impedes the cleavage of HK by secretory proteases in stimulated macrophages. Furthermore, ferritin, HK, and elastase are all present in or on alveolar macrophages in a mouse model of pulmonary inflammation. Collectively, these results implicate ferritin in the modulation of HK cleavage at sites of inflammation.  相似文献   

7.
Matsuyama S 《Uirusu》2011,61(1):109-116
Previous studies have demonstrated that the SARS-CoV S protein requires proteolytic cleavage by elastase, cathepsin or TMPRSS2 for S-mediated cell-cell or virus-cell membrane fusion. Activation of viral glycoprotein (GP) by protease also has been reported for influenza virus. The most distinctive difference between influenza virus and SARS-CoV is the stage during virus replication in which viral glycoproteins are cleaved by proteases. In influenza virus, the protease makes a simple cut in the GP during maturation. In contrast, SARS-CoV S protein is cleaved by the protease following receptor-induced conformational changes. The protease cleavage site in S protein is thought to be exposed only after receptor binding. In support of this model, we reported that the S protein of mouse hepatitis virus type 2 (MHV-2), which is highly similar to the S protein of SARS-CoV, requires two-step conformational changes mediated by sequential receptor binding and proteolysis to be activated for membrane fusion. Such a mechanism allows for tight temporal control over fusion by protecting the activating cleavage site from premature proteolysis yet allowing efficient cleavage upon binding to the receptor on target cells.  相似文献   

8.
The purpose of this study was to compare the specific cortisol-binding protein found associated with human amnion with specific cortisol binding in human amniotic fluid and plasma. The electrophoretic mobility on polyacrylamide gels of the specific cortisol binding in amnion, amniotic fluid, and maternal plasma was identical. The influence of pH on cortisol binding activity was similar in all tissues and the cortisol binding was immunoprecipitable by a polyclonal antibody raised against human corticosteroid-binding globulin. The interaction of the cortisol binding protein with concanavalin A was studied in preterm amniotic fluid, term amniotic fluid, term amnion, and plasma from pregnant women at term and women under oral contraceptive treatment. Binding to concanavalin A was similar in term amnion and term amniotic fluid but was less than that found with both preterm amniotic fluid and term plasma. These results indicate that the cortisol binding protein associated with human amnion has similar characteristics to plasma corticosteroid-binding globulin, but that its state of glycosylation appears to be more like that of the cortisol binding protein in term amniotic fluid rather than in plasma.  相似文献   

9.
The possible involvement of cell surface-associated proteolytic enzymes in human NK cell-mediated cytotoxicity and the mechanism by which such enzymes exert their activity have been studied. The treatment of intact cells with 3H-DFP under restricted conditions that predominantly bind surface-associated enzymes resulted in the labeling of five to six enzyme bands. Among these were a 35,000-dalton enzyme, which may be a previously identified trypsin-like proteinase engaged in cytotoxicity, and a 58,000-dalton elastase. The latter seems not to be involved in the reaction, as potent inhibitors of this enzyme have negligible effect on cytotoxicity. Of the membrane-associated enzymes, those engaged in cytotoxicity seem to be concealed from the external environment, as pretreatment of the effector cells with protease inhibitors such as trasylol and PMSF have no effect on the reaction. Immediately upon addition of the target cells and the initiation of cytotoxicity, the reaction becomes highly sensitive to inhibitors for a limited time interval of 2 to 5 min when trasylol is employed and 5 to 10 min when TPCK is the inhibitor, suggesting that target cell binding triggers the exposure of the enzymes to the external environment, rendering them accessible to the inhibitors. This short sensitivity period parallels the interval in which the reaction is sensitive to the microfilament inhibitor cytochalasin B. As the reaction proceeds, it becomes increasingly resistant to inhibitors of both proteolysis and cytoskeleton, at the same time suggesting that microfilament action and the unraveling of proteases may be processes that bear a close linkage with one another. The surface-associated elastase on the other hand maintains a constitutive mode of activity distinctive and unrelated to that of enzymes engaged in cytotoxicity. These findings suggest the existence on the surface of the NK lymphocyte of a mechanism that associates the receptor for target cells with an array of enclaved proteolytic enzymes via microfilaments. The resting cytotoxic structures become activated as the receptor attaches to the target cell, triggers the exposure of the proteolytic moiety, and initiates the lytic phase of the reaction.  相似文献   

10.
11.
Two major forms of rabbit plasma alpha-1-antiproteinase, S and F, were separated by affinity chromatography on Red Sepharose, and their modes of interaction with porcine trypsin were studied. The S form interacted with trypsin much more slowly than the F form, and the resulting complex partially retained the amidolytic and proteolytic activities towards benzoyl-L-arginine p-nitroanilide and remazol brilliant blue hide powder, respectively. This S form-trypsin complex also prevented the inactivation of bound trypsin by soybean trypsin inhibitor. In marked contrast, an equimolar complex of trypsin and the F form retained neither amidolytic nor proteolytic activity. These results suggest that the F form blocks the active site of trypsin while the S form does not bind directly to the active site, thereby preserving the catalytic potential of trypsin. No similar interaction was observed, however, between the S form and either bovine chymotrypsin or porcine pancreatic elastase. Both the S and F forms inactivated these proteinases in a stoichiometric manner with differing inhibitor/proteinase binding ratios. The S form showed about twofold greater capacity to inhibit elastase than the F form, whereas the reverse was the case for chymotrypsin.  相似文献   

12.
Serine proteinases of human polymorphonuclear neutrophils play an important role in neutrophil-mediated proteolytic events; however, the non-oxidative mechanisms by which the cells can degrade extracellular matrix in the presence of proteinase inhibitors have not been elucidated. Herein, we provide the first report that human neutrophils express persistently active cell surface-bound human leukocyte elastase and cathepsin G on their cell surface. Unstimulated neutrophils have minimal cell surface expression of these enzymes; however, phorbol ester induces a 30-fold increase. While exposure of neutrophils to chemoattractants (fMLP and C5a) stimulates modest (two- to threefold) increases in cell surface expression of serine proteinases, priming with concentrations of lipopolysaccharide as low as 100 fg/ml leads to striking (up to 10-fold) increase in chemoattractant-induced cell surface expression, even in the presence of serum proteins. LPS-primed and fMLP-stimulated neutrophils have approximately 100 ng of cell surface human leukocyte elastase activity per 10(6) cells. Cell surface- bound human leukocyte elastase is catalytically active, yet is remarkably resistant to inhibition by naturally occurring proteinase inhibitors. These data indicate that binding of serine proteinases to the cell surface focuses and preserves their catalytic activity, even in the presence of proteinase inhibitors. Upregulated expression of persistently active cell surface-bound serine proteinases on activated neutrophils provides a novel mechanism to facilitate their egress from the vasculature, penetration of tissue barriers, and recruitment into sites of inflammation. Dysregulation of the cell surface expression of these enzymes has the potential to cause tissue destruction during inflammation.  相似文献   

13.
The Salmonella typhimurium araC gene product is known to be susceptible to proteolytic degradation. Limited cleavage by trypsin, kallikrein, elastase and pronase E yields stable fragments comprising approximately the N-terminal two thirds of the AraC protein. These fragments have in common the ability to dimerize in solution and to bind L-arabinose and D-fucose. Under appropriate conditions, hydrolysis of the AraC protein with Staphylococcus aureus V8 protease leads to a small C-terminal fragment which is able to bind specifically to a synthetic ara consensus sequence. These results indicate that, as with several other prokaryotic gene regulatory proteins, the basic functions of effector binding, subunit interaction and specific DNA binding are segregated into distinct domains of the AraC protein.  相似文献   

14.
Pseudomonas aeruginosa secretes elastase in a multistep process which begins with the synthesis of a preproelastase (53.6 kDa) encoded by lasB, is followed by processing to proelastase (51 kDa), and concludes with the rapid accumulation of mature elastase (33 kDa) in the extracellular environment. In this study, mutants of P. aeruginosa were constructed by gene replacement which expressed lasB1, an allele altered in vitro at an active-site His-223-encoding codon. The lasB1 allele was exchanged for chromosomal lasB sequences in two strain backgrounds, FRD2 and PAO1, through a selectable-cassette strategy which placed a downstream Tn501 marker next to lasB1 and provided the selection for homologous recombination with the chromosome. Two lasB1 mutants, FRD720 and PDO220, were characterized, and their culture supernatants contained greatly reduced proteolytic (9-fold) and elastolytic (14- to 20-fold) activities compared with their respective parental lasB+ strains. This was primarily due to the effect of His-223 substitution on substrate binding by elastase and thus its proteolytic activity. However, the concentration of supernatant elastase antigen was also reduced (five- to sevenfold) in the mutant strains compared with the parental strains. An immunoblot analysis of cell extracts showed a large accumulation of 51-kDa proelastase within lasB1 mutant cells which was not seen in wild-type cell extracts. A time course study showed that production of extracellular elastase was inefficient in the lasB1 mutants compared with that of parental strains. This showed that expression of an enzymatically defective elastase inhibits proper processing of proelastase and provides further evidence for autoproteolytic processing of proelastase in P. aeruginosa. Unlike the parental strains, culture supernatants of the lasB1 mutants contained two prominent elastase species that were 33 and 36 kDa in size. Extracellular 51-kDa proelastase was barely detectable, even though it accumulated to high concentrations within the lasB1 mutant cells. These data suggest that production of an enzymatically defective elastase affects proper secretion because autoproteolytic processing of proelastase is necessary for efficient localization to the extracellular milieu. The appearance of reduced amounts of extracellular elastase and their sizes of 33 and 36 kDa suggest that lasB1-encoded elastase was processed by alternate, less-efficient processing mechanisms. Thus, proelastase must be processed by removal of nearly all of the 18-kDa propeptide before elastase is a protein competent for extracellular secretion.  相似文献   

15.
Modifications in an existing competitive protein binding assay for progesterone have been made which provide a readily available and rich source of binding sites on the corticosteroid binding globulin (CBG). The primary and most important modification is the rapid removal of endogenous steroids from plasma by gel filtration at an elevated temperature. The ‘stripped’ protein retains full CBG activity, but is cleared of 95% of its endogenous steroids. This stripping procedure provides not only increased number of binding sites, but in conjunction with the other modifications also eliminates some of the variability in the assay.  相似文献   

16.
The adsorption of pulmonary surfactant to an air/fluid interface is influenced by calcium-dependent interactions between its lipid and protein components. The latter include a glycoprotein of 28-36 kDa (SP-A) and two smaller hydrophobic proteins of 5-8 kDa (SP-B, SP-C). Neutrophil elastase and other proteolytic enzymes found in the alveolar washings in a variety of acute lung injuries may cleave the protein components of lung surfactant. To examine the hypothesis that free airspace elastolytic activity may thereby impair surfactant function, we analyzed the effect of neutrophil elastase on surfactant activity in vitro. The adsorption characteristics of dog surfactant and of complexes reassembled from purified surfactant components were examined after incubations with active or heat-inactivated neutrophil elastase. Surfactant preincubated with the active enzyme showed a marked concentration-dependent slowing of adsorption associated with proteolytic cleavage of SP-A. To determine whether elastase also decreases surface activity by affecting the hydrophobic proteins SP-B and SP-C, we studied the effect of incubating elastase with liposomes prepared from surfactant lipid fractions which contain SP-B and SP-C. The addition of intact SP-A to these liposomes incubated with inactive enzyme immediately enhanced adsorption speed. This enhancement was greatly attenuated in liposomes treated with active elastase, suggesting that one or both of the hydrophobic surfactant proteins had been affected by elastase. We conclude that proteolytic cleavage of surfactant proteins reduces adsorption speed in vitro and may disturb surfactant function in vivo.  相似文献   

17.
Plasma was collected from White Leghorn embryos on alternate days from Day 4 of incubation to Day 22 (day after hatch). The plasma-binding capacity for corticosteroid was essentially zero before Day 10, but rose rapidly between Days 10 and 12. Binding capacity remained high until Day 16 and then declined before hatch. The increase after Day 10 was concurrent with the appearance of α-globulin whose rate of migration on acrylamide gel electrophoresis was similar to that of purified chicken corticosteroid binding globulin. Corticosterone, which was present in the plasma of the 4-day embryo, rose to its highest level on Day 20. The relatively high corticosterone concentration, with low plasma-binding capacity, suggests that in the chick embryo levels of free or active corticosterone are highest before Day 10 and just prior to hatching.  相似文献   

18.
The generation of the broad specificity serine protease plasmin in the pericellular environment is regulated by binding of the urokinase-type plasminogen activator (uPA) to its specific glycosylphosphatidylinositol (GPI)-anchored cell-surface receptor, uPAR. This interaction potentiates the reciprocal activation of the cell-associated zymogens pro-uPA and plasminogen. To further study the role of uPAR in this mechanism, we have expressed two directly membrane-anchored chimeric forms of uPA, one anchored by a C-terminal GPI-moiety (GPI-uPA), the other with a C-terminal transmembrane peptide (TM-uPA). These were expressed in the monocyte-like cell lines U937 and THP-1, which are excellent models for kinetic and mechanistic studies of cell-surface plasminogen activation. In both cell-lines, GPI-uPA activated cell-associated plasminogen with characteristics both qualitatively and quantitatively indistinguishable from those of uPAR-bound uPA. By contrast, TM-uPA activated cell-associated plasminogen less efficiently. This was due to effects on the K, for plasminogen activation (which was increased up to five-fold) and the efficiency of pro-uPA activation (which was decreased approximately four-fold). These observations suggest that uPAR serves two essential roles in mediating efficient cell-surface plasminogen activation. In addition to confining uPA to the cell-surface, the GPI-anchor plays an important role by increasing accessibility to substrate plasminogen and, thus, enhancing catalysis. However, the data also demonstrate that, in the presence of an alternative mechanism for uPA localization, uPAR is dispensable and, therefore, unlikely to participate in any additional interactions that may be necessary for the efficiency of this proteolytic system. In these experiments zymogen pro-uPA was unexpectedly found to be constitutively activated when expressed in THP-1 cells, suggesting the presence of an alternative plasmin-independent proteolytic activation mechanism in these cells.  相似文献   

19.
A low-molecular-weight biomimetic affinity ligand selective for binding elastase has been designed and synthesized. The ligand was based on mimicking part of the interaction between a natural inhibitor, turkey ovomucoid inhibitor and elastase, and modelled from the X-ray crystallographic structure of the enzyme-inhibitor complex. Limited solid-phase combinatorial chemistry was used to synthesize 12 variants of the lead ligand using the triazine moiety as the scaffold for assembly. The ligand library was screened for its ability to bind elastase and trypsin, and two ligands were studied further. Ligand C4/6 [2-alanyl-alanyl-4-tryptamino-6-(alpha-lysyl)-s-triazine] was found to bind porcine pancreatic elastase, but not trypsin, with a dissociation constant of 6 x 10(-5) M and a binding capacity of 21 mg elastase per ml gel. The adsorbent was used to purify elastase from a crude extract of porcine pancreas. Immobilized ligand C4/5 6 [2-alanyl-alanyl-4-tyramino-6-(alpha-lysyl)-s-triazine] was similarly chosen for optimal binding of elastase from cod and used to purify the enzyme from a crude extract of cod pyloric caeca. Ligand C4/6 was subsequently synthesized in solution and its structure verified by 1H-NMR.  相似文献   

20.
Immunoadsorbents were modified with monomethoxy-polyethylene glycol (PEG; average molecular weights of 5000 (PEG-5000) and 1900 (PEG-1900)) activated with cyanuric acid (activated PEG) by four different methods. In the two methods, anti-BSA antibodies were modified with activated PEG with and without protection of antigen binding sites with BSA and then were coupled to CNBr-activated Sepharose 4B. In the other two methods, Immunoadsorbents, which were prepared by coupling anti-BSA antibodies to CNBr-activated Sepharose 4B, were modified with activated PEG with and without the protection. The effects of PEG modification by these four methods on the binding ratio (the ratio of the numbers of moles of antigen adsorbed to the numbers of moles of binding sites of antibody coupled), the antigen binding property and the resistance to proteolytic digestion of immunoadsorbents were studied. The decrease in the binding ratio by the modification with activated PEG was small enough to use modified immunoadsorbents for industrial purification processes. The resistance to proteolytic digestion of immunoadsorbents was improved by modification with activated PEG. The modification without protection of antigen binding sites gave higher resistance to proteolytic digestion than that with protection, while the former caused larger decrease in the binding ratio of modification. The immunoadsorbents modified with activated PEG-5000 showed higher resistance to proteolytic digestion than those modified with activated PEG-1900.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号