首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Summary Direct gene transfer has proved to be an efficient transformation method for arabidopsis thaliana, a member of the Brassicaceae. Transgenic Arabidopsis plants resistant to hygromycin B have been regenerated from mesophyll protoplasts treated with polyethylene glycol and plasmid DNA carrying the hygromycin phosphotransferase (HPT) gene under the control of the 35 S promoter of cauliflower mosaic virus. The transformation procedure reproducibly yields transformants at frequencies of approximately 1×10-4 (based on the number of protoplasts treated) or 5% (based on the number of regenerating calli). DNA from plants regenerated from hygromycin resistant colonies was analysed by Southern blot hybridization demonstrating that the foreign gene is stably integrated into the plant chromosome. Genetic analysis of several hygromycin resistant plants showed that the HPT gene is transmitted to the progeny. Transformation experiments performed with a selectable and a non-selectable gene on separate plasmids resulted in a co-transformation rate of functionally active copies in about 25% of the transformants analysed. Hence this approach can be used to introduce non-selectable genes into the Arabidopsis genome.  相似文献   

2.
A protocol avoiding the feeder-layer cell system was optimized for Agrobacterium-mediated transformation of tomato cotyledonary explants. Over 500 transgenic plants from five tomato cultivars were regenerated in 15 independent experiments. Depending on both genotype and procedure, transformation frequencies ranged from 1.8% to 11.3%. The optimal transformation rate was obtained by inoculating explants with a bacterial suspension in exponential growth ( D(600) = 10(2)-10(3) cells/ml) and transferring cotyledon explants to fresh selective regeneration medium every 3 weeks. The ploidy level of both tomato genotypes used as explant source and primary transformants, was studied by flow cytometry. The inbred lines and cultivars were diploid but a polysomatic pattern in the cotyledon explant was confirmed. The rate of tetraploid transgenic plants ranged from 24.5% to 80% and depended on both the genotype and the transformation procedure. Surprisingly, the percentages of transformed plants with higher ploidy levels were not related to the proportion of 4C and 8C nuclei in the cotyledonary tissue. For some genotypes the optimisation of the transformation rate resulted in an increase of tetraploid transgenic plants. Results obtained in this work indicate the convenience of checking the ploidy level of the primary transformants before performing basic studies or introducing tomato transgenic material in a breeding program.  相似文献   

3.
A silicon carbide whisker-mediated gene transfer system with recovery of fertile and stable transformants was developed for cotton (Gossypium hirsutum L.) cv. Coker-312. Two-month-old hypocotyl-derived embryogenic/non-embryogenic calli at different days after subculture were treated with silicon carbide whiskers for 2 min in order to deliver pGreen0029 encoding GUS gene and pRG229 AVP1 gene, encoding Arabidopsis vacuolar pyrophosphatase, having neomycin phosphotransferaseII (nptII) genes as plant-selectable markers. Three crucial transformation parameters, i.e., callus type, days after subculture and selection marker concentration for transformation of cotton calli were evaluated for optimum efficiency of cotton embryogenic callus transformation giving upto 94% transformation efficiency. Within six weeks, emergence of kanamycin-resistant (kmr) callus colonies was noted on selection medium. GUS and Southern blot analysis showed expression of intact and multiple transgene copies in the transformed tissues. Kanamycin wiping of leaves from T1, T2, and T3 progeny plants revealed that transgenes were inherited in a Mendelian fashion. Salt treatment of T1 AVP1 transgenic cotton plants showed significant enhancement in salt tolerance as compared to control plants. Thus far, this is first viable physical procedure after particle bombardment available for cotton that successfully can be used to generate fertile cotton transformants.  相似文献   

4.
Transgenic plantlets with a retarding effect on post-harvest yellowing in broccoli have been generated via Agrobacterium tumefaciens-mediated transformation of cytokinin synthesizing ipt (isopentenyltransferase) gene. The ipt gene is constructed under the control of senescence-associated gene promoters from Arabidopsis in the forms of pSG529(+) and pSG766A, which were the gifts from Dr R.M. Amasino at University of Wisconsin, Madison. Evidence of transgene integration was confirmed by assays on neomycin phosphotransferase II (NPTII) activity of selection markers, PCR and Southern hybridization. Based on the chlorophyll retention rate (>50%) after 4 days of post-harvest storage at 25 °C, it was found that 31% of transformants exhibited the effect of retarding yellowing in detached leaves, with 16% having the effect on florets and 7.2% on both leaves and florets. RT-PCR revealed that ipt gene expression occurred early on the day of detachment. Factors such as vacuum aid infiltration, plasmid differences, explant types, seedling ages and kanamycin concentrations were also studied. Putative transformation frequencies tended to vary with plasmids and explant types. The advantage of vacuum aid infiltration depended on explant types. The optimal kanamycin concentration should be determined experimentally for each study to avoid the high escape rate of kanamycin selection. Flow cytometric analysis of explant nuclear DNA phases was found to be helpful for selecting suitable explants for transformation and minimizing the polyploid transformants. A reproducible transformation protocol without any pre-culture was established for explants of hypocotyl, cotyledon, and peduncle. Most of the ipt transformants with a retarding effect on yellowing had a chimeric nature but showed little or no serious morphological abnormality in comparison with their parental line. Through proper selection, transformation lines with the capability of retarding post-harvest yellowing in broccoli should be feasible.  相似文献   

5.
This paper establishes that the isolated shoot meristem of monocotyledons can be infected and transformed using Agrobacterium. Since this explant from nearly any cereal cultivar can rapidly regenerate into a plant, using this explant effectively eliminates the genotype regeneration restrictions to cereal crop transformation allowing direct transformation of elite germplasm. Shoot apices of Oryza sativa L. Tropical Japonica, cv. Maybelle were explants used for cocultivation, and gene transfer was accomplished using Agrobacterium containing plasmids for the bar gene expression driven by the CaMV 35S promoter or by the rice actin 1 promoter. Experiments to determine the survival rates of isolated shoot apices on media containing the herbicide, glufosinate-ammonium (PPT), established that no shoot apices survived on 0.5 or 1.0 mg/l PPT. After shoot apices were cocultivated with Agrobacterium, 2.8% (overall 20 out of 721 shoot apices) survived on 0.5 mg/l PPT. Results demonstrated that the use of the actin 1 promoter-based expression vector and an extra-wounding treatment of the meristematic cells appeared to be most effective in promoting transformation. Integration, expression and transmission of the transferred foreign genes in primary, R1 and R2 generation plants were confirmed by molecular analyses and herbicide application tests. A germination test of R2 progeny from one of the transgenic plants (R1) established a phenotype segregation ratio showing a non-Mendelian inheritance pattern. Inactivation of the transferred foreign gene in R2 progeny appeared to result from transgene methylation.  相似文献   

6.
Three different regeneration systems, viz. direct regeneration of adventitious shoot buds from explant, regeneration through callus cultures and somatic embryos were compared to see their effect on transfer of neomycin phosphotransferase (nptII) and β-glucuronidase (GUS) reporter gene (gus) to Morus alba clone M5, through Agrobacterium tumefaciens mediated transformation. Pre-conditioning and co-cultivation durations had a marked effect on transformation frequency. The highest transformation frequency of 18.6% was obtained using direct induction of adventitious shoot buds. Expression and presence of transgene were assayed histochemically and through polymerase chain reaction. Southern analysis of GUS and PCR positive transformants confirmed stable integration of transgenes with two to four copy numbers. The selected transformants showed normal phenotype under in vitro and field conditions.  相似文献   

7.
Erythropoietin (EPO) is a glycoprotein used for curing human anemia by regulating the differentiation of erythroid progenitors and the production of red blood cells. To examine the expression of recombinant EPO in plants, pPEV-EP21, in which human epo cDNA under the control of the CaMV 35S promoter, was introduced into tobacco and Arabidopsisvia Agrobacterium tumefaciens-mediated transformation. The RNA expression level of epo in the transgenic lines was initially estimated by Northern blot analysis. Two transgenic lines, which exhibited a high expression level of epo mRNA determined by Northern analysis, were chosen for Western blot analysis to examine the production of EPO proteins. Those two lines, EP21-12 and EP21-14, revealed detectable bands on the immunoblot. Interestingly, constitutive expression of the human epo gene affected the morphologies in transgenic plants such that vegetative growth of transgenic tobacco was retarded, and male sterility was induced in transgenic tobacco and ArabidopsisThese authors contributed equally to this work  相似文献   

8.
Here, we report the establishment of an efficient particle gun bombardment mediated genetic transformation in chickpea (Cicer arietinum L.) using cryIAc gene of Bacillus thuringiensis. Explants were bombarded with recombinant plasmids engineered for the expression of cryIAc transgene in plants and stable transformants regenerated in presence of benzyladenine, kinetin and kanamycin. Transformation frequency showed dependence on explant type, cultivars, plasmids, helium pressure and microcarrier type used. Integration of transgenes was demonstrated using polymerase chain reaction and Southern blot hybridization approaches in T 0 plants. The expression of CryIA(c) delta-endotoxin and GUS enzyme was ascertained by enzyme linked immunosorbent assay and histochemical assays, respectively. These transgenic plants (T 0) showed more protection and high mortality for Heliothis armigera and Spodoptera litura larvae as compared to control plants. The results of the present study indicate that highest transformation frequency (18%) could be achieved by use of gold as a microcarrier in combination with helium pressure of 900 psi. Among the other factors tested, plasmid pHS 102 was the most efficient plasmid, while epicotyl explant was the best explant source for particle gun bombardment. Among the different cultivars of chickpea tested, cultivar ICCC37 and PG-12 produced higher frequency of transformation frequency compared to others.  相似文献   

9.
Endoreduplication is a special cell cycle that increases ploidy without cell and nuclear division. In plants endoreduplication is essential for development. We isolated a dominant Arabidopsis mutant from activation tagging lines that had increased polyploidy in darkness. This mutant, ipd1-1D (increased polyploidy level in darkness 1-1D), shows longer hypocotyls and increased ploidy levels only in dark-grown seedlings. The corresponding gene encodes a protein that contains a CUE domain variant. IPD1 is specifically expressed in mitotically dividing cells. Furthermore we show that blue and far-red light can suppress the ploidy increase in ipd1-1D and also suppress the reporter expression in IPD1-promoter β-glucuronidase transgenic plants. These results suggest that IPD1 regulates the endocycle leading to hypocotyl elongation and this function is controlled by blue and far-red light. Electronic Supplementary Material Supplementary material is available for this article at Yuko Tsumoto and Takeshi Yoshizumi contributed equally to this work  相似文献   

10.
For the development of anAgrobacterium-mediated transformation procedure of carnation (Dianthus caryophyllus L.), an intron-containing -glucuronidase (gus) gene was used to monitor the frequency of transformation events soon after infection of leaf explants. The efficiency of gene transfer was dependent on the carnation genotype, explant age and cocultivation time. Leaf explants from the youngest leaves showed the highest number of GUS-positive spots. After selection on a kanamycin-containing medium, transgenic shoots were generated among a relatively high number of untransformed shoots. The selection procedure was modified in such a way that the contact between explant and medium was more intense. This improved the selection and decreased the number of escapes. Kanamycin-resistant and GUS-positive plants were obtained from five cultivars after infection of leaf explants with the supervirulentAgrobacterium strain AGLO. A higher transformation frequency was observed with the binary vector pCGN7001 than with the p35SGUSint vector. Integration of the genes into the carnation genome was demonstrated by Southern blot hybridization. The number of incorporated T-DNA insertions varied between independent transformants from one to eight. Transformants were morphologically identical to untransformed plants. Segregation of the genes occurred in a Mendelian way.  相似文献   

11.
A highly efficient gene transfer method mediated by Agrobacterium tumefaciens was developed for Group I indica rice, which had been quite recalcitrant in tissue culture and transformation. Freshly isolated immature embryos from plants grown in a greenhouse were inoculated with A. tumefaciens LBA4404 that harbored super-binary vector pTOK233 or pSB134, which had a hygromycin-resistance gene and a GUS gene in the T-DNA. The efficiency of gene transfer varied with the kinds of gelling agents and the basic compositions of co-cultivation media. The highest activity of GUS after co-cultivation was observed when NB medium solidified with agarose was used. For the subsequent cultures, two types of media (modified NB and CC) were chosen to recover hygromycin-resistant cells efficiently. The transformation protocol thus developed worked very well in all of the varieties tested in this study, and the transformation frequency (number of independent hygromycin-resistant and GUS-positive plants per embryo) reached more than 30% in IR8, IR24, IR26, IR36, IR54, IR64, IR72, Xin Qing Ai 1, Nan Jin 11, and Suewon 258. Most of the transformants (T0) were normal in morphology and fertile. Stable integration, expression and inheritance of transgenes were demonstrated by molecular and genetic analysis of transformants in the T0 and T1 generations. For the recovery of multiple independent transgenic events from a single immature embryo, procedures were developed to section the embryo into as many as 30 pieces after non-selective cultures following co-cultivation. Transformants were then obtained from the pieces cultured on the selective media, and, in the highest case, more than seven independent transgenic plants per original embryo (transformation frequency of 738%) were produced. Thus, the efficiency of transformation was remarkably improved.  相似文献   

12.
Transgenic Arabidopsis and tobacco plants (125) derived from seven Agrobacterium-mediated transformation experiments were screened by polymerase chain reaction and DNA gel blot analysis for the presence of vector `backbone' sequences. The percentage of plants with vector DNA not belonging to the T-DNA varied between 20% and 50%. Neither the plant species, the explant type used for transformation, the replicon type nor the selection seem to have a major influence on the frequency of vector transfer. Only the border repeat sequence context could have an effect because T-DNA vector junctions were found in more than 50% of the plants of three different transformation series in which T-DNAs with octopine borders without inner border regions were used. Strikingly, many transgenic plants contain vector backbone sequences linked to the left T-DNA border as well as vector junctions with the right T-DNA border. DNA gel blots indicate that in most of these plants the complete vector sequence is integrated. We assume that integration into the plant genome of complete vector backbone sequences could be the result of a conjugative transfer initiated at the right border and subsequent continued copying at the left and right borders, called read-through. This model would imply that the left border is not frequently recognized as an initiation site for DNA transfer and that the right border is not efficiently recognized as a termination site for DNA transfer.  相似文献   

13.
Summary An analysis of the progeny of primary transgenic pea plants in terms of transmission of the transferred DNA, fertility and morphology is presented. A transformation system developed for pea that allows the regeneration of fertile transgenic pea plants from calli selected for antibiotic resistance was used. Expiants from axenic shoot cultures were co-cultivated with a nononcogenic Agrobacterium tumefaciens strain carrying a gene encoding hygromycin phosphotransferase as selectable marker, and transformed callus could be selected on callus-inducing media containing 15 mg/l hygromycin. After several passages on regeneration medium, shoot organogenesis could be reproducibly induced on the hygromycin resistant calli, and the regenerated shoots could subsequently be rooted and transferred to the greenhouse, where they proceeded to flower and set seed. The transmission of the introduced gene into the progeny of the regenerated transgenic plants was studied over two generations, and stable transmission was shown to take place. The transgenic nature of the calli and regenerated plants and their progeny was confirmed by DNA and RNA analysis. The DNA and ploidy levels of the progeny plants and primary regenerants were studied by chromosome analysis, and the offspring of the primary transformants were evaluated morphologically.Abbreviations 2,4-D 2,4-Dichlorophenoxyacetic acid - BA 6-ben-zyladenine - hpt hygromycin phosphotransferase gene - IAA indole acetic acid, kin, kinetin - NAA -naphtalene acetic acid - picloram 4-amino-3,5,6-trichloropicolinic acid  相似文献   

14.
Production of Agrobacterium tumefaciens-mediated transgenic plants, via direct shoot bud organogenesis from leaves of Catharanthus roseus, is reported. A. tumefaciens harbouring the plasmid pBI121 with GUS gene uidA and kanamycin resistance gene nptII was used. Highest transformation efficiency of 1.4 transgenic shoots/responded explant was obtained when pre-plasmolysed leaves, pre-incubated on shoot bud induction medium for 10 days, were subjected to sonication for 30 s prior to transformation. Using a selection medium containing 50 mg kanamycin l−1, transformants grew into micro-shoots and formed roots on a hormone-free half strength MS medium. The transgenic nature of the regenerated plants was confirmed by PCR amplification of uidA gene and GUS histochemical assay.  相似文献   

15.
 An Agrobacterium tumefaciens-mediated transformation method has been developed for onions (Allium cepa L.) using immature embryos as the explant source. Transgenic plants were recovered from the open-pollinated onion cultivar Canterbury Longkeeper at a maximum transformation frequency from immature embryos of 2.7%. The method takes between 3–5 months from explant to primary regenerant entering the glasshouse. Multiple-shoot formation from primary transgenic material made possible the clonal multiplication of transformants. The binary vector used carried the nptII antibiotic resistance gene and the m-gfp5-ER reporter gene. Transgenic cultures were initially screened for their ability to fluoresce and to grow in the presence of geneticin (5–25 mg/l). The transgenic nature of individual plants was confirmed by Southern blot analysis. Received: 12 October 1998 / Revision received: 17 May 1999 Accepted: 14 June 1999  相似文献   

16.
We developed a highly efficient transformation protocol for the PEG-mediated direct transfer of plasmid DNA into protoplasts of haploid Datura innoxia. Vectors harbouring a neomycin phosphotransferase II gene or a hygromycin B phosphotransferase gene under the control of different promoters were used in the transformation experiments. Various amounts of plasmid DNA were applied without any carrier DNA to show the direct influence of the plasmid DNA concentration on the transformation efficiency. Approximately 95% of the selected calli were regenerated to plants; 20% of them remained haploid. Total DNA of different transgenic plants was analysed with regard to the integration pattern of the plasmid DNA. Plants carrying only one or two copies of the vector DNA were observed as well as individuals with multi-copy integration (up to ten or more copies).Abbreviations ATF/RTF absolute/relative transformation frequency - BAP 6-benzylaminopurine - CaMV cauliflower mosaic virus - CTAB N-cetyl-N,N,N-trimethyl-ammonium bromide - HPT hygromycin B phosphotransferase gene - PEG polyethyleneglycol - MES 2-(N-morpholino) ethanesulfonic acid - NPT II neomycin phosphotransferase II gene  相似文献   

17.
A protocol for Agrobacterium-mediated transformation with mannose selection was developed for cotyledon petiole, hypocotyl and leaf explants of tomato (Lycopersicon esculentum L. Mill). More than 400 transgenic plants from three tomato varieties were selected with 1% mannose in combination with 0.1–0.5% glucose. Average transformation frequencies ranged from 2.0 to 15.5% depending on the construct, genotype and type of tissue used for transformation. The highest transformation rate was obtained for hypocotyl explants from tomato variety SG048. The ploidy levels of 264 independent transgenic events and 233 non-transgenic plants regenerated from tissue culture were assessed by flow cytometry. The incidence of polyploids within the total population of transgenic plants varied from 10 to 78% and was not significantly different from the non-transgenic population. The greatest variation in the proportion of polyploids was observed in plants derived from different explant types, both in transgenic and non-transgenic regenerants, across three studied genotypes. Transgenic and non-transgenic plants regenerated from leaves included the highest number of normal diploid plants (82–100%), followed by cotyledon petiole-derived plants (63–78%). Transgenic plants produced from hypocotyls contained 22–58% diploids depending on the genotype used in transformation. Results described in this study demonstrate that, although transformation frequencies for leaf tissue are still lower under current protocols, the high percentage of diploids obtained make leaf tissue an attractive transformation target.Abbreviations BAP Benzylaminopurine - MS Murashige-Skoog - MsCHI Medicago sativa chalcone isomerase - PMI Phosphomannose isomerase  相似文献   

18.
Different patterns of T-DNA integration in Arabidopsis were obtained that depended on whether a root or a leaf-disc transformation method was used. An examination of 82 individual transgenic Arabidopsis plants, derived from 15 independent Agrobacterium-mediated transformations in which different cointegrate and binary constructs were used, indicated that the transformation method had a significant influence on the type and copy number of T-DNA integration events. Southern hybridizations showed that most of the transgenic plants produced by a leaf-disc method contained multiple T-DNA insertions (89%), the majority of which were organized as right-border inverted repeat structures (58%). In contrast, a root transformation method mostly resulted in single T-DNA insertions (64%), with fewer right-border inverted repeats (38%). The transformation vectors, including cointegrate and binary types, and the plant selectable markers, hygromycin phosphotransferase and dihydrofolate reductase, did not appear to influence the T-DNA integration patterns.  相似文献   

19.
Perennial ryegrass (Lolium perenne L.) is the most important grass species in areas with a temperate climate. Biolistic transfer of a ubiquitin promoter driven nptII expression cassette into mature or immature tissue derived calli of perennial ryegrass followed by paromomycin selection, resulted in the rapid and efficient production of fertile transgenic ryegrass plants. Transformation efficiencies after paromomycin selection in combination with the nptII selectable marker compared favourably with hygromycin selection in combination with the hph selectable marker. In total 83 independent nptII expressing plants were produced. Transformation frequency was highly affected by genotype, explant, selection regime and the duration of the callus induction period. The optimised transformation protocol for mature embryo derived calli of turf-type or forage-type cultivars resulted in an average transformation efficiency of 5.2% or 6.6% respectively. This converts into 1.7 or 2.2 independent transgenic plants per bombardment. Immature inflorescence- and immature embryo-derived calli were also successfully used as target for the gene transfer, resulting in transformation efficiencies of up to 3.7% or 11.42% respectively. Transgenic plants were transferred to soil 12 or 9 weeks after excision of mature and immature embryos or inflorescences respectively. Transgene integration and expression were confirmed by PCR and ELISA or western blot analysis. Southern blot analysis confirmed the independent nature of the transgenic lines. The majority of lines showed the integration of two to six transgene copies, while 21% of the analysed lines had a single copy insert. A short tissue culture period in comparison to recently published reports seems to be beneficial for the production of normal and fertile transgenic ryegrass plants. Consequently we report for the first time molecular evidence for sexual transgene transmission in fertile transgenic perennial ryegrass.  相似文献   

20.
AnAgrobacterium-mediated gene transfer system with recovery of putative transformants was developed for cotton (Gossypium hirsutum L.) cv. Cocker-312. Two-month-old hypocotyl-derived embryogenic calli were infected through agroinfiltration for 10 min at 27 psi in a suspension ofAgrobacterium tumefaciens strain GV3101 carrying tDNA with theGUS gene, encoding β-glucuronidase (GUS), and the neomycin phosphotransferase II (nptII) gene as a kanamycin-resistant plant-selectable marker. Six days after the histochemicalGUS assay was done, 46.6% and 20%GUS activity was noted with the vacuum-infiltration and commonAgrobacterium-mediated transformation methods, respectively. The transformed embryogenic calli were cultured on selection medium (100 mg/L and 50 mg/L kanamycin for 2 wk and 10 wk, respectively) for 3 mo. The putative transgenic plants were developed via somatic embryogenesis (25 mg/L kanamycin). In 4 independent experiments, up to 28.23% transformation efficiency was achieved. PCR amplification and Southern blot analysis fo the transformants were used to confirm the integration of the transgenes. Thus far, this is the only procedure available for cotton that can successfully be used to generate cotton transformants.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号