首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Theiler's murine encephalomyelitis virus (TMEV) is a natural pathogen of the mouse and belongs to the Picornaviridae family. TMEV strains are divided into two subgroups on the basis of their pathogenicity. The first group contains two neurovirulent strains, FA and GDVII, which cause a rapid fatal encephalitis. The second group includes persistent strains, like DA and BeAn, which produce a biphasic neurological disease in susceptible mice. Persistence of these viruses in the white matter of the spinal cord leads to chronic inflammatory demyelination. L929 cells, which are susceptible to TMEV infection, were subjected to physicochemical mutagenesis. Cellular clones that became resistant to TMEV infection were selected by viral infection. Three such mutants resistant to strain GDVII were characterized to determine the step of the virus cycle that was inhibited. The mutation present in one of these mutant cell lines inhibited, by more than 1,000-fold, the entry of strain GDVII but hardly decreased infection by strain DA. In the two other cellular mutants, replication of the viral genome was slowed down. Interestingly, one of these mutant cell lines resisted infection by both the persistent and neurovirulent strains while the second cell line resisted infection by strain GDVII but remained susceptible to the persistent virus. These results show that although they have 95% identity at the amino acid sequence level, neurovirulent and persistent viruses use partly distinct pathways for both entry into cells and genome replication.  相似文献   

2.
Theiler's murine encephalomyelitis virus (TMEV) is a natural pathogen of the mouse. The different strains of TMEV are divided into two subgroups according to the pathology they provoke. The neurovirulent strains GDVII and FA induce an acute fatal encephalitis, while persistent strains, like DA and BeAn, cause a chronic demyelinating disease associated with viral persistence in the central nervous system. Different receptor usage was proposed to account for most of the phenotype difference between neurovirulent and persistent strains. Persistent but not neurovirulent strains were shown to bind sialic acid. We characterized DA and GDVII derivatives adapted to grow on CHO-K1 cells. Expression of glycosaminoglycans did not influence infection of CHO-K1 cells by parental and adapted viruses. Mutations resulting from adaptation of DA and GDVII to CHO-K1 cells notably mapped to the well-characterized VP1 CD and VP2 EF loops of the capsid. Adaptation of the DA virus to CHO-K1 cells correlated with decreased sialic acid usage for entry. In contrast, adaptation of the GDVII virus to CHO-K1 cells correlated with the appearance of a weak sialic acid usage for entry. The sialic acid binding capacity of the GDVII variant resulted from a single amino acid mutation (VP1-51, Asn-->Ser) located out of the sialic acid binding region defined for virus DA. Mutations affecting tropism in vitro and sialic acid binding dramatically affected the persistence and neurovirulence of the viruses.  相似文献   

3.
Theiler's virus is a neurotropic murine picornavirus which, depending on the strain, causes either an acute encephalitis or a persistent demyelinating disease. Following intracranial inoculation, the demyelinating strains infect sequentially the grey matter of the brain, the grey matter of the spinal cord, and finally the white matter of the spinal cord, where they persist and cause chronic demyelination. The neurovirulent strains cause a generally fatal encephalitis with lytic infection of neurons. The study of chimeric Theiler's viruses, obtained by recombining the genomes of demyelinating and neurovirulent strains, has shown that the viral capsid contains determinants for persistence and demyelination. In this article we describe the recombinant virus R5, in which the capsid protein VP1 and a small portion of protein 2A come from the neurovirulent GDVII strain and the rest of the genome comes from the persistent DA strain. The capsid of virus R5 also contains one mutation at amino acid 34 of VP3 (Asn-->His). Virus R5 does not persist in the central nervous system (CNS) of immunocompetent SJL/J or BALB/c mice. However, it replicates efficiently and persists in the CNS of BALB/c nu/nu mice, showing that its growth in the CNS is not impaired. In BALB/c nu/nu mice, whereas virus DA causes mortality with large amounts of viral antigens in the white matter of the spinal cord, virus R5 does not kill the animals, persists in the neurons of the grey matter of the brain, and never reaches the white matter of the spinal cord. This phenotype is due to the chimerism of the capsid and/or to the mutation in VP3. These results indicate that the capsid plays an important role in the characteristic migration of Theiler's virus within the CNS.  相似文献   

4.
J Fu  M Rodriguez    R P Roos 《Journal of virology》1990,64(12):6345-6348
The GDVII strain and other members of the GDVII subgroup of Theiler's murine encephalomyelitis viruses (TMEV) cause an acute lethal neuronal infection in mice, whereas the DA strain and other members of the TO subgroup of TMEV cause a chronic demyelinating disease associated with a persistent virus infection. We used GDVII/DA chimeric infectious cDNAs to produce intratypic recombinant viruses in order to clarify reasons for the TMEV subgroup-specific difference in demyelinating activity. We found that both the GDVII and DA strains contain a genetic determinant(s) for demyelinating activity. No demyelination occurs following GDVII strain inoculation because this strain produces an early neuronal disease that kills mice before white matter disease and persistent infection can occur.  相似文献   

5.
L Zhang  A Senkowski  B Shim    R P Roos 《Journal of virology》1993,67(7):4404-4408
Strain GDVII and other members of the GDVII subgroup of Theiler's murine encephalomyelitis virus are highly neurovirulent and rapidly fatal, while strain DA and other members of the TO subgroup produce a chronic, demyelinating disease. GDVII/DA chimeric cDNA studies suggest that a major neurovirulence determinant is within the GDVII 1B through 1D capsid protein coding region, although the additional presence of upstream GDVII sequences, including the 5' untranslated region, contributes to full neurovirulence. Our studies indicate that there are limitations in precisely delineating neurovirulence determinants with chimeric cDNAs between evolutionarily diverged viruses, such as GDVII and DA.  相似文献   

6.
Theiler's murine encephalomyelitis virus (TMEV) is divided into two subgroups based on neurovirulence. During the acute phase, DA virus infects cells in the gray matter of the central nervous system (CNS). Throughout the chronic phase, DA virus infects glial cells in the white matter, causing demyelinating disease. Although GDVII virus also infects neurons in the gray matter, infected mice developed a severe polioencephalomyelitis, and no virus is detected in the white matter or other areas in the CNS in rare survivors. Several sequence differences between the two viruses are located in VP2 puff B and VP1 loop II, which are located near each other, close to the proposed receptor binding site. We constructed a DA virus mutant, DApBL2M, which has the VP1 loop II of GDVII virus and a mutation at position 171 in VP2 puff B. While DApBL2M virus replicated less efficiently than DA virus during the acute phase, DApBL2M-induced acute polioencephalitis was comparable to that in DA virus infection. Interestingly, during the chronic phase, DApBL2M caused prolonged gray matter disease in the brain without white matter involvement in the spinal cord. This is opposite what is observed during wild-type DA virus infection. Our study is the first to demonstrate that conformational differences via interaction of VP2 puff B and VP1 loop II between GDVII and DA viruses can play an important role in making the transition of infection from the gray matter in the brain to the spinal cord white matter during TMEV infection.  相似文献   

7.
8.
GDVII subgroup strains of Theiler's murine encephalomyelitis virus (TMEV) are highly virulent and produce acute polioencephalomyelitis in mice. Neither viral persistence nor demyelination is demonstrated in the few surviving mice. In contrast, DA subgroup strains are less virulent and establish a persistent central nervous system infection which results in demyelinating disease. We previously reported a subgroup-specific infection in a macrophage-like cell line, J774-1 cells; i.e., GDVII strain does not replicate in J774-1 cells, whereas the DA strain actively replicates in these cells. In addition, this subgroup-specific virus growth is shown to be related to the presence of L* protein, a 17 kDa protein translated out-of-frame of the viral polyprotein from an AUG located 13 nucleotides downstream from the polyprotein's AUG. The present paper demonstrated that this subgroup-specific infection is observed in murine monocyte/macrophage lineage cell lines, but not in other murine cell lines including neural cells. An RNase protection assay also suggested that L* protein-related virus growth is regulated at the step of viral RNA replication. As macrophages are reported to be the major cell harboring virus during the chronic demyelinating stage, the activity of L* protein with respect to virus growth in macrophages may be a key factor in clarifying the mechanism(s) of TMEV persistence, which is probably a trigger to spinal cord demyelination.  相似文献   

9.
The DA strain of Theiler's virus persists in the central nervous systems of mice and causes chronic inflammation and demyelination. The GDVII strain, on the other hand, causes an acute encephalitis that kills the host in a matter of days. We constructed a series of recombinants between two infectious cDNA clones of the genomes of DA and GDVII viruses. Analysis of the phenotypes of the recombinant viruses yielded the following results. (i) Determinants of persistence and demyelination are found only in the VP1 capsid protein of DA virus. (ii) Whereas the VP1 capsid protein of DA virus is able to fully attenuate the neurovirulence of GDVII virus and to allow the chimeric virus to persist and demyelinate, the VP1 capsid protein of GDVII virus is unable to render DA virus neurovirulent. (iii) The mere attenuation of the neurovirulence of GDVII virus does not allow it to persist and demyelinate.  相似文献   

10.
Cellular apoptosis induced by viral genes can play a critical role in determining virulence as well as viral persistence. This form of cell death has been of interest with respect to Theiler's murine encephalomyelitis virus (TMEV) because the GDVII strain and members of the GDVII subgroup are highly neurovirulent, while the DA strain and members of the TO subgroup induce a chronic progressive inflammatory demyelination with persistence of the virus in the central nervous system. The TMEV L protein has been identified as important in the pathogenesis of Theiler's virus-induced demyelinating disease (TMEV-IDD). We now show that DA L is apoptotic following transfection of L expression constructs or following DA virus infection of HeLa cells; the apoptotic activity depends on the presence of the serine/threonine domain of L, especially a serine at amino acid 57. In contrast, GDVII L has little apoptotic activity following transfection of L expression constructs in HeLa cells and is antiapoptotic following GDVII infection of HeLa cells. Of note, both DA and GDVII L cleave caspase-3 in BHK-21 cells, although neither implements the full apoptotic machinery in this cell type as manifested by the induction of terminal deoxynucleotidyltransferase-mediated dUTP-biotin nick end labeling (TUNEL) staining. The differences in apoptotic activities of DA and GDVII L in varied cell types may play an important role in TMEV subgroup-specific disease phenotypes.  相似文献   

11.
Theiler's murine encephalomyelitis viruses (TMEV) are serologically related picornaviruses which cause both enteric and neurological disease in mice. The biological activities of TMEV vary between the two different TMEV subgroups (TO and GDVII) and with different passage histories of the same TMEV strain (e.g., mouse brain-passed versus tissue culture-passed DA strain of the TO subgroup). We raised neutralizing monoclonal antibodies (mAbs) against tissue culture-passed DA and GDVII strains of TMEV. We produced two mAbs against the DA strain which neutralized all members of the TO subgroup, but not the GDVII subgroup strains (GDVII and FA); these two DA mAbs reacted similarly with both mouse brain-passed DA and tissue culture-passed DA. Of six neutralizing GDVII mAbs, four reacted only to GDVII and FA, whereas two neutralized TO strains as well. These mAbs demonstrate the presence of TMEV group-specific as well as subgroup-specific neutralization and substantiate the division of TMEV into two distinct subgroups. On Western immunoblots one of the two DA mAbs reacted against isolated DA VP1, two GDVII mAbs (which were TMEV group specific) reacted against isolated GDVII VP1 and DA VP1, and the other DA mAb and four other GDVII mAbs required an intact virion conformation for reactivity. An analysis of the epitopes recognized by these mAbs may elucidate sites important in TMEV biological activities.  相似文献   

12.
Intratypic recombinant Theiler's viruses prepared between GDVII and DA strains were used to identify genomic sequences important in neurovirulence, virus persistence, and demyelination and to clarify the mechanisms involved in disease induction. The coding region between 1B and 2C of the highly virulent GDVII strain contains a determinant partly responsible for neurovirulence (early paralysis and death) which correlates with elevated levels of infectious virus and the presence of virus antigen within neurons of the brain stem and gray matter of the spinal cord. Both the GDVII and the DA strains of virus contain genetic determinants for late demyelination in spinal cord. However, quantitative analysis of demyelination produced by recombinant GDVII/DA viruses suggest that multiple gene segments influence the number and extent of demyelinating lesions.  相似文献   

13.
Theiler's murine encephalomyelitis viruses (TMEV) are ubiquitous pathogens of mice, producing either rapidly fatal encephalitis (high-neurovirulence strains) or persistent central nervous system infection and inflammatory demyelination (low-neurovirulence strains). Although a protein entry receptor has not yet been identified, carbohydrate co-receptors that effect docking and concentration of the virus on the cell surface are known for both TMEV neurovirulence groups. Low-neurovirulence TMEV use α2,3-linked N-acetylneuramic acid (sialic acid) on an N-linked glycoprotein, whereas high-neurovirulence TMEV use the proteoglycan heparan sulfate (HS) as a co-receptor. While the binding of low-neurovirulence TMEV to sialic acid can be inhibited completely, only a third of the binding of high-neurovirulence TMEV to HS is inhibitable, suggesting that high-neurovirulence strains use another co-receptor or bind directly to the putative protein entry receptor. Four amino acids on the surface (VP2 puff B) of low-neurovirulence strains make contact with sialic acid through non-covalent hydrogen bonds. Since these virus residues are conserved in all TMEV strains, the capsid conformation of this region is probably responsible for sialic acid binding. A persistence determinant that maps within the virus coat using recombinant TMEV is also conformational in nature. Low-neurovirulence virus variants that do not bind to sialic acid fail to persist in the central nervous system of mice, indicating a role for sialic acid binding in TMEV persistence. Analysis of high-neurovirulence variants that do not bind HS demonstrates that HS co-receptor usage influences neuronal tropism in brain, whereas, the HS co-receptor use is not required for the infection of spinal cord anterior horn cells associated with poliomyelitis.  相似文献   

14.
The low-neurovirulence Theiler's murine encephalomyelitis viruses (TMEV), such as BeAn virus, cause a persistent infection of the central nervous system (CNS) in susceptible mouse strains that results in inflammatory demyelination. The ability of TMEV to persist in the mouse CNS has traditionally been demonstrated by recovering infectious virus from the spinal cord. Results of infectivity assays led to the notion that TMEV persists at low levels. In the present study, we analyzed the copy number of TMEV genomes, plus- to minus-strand ratios, and full-length species in the spinal cords of infected mice and infected tissue culture cells by using Northern hybridization. Considering the low levels of infectious virus in the spinal cord, a surprisingly large number of viral genomes (mean of 3.0 x 10(9)) was detected in persistently infected mice. In the transition from the acute (approximately postinfection [p.i.] day 7) to the persistent (beginning on p.i. day 28) phase of infection, viral RNA copy numbers steadily increased, indicating that TMEV persistence involves active viral RNA replication. Further, BeAn viral genomes were full-length in size; i.e., no subgenomic species were detected and the ratio of BeAn virus plus- to minus-strand RNA indicated that viral RNA replication is unperturbed in the mouse spinal cord. Analysis of cultured macrophages and oligodendrocytes suggests that either of these cell types can potentially synthesize high numbers of viral RNA copies if infected in the spinal cord and therefore account for the heavy viral load. A scheme is presented for the direct isolation of both cell types directly from infected spinal cords for further viral analyses.  相似文献   

15.
The high-neurovirulence Theiler's murine encephalomyelitis virus (TMEV) strain GDVII uses heparan sulfate (HS) as a coreceptor to enter target cells. We report here that GDVII virus adapted to growth in HS-deficient cells exhibited two amino acid substitutions (R3126L and N1051S) in the capsid and no longer used HS as a coreceptor. Infectious-virus yields in CHO cells were 25-fold higher for the adapted virus than for the parental GDVII virus, and the neurovirulence of the adapted virus in intracerebrally inoculated mice was substantially attenuated. The adapted virus showed altered cell tropism in the central nervous systems of mice, shifting from cerebral and brainstem neurons to spinal cord anterior horn cells; thus, severe poliomyelitis, but not acute encephalitis, was observed in infected mice. These data indicate that the use of HS as a coreceptor by GDVII virus facilitates cell entry and plays an important role in cell tropism and neurovirulence in vivo.  相似文献   

16.
L Zhou  X Lin  T J Green  H L Lipton    M Luo 《Journal of virology》1997,71(12):9701-9712
Theiler's murine encephalomyelitis viruses (TMEVs) belong to the Picornaviridae family and are divided into two groups, typified by strain GDVII virus and members of the TO (Theiler's original) group. The highly virulent GDVII group causes acute encephalitis in mice, while the TO group is less virulent and causes a chronic demyelinating disease which is associated with viral persistence in mice. This persistent central nervous system infection with demyelination resembles multiple sclerosis (MS) in humans and has thus become an important model for studying MS. It has been shown that some of the determinants associated with viral persistence are located on the capsid proteins of the TO group. Structural comparisons of two persistent strains (BeAn and DA) and a highly virulent strain (GDVII) showed that the most significant structural variations between these two groups of viruses are located on the sites that may influence virus binding to cellular receptors. Most animal viruses attach to specific cellular receptors that, in part, determine host range and tissue tropism. In this study, atomic models of TMEV chimeras were built with the known structures of GDVII, BeAn, and DA viruses. Comparisons among the known GDVII, BeAn, and DA structures as well as the predicted models for the TMEV chimeras suggested that a gap on the capsid surface next to the putative receptor binding site, composed of residues from VP1 and VP2, may be important in determining viral persistence by influencing virus attachment to cellular receptors, such as sialyloligosaccharides. Our results showed that sialyllactose, the first three sugar molecules of common oligosaccharides on the surface of mammalian cells, inhibits virus binding to the host cell and infection with the persistent BeAn virus but not the nonpersistent GDVII and chimera 39 viruses.  相似文献   

17.
Following intracranial inoculation, Theiler's virus causes either an acute encephalitis (strain GDVII) or a chronic demyelinating disease (strain DA). The DA strain sequentially infects the grey matter of the brain, the grey matter of the spinal cord, and, finally, the white matter of the spinal cord, where it persists in glial cells and causes demyelinating lesions. Analysis of the phenotype of recombinant viruses has shown that the viral capsid contains determinants for persistence and demyelination. Our previous studies showed that a Lys at position 141 of the VP2 capsid protein (VP2-141) could render a chimeric virus persistent. We also reported that another recombinant virus, virus R5, migrated from the grey matter of the brain to that of the spinal cord inefficiently and was unable to infect the white matter of the spinal cord. In this article, we report that introducing a Lys at position VP2-141 in virus R5 increases its ability to infect the white matter of the spinal cord. Our results indicate that this amino acid is important for the spread of the virus within the central nervous system.  相似文献   

18.
Strain GDVII and other members of the GDVII subgroup of Theiler’s murine encephalomyelitis virus (TMEV) are highly virulent and cause acute polioencephalomyelitis in mice. Neither viral persistence nor demyelination is demonstrated in the few surviving mice. On the other hand, strain DA and other members of the TO subgroup of TMEV are less virulent and establish a persistent infection in the spinal cord, which results in a demyelinating disease. We previously reported that GDVII does not actively replicate in a murine macrophage-like cell line, J774-1, whereas DA strain productively infects these cells (M. Obuchi, Y. Ohara, T. Takegami, T. Murayama, H. Takada, and H. Iizuka, J. Virol. 71:729–733, 1997). In the present study, we used recombinant viruses between these strains of the two subgroups to demonstrate that the DA L coding region of DA strain is important for virus growth in J774-1 cells. Additional experiments with a mutant virus indicate that L* protein, which is synthesized out of frame with the polyprotein from an additional alternative initiation codon in the L coding region of TO subgroup strains, is a key determinant responsible for the cell-type-specific restriction of virus growth. L* protein may play a critical role in the DA-induced restricted demyelinating infection by allowing growth in macrophages, a major site for virus persistence.  相似文献   

19.
20.
Sindbis virus infection of mice has provided valuable insight into viral and host factors that contribute to virus-induced neurologic disease. In an effort to further define the viral genetic elements that contribute to adult mouse neurovirulence, the neurovirulent Sindbis virus strain AR86 was compared to the closely related (22 single amino acid coding changes and the presence or absence of an 18-amino-acid sequence in nsP3 [positions 386 to 403]) but avirulent Girdwood strain. Initial studies using chimeric viruses demonstrated that genetic elements within the nonstructural and structural coding regions contributed to AR86 neurovirulence. Detailed mapping studies identified three major determinants in the nonstructural region, at nsP1 538 (Ile to Thr; avirulent to virulent), an 18-amino-acid deletion in nsP3 (positions 386 to 403), and nsP3 537 (opal to Cys; avirulent to virulent), as well as a single determinant in the structural genes at E2 243 (Leu to Ser; avirulent to virulent), which were essential for AR86 adult mouse neurovirulence. Replacing these codons in AR86 with those found in Girdwood resulted in the attenuation of AR86, while the four corresponding AR86 changes in the Girdwood genetic background increased virulence to the level of wild-type AR86. The attenuating mutations did not adversely affect viral replication in vitro, and the attenuated viruses established infection in the brain and spinal cord as efficiently as the virulent viruses. However, the virus containing the four virulence determinants grew to higher levels in the spinal cord at late times postinfection, suggesting that the virus containing the four attenuating determinants either failed to spread or was cleared more efficiently than the wild-type virus.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号