首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
长蛸生殖系统的形态学与组织学观察   总被引:6,自引:1,他引:5  
运用解剖学和组织学方法对长蛸(Octopus variabilis)生殖系统的形态结构进行了研究.结果表明,长蛸雌雄异体并异形,雄性右侧第三腕茎化.长蛸雌性生殖系统由一个卵巢、成对的输卵管及输卵管腺组成.卵巢壁上发出一条线状具分支的生殖索,米粒状的滤泡以卵柄连接至生殖索上.每个滤泡是由单层滤泡细胞围绕着一个卵母细胞构成.输卵管形成丰富的纵行褶皱,黏膜上皮具有纤毛.输卵管腺含有两种类型腺细胞.雄性生殖系统包括精巢、输精管前段、储精囊、摄护腺、盲囊、输精管后段和精荚囊.精巢内部被结缔组织分隔成许多精小叶,精原细胞由小叶壁中的生殖上皮产生,并向小叶腔中逐步分化成精子.输精管前段、盲囊和摄护腺所分泌的黏液物质共同参与精荚的形成.储精囊和输精管后段形成较多的纵行褶皱,输精管后段上皮游离面的纤毛可运输生殖细胞.精荚囊的作用则是贮存精荚,囊壁中的平滑肌利于长蛸交配时精荚的排出.  相似文献   

2.
室内养殖条件下三疣梭子蟹的生殖蜕壳和交配行为   总被引:2,自引:0,他引:2       下载免费PDF全文
本文采用外部特征观察和红外线摄像,对室内配对养殖三疣梭子蟹(Portunus trituberculatus)的生殖蜕壳和交配行为进行了系统研究。结果发现:近交配季节,雌性三疣梭子蟹腹甲出现蓝黑色并不断加深,游泳足掌节则最终汇聚成一轮红色月牙,这些体表特征集中出现在生殖蜕壳前期,可能是除信息素外,另一类用于交配活动的视觉信号。三疣梭子蟹的交配活动起始于两性间的求偶抱对行为,雌性完成生殖蜕壳便进行软壳交配,这是一个连续的过程,包括随后的抱对守护行为;期间,相对于交配前后的抱对行为,三疣梭子蟹用于实质性交配活动的时间十分有限。然而,这可能是一种生殖策略:一方面,雌性可以采用抱对这种方式确保随后进行的生殖蜕壳及软壳交配过程能在有限的时间内安全有序地完成;另一方面,作为补偿,雄性可通过交配活动在雌性生殖道内生成精子塞来保证父权,减少个体间的竞争。  相似文献   

3.
池塘养殖是三疣梭子蟹(Portunus trituberculatus)的主要养殖方式,但关于池塘养殖三疣梭子蟹雄体的生长和性腺发育规律尚不清楚。本研究通过定点连续采样,首先系统研究池塘养殖过程中三疣梭子蟹雄体的生长和成熟雄体生殖系统的外观及组成的变化,其次研究池塘养殖三疣梭子蟹雄体性腺发育过程中性腺各部分组织学特征及其指数的变化,以及不同月份雄体性腺发育的情况和比例。结果表明:(1)三疣梭子蟹雄体的体重和壳宽增长率及特定增长率均在8月份最高,且体重与壳宽呈显著正相关关系。(2)三疣梭子蟹成熟雄体的生殖系统由体外(阴茎、交接器)和体内(精巢、输精管)两部分构成。(3)根据精巢和输精管的外观、组织学特征及其指数的变化,可将三疣梭子蟹雄体性腺发育分为3期。精子发生期,即精巢内主要细胞类型是精原细胞和初级精母细胞,精巢指数为0.07%~0.16%,此时输精管呈透明状,肉眼很难发现;精荚形成期,精巢内主要细胞类型为次级精母细胞和精子细胞,精巢指数为0.10%~0.51%,输精管内有大量精荚和分泌物,输精管指数为0.01%~0.41%;成熟期,精巢内主要细胞类型是精子细胞和成熟精子,精巢指数为0.10%~0.41%,输精管进一步膨大,输精管指数为0.20%~0.65%。(4)在雄体性腺发育期间,性腺指数和输精管指数呈显著上升趋势,而精巢指数呈现先上升后下降的趋势,且统计分析发现性腺指数与肝胰腺指数无明显的相关性。(5)池塘养殖雄体性腺发育不同步,7月份主要处于精子发生期,8月底,有76%的雄体性腺发育达到精荚形成期,至9月底,达到成熟期雄体的比例为47%,此后雄体性腺发育趋于成熟,10月中下旬至12月份池塘养殖雄体均主要处于成熟期。  相似文献   

4.
长江华溪蟹纳精囊与卵巢发育周期的关系   总被引:1,自引:0,他引:1  
于1994年6 ̄12月和1996年3 ̄5月,利用组织学和细胞化学方法,研究了长江华溪蟹的纳精囊。结果表明:纳精囊的形态结构随卵巢的发育而发生相应的变化。纳精囊上皮组织中的顶分泌型腺细胞,在繁殖期向囊腔中分泌大量的粘液,为精子的储藏和存活提供了适宜的环境。在卵黄发生的不同阶段,用细胞化学的方法检测到了纳精囊上皮及腔中内含物的变化。结论:纳精囊与卵巢发育周期有密切的关系。  相似文献   

5.
运用常规组织学方法和NADPH-d组织化学方法,研究了薄背涡虫 Notoplana humilis 生殖系统的组织结构和一氧化氮合酶的分布.其雄性生殖系统包括精巢、储精囊、阴茎、雄性生殖孔,精巢壁由一薄层薄膜组成,每个精巢内都含有不同发育时期的雄性生殖细胞,且精子发育无明显同步性;储精囊呈螺旋状排列在雄性生殖孔附近,囊壁由单层扁平上皮组成;阴茎为粗大的球形,外壁由柱状上皮细胞和数层肌细胞组成.雌性生殖系统包括输卵管、生殖腔、雌性生殖孔和受精囊,但不形成集中的卵巢和卵黄腺.雌雄生殖孔、生殖腔、受精囊、阴茎等部位呈NADPH-d强阳性反应.  相似文献   

6.
刘佳宁  秦道正 《昆虫学报》1950,63(9):1125-1135
【目的】明确斑衣蜡蝉Lycorma delicatula雌成虫生殖系统整体形态及超微结构特征,为蜡蝉总科昆虫分类及系统发育探讨提供更多形态学证据。【方法】采用光学显微镜与透射电子显微镜,观察斑衣蜡蝉雌成虫生殖系统整体形态和各主要器官的超微结构。【结果】斑衣蜡蝉雌成虫生殖系统主要包括1对卵巢、1个中输卵管、1个交配囊、1个交配囊管、1个前阴道、1个后阴道、1个受精囊、1个受精管和2根受精囊附腺。卵巢为端滋式,由14根卵巢小管组成,卵室由固有膜、滤泡细胞和卵细胞组成,卵巢小管中的滋养细胞清晰可见;中输卵管位于前阴道基部,由中输卵管腔、上皮细胞、肌肉鞘和基膜组成;交配囊膨大呈圆球状,囊壁由上皮细胞、肌肉层和基膜组成;交配囊管呈圆柱状,连接交配囊和后阴道,由肌肉鞘、上皮细胞层和管腔组成;前、后阴道超微结构相似,主要由肌肉鞘、基膜、上皮细胞和管腔组成,但后阴道上皮细胞细胞核周围存在分泌颗粒,且管腔内有大量微绒毛,而前阴道壁内包含有大量囊泡结构;受精管从中输卵管末端延伸至受精囊,由基膜、厚层肌肉鞘和管腔组成;受精囊为受精管近末端略膨大的囊状结构,由肌肉鞘、基膜、上皮细胞和囊腔构成;雌性受精囊附腺着生于受精囊末端,为均匀的螺旋管状,主要由肌肉层、上皮细胞层和附腺中心管腔组成。【结论】斑衣蜡蝉雌性生殖系统与已报道的蜡蝉总科其他类群的雌性生殖系统结构相似,但卵巢小管数目有差异;蝉亚目中不同总科雌成虫雌性附腺与受精囊附腺的形态特征存在明显区别;斑衣蜡蝉雌性生殖系统超微结构与叶蝉总科和沫蝉总科昆虫也存在部分差异。这些差异是否可以作为头喙亚目高级阶元的划分依据仍有待于进一步研究。  相似文献   

7.
应用扫描电镜技术观察了三疣梭子蟹的精卵相互作用。未受精成熟卵表面较光滑、无受精孔,但有许多微孔。成熟卵外被卵膜,内为卵母细胞。在卵自然产出后,精子迅速发生顶体反应使顶体囊外翻并压入卵膜,而核仍留于卵膜外,核辐射臂不收缩且仍附着于卵膜上。三疣梭子蟹为多精着卵和多精入卵膜。精子外翻顶体囊压入卵膜后,核辐射臂陆续回缩直至消失。作用于顶体丝上的卵母细胞主动拖精作用对入卵膜精子的进一步入卵、受精至关重要,环状卵膜突起的向心伸展也有一定的协助作用。探讨了着卵精子的顶体反应、精子入卵膜的机制及卵子在精子入卵过程中的作用  相似文献   

8.
日本沼虾输精管的结构及其在精荚形成中作用的研究   总被引:2,自引:0,他引:2  
应用光镜和透射电镜技术研究了日本沼虾输精管的结构及其在精荚形成中的作用。结果表明,日本沼虾输精管从形态结构上可分为近端输精管、卷曲输精管、远端输精管和膨大的远端输精管四部分。各部分的管壁皆由分泌上皮、基膜、肌肉层和结缔组织构成,其中分泌上皮包括高度明显不同的低柱状上皮和高拄状上皮两部分。输精管各部分管腔内含有处于不同形成阶段的精荚。进入近端输精管内的精子被支撑在一种嗜酸性基质中。近端输精管的分泌物主要帮助形成精子团,同时形成精荚壁的极小部分。卷曲和远端输精管分泌形成精荚壁的绝大部分,其分泌物由细胞顶端通过外排作用和顶泌机制分泌产生。膨大的远端输精管具有贮存精荚的作用,其分泌上皮也通过外排作用和顶泌机制产生分泌物包裹在已基本形成的精荚外侧,管壁肌肉层在雌雄交配时将管腔内的精荚切割成适宜长度并排出体外。    相似文献   

9.
粉尘螨生殖系统形态学研究   总被引:1,自引:1,他引:0  
吴桂华  刘志刚  孙新 《昆虫学报》2008,51(8):810-816
粉尘螨Dermatophagoides farinae是一种重要的医学螨类。本文用光镜和扫描电镜研究了粉尘螨雌雄生殖系统的形态和结构。结果表明:雄性生殖系统由睾丸、输精管、 附腺、射精管、阳茎及附属交配器官组成。睾丸位于血腔末端,不成对,精原细胞、精母细胞和精子依照精子发育的顺序有规则地分布在其内部。雌性生殖系统包括交配孔、囊导管、储精囊、囊导管、卵巢、输卵管、子宫、产卵管及产卵孔,其中卵巢由一个中央营养细胞和围绕其周围的卵母细胞组成。  相似文献   

10.
钱静  沈和定  管菊 《动物学杂志》2015,50(4):600-606
雌雄同体贝类精子的储存和利用规律一直是国内外贝类生物学研究的难点之一,本文利用活体解剖、显微观察、组织切片和扫描电镜技术,综合研究了平疣桑椹石磺(Platevindex mortoni)的生殖系统及精子储存场所。结果显示,其生殖系统包括生殖器本部、雌性生殖部分和雄性生殖部分。生殖器本部由两性腺、两性输送管、蛋白腺、黏液腺、支囊组成;雌性生殖部分包括输卵管、受精囊、阴道,位于身体中后方体腔内;雄性生殖部分包括输精管、刺激器、阴茎、阴茎鞘和阴茎牵引肌,位于身体前端右侧体腔内;其阴茎有阴茎鞘,阴茎表面布满倒刺。平疣桑椹石磺阴茎为直线状,无雄性附属腺。未交配的性成熟个体支囊内充满细长精子,受精囊内无精子;而交配后充当雌性个体的支囊内均为细长的自体精子,受精囊内有大量活力较强的粗短精子,其支囊为自体精子的存储场所,而受精囊为异体精子的存储场所。其精子储运情况为:两性腺内精子成熟后暂存于支囊,交配时通过输精管运输至阴茎,由阴茎输送精子至对方的阴道,异体精子进入受精囊内存储待用。  相似文献   

11.
It is believed that in honey bees spermatozoa stored inside the spermatheca remain motionless, however, some studies have reported the contrary. To observe behaviour of spermatozoa inside spermathecae, we have instrumentally inseminated queens with spermatozoa stained with fluorescent stains. During the first 8 h after insemination movement of the spermatozoa was stationary, without fast forward movement. Later, we observed circular movement of the spermatozoa inside spermathecae. Numerous circles were visible at one time. The circles were located close to the spermathecal wall. Movement of the spermatozoa was also observed in spermathecae of naturally inseminated queens. The marble-like pattern of the spermathecae was changing. The changes were slow and well visible only when video recordings were played at high speed.  相似文献   

12.
Ndiaye M  Mattei X  Thiaw OT 《Tissue & cell》1997,29(6):675-678
The testes, seminal vesicles and spermathecae of 22 species of mosquitoes belonging to the genera Aedes, Anopheles, Culex, Mansonia and Toxorhynchites are investigated under the electron microscope. Modifications of the acrosome and sperm wall occur during the transit of the spermatozoon from the lower region of the testes to the spermathecae throughout the seminal vesicles. The origin and fate of the cell coat and the possible roles of somatic cell layers both in the testes and the seminal vesicles are discussed.  相似文献   

13.
Six species of marine tubifieids are described from the continental shelf off Peru. Two of them are members of the gutless genus Olavius Erséus, 1984 (subfamily Phallodrilinae). Olavius bullatus sp.n. possesses 2 pairs of large penial setae in voluminous copulatory sacs, tiny atria, and spermathecal pores in line with dorsal setae. Olavius crassitunicatus sp.n. is characterized by small atria with thin muscular layer, spermathecae with short ducts, opening dorso-laterally, and lack of penial setae. Four species arc members of the subfamily Limnodriloidinae. Limnodriloides busilicus sp.n. belongs to the appendiculatus-group (sensu Erséus). It is discriminated by somatic setae with subdental ligaments, and its voluminous elongate prostatic pads. Limnodriloides clavellatus sp.n. is distinguished from its congeners by a peculiar bulge in the cavity of each atrial ampulla, and spermatozeugmata imbedded in the walls of the spermathecae. Tectidrilus intermixtus sp.n. is similar to T. bori (Righi & Kanner, 1979); it is distinguished from the latter by having trisetal bundles in segment V or V-VI and by lacking copulatory glands. Marcusaedrilus peruanus sp.n. is characterized by nongranulated atrial ducts and bipartite spermathecae.  相似文献   

14.
Commensal pea crabs inhabiting bivalves have a high reproductive output due to the extension andfecundity of the ovary. We studied the underlying morphology of the female reproductive system in the Pinnotheridae Pinnotheres pisum, Pinnotheres pectunculi and Nepinnotheres pinnotheres using light microscopy and transmission electron microscopy (TEM). Eubrachyura have internal fertilization: the paired vaginas enlarge into storage structures, the spermathecae, which are connected to the ovaries by oviducts. Sperm is stored inside the spermathecae until the oocytes are mature. The oocytes are transported by oviducts into the spermathecae where fertilization takes place. In the investigated pinnotherids, the vagina is of the “concave pattern” (sensu Hartnoll 1968 ): musculature is attached alongside flexible parts of the vagina wall that controls the dimension of its lumen. The genital opening is closed by a muscular mobile operculum. The spermatheca can be divided into two distinct regions by function and morphology. The ventral part includes the connection with vagina and oviduct and is regarded as the zone where fertilization takes place. It is lined with cuticle except where the oviduct enters the spermatheca by the “holocrine transfer tissue.” At ovulation, the oocytes have to pass through this multilayered glandular epithelium performing holocrine secretion. The dorsal part of the spermatheca is considered as the main sperm storage area. It is lined by a highly secretory apocrine glandular epithelium. Thus, two different forms of secretion occur in the spermathecae of pinnotherids. The definite role of secretion in sperm storage and fertilization is not yet resolved, but it is notable that structure and function of spermathecal secretion are more complex in pinnotherids, and probably more efficient, than in other brachyuran crabs. J. Morphol., 2011. © 2010 Wiley‐Liss, Inc.  相似文献   

15.
16.
《Journal of morphology》2017,278(7):907-918
Sperm storage within the female reproductive tract has been reported as a reproductive strategy in several species of vertebrates and invertebrates. However, the morphological structures that allow for sperm to be stored and kept viable for long periods are relatively unknown in osteichthyes. We use histological and stereological tools to identify and quantify sperm storage structures (spermathecae) in 12 species of viviparous Poeciliidae. We found spermathecae in nine species, six of which exhibit superfetation (the ability of females to simultaneously carry within the ovary two or more broods of embryos at different stages of development). These spermathecae are folds of ovarian tissue that close around spermatozoa. We compared the number and size (volume) of spermathecae between species with and without superfetation. Species that exhibit superfetation had a significantly higher number of spermathecae than species that do not exhibit this reproductive strategy. In addition, we found that the mean volume of spermathecae and total volume of spermathecae present in the ovary are marginally higher in species with superfetation. Our results contribute to the understanding of the morphological structures that allow for sperm storage in viviparous osteichthyes and suggest a positive relationship between superfetation and the capacity of females to store sperm.  相似文献   

17.
Females as well as males can influence the outcome of sperm competition, and may do so through the anatomy of their reproductive tracts. Female Drosophila melanogaster store sperm in two morphologically distinct organs: a single seminal receptacle and, normally, two spermathecae. These organs have different temporal roles in sperm storage. To examine the association between sperm storage organ morphology and sperm competition, we used a mutant type of female with three spermathecae. Although the common measure of sperm competition, P(2), did not differ between females with two and three spermathecae, the pattern of sperm use over time indicated that female morphology did affect male reproductive success. The rate of offspring production by females with three spermathecae rose and fell more rapidly than by females with two spermathecae. If females remate or die before using up second male sperm, then second male reproductive success will be higher when they mate with females with three spermathecae. The results indicate that temporal patterns of sperm use as well as P(2) should be taken into account when measuring the outcome of sperm competition.  相似文献   

18.
Onychophorans (peripatus or velvet worms) show extraordinarily high local endemism, and cryptic species are common. As part of a programme addressing issues of endemicity at hierarchical spatial scales, we investigated reproduction in Euperipatoides rowelli (Onychophora: Peripatopsidae) using microsatellite analysis. This species is ovoviviparous, and females have up to 70 embryos in their uteri simultaneously. Batches of undeveloped and well-developed embryos may be present in the uteri of a female. Paired ovaries lead via a common oviduct into paired uteri, each of which has a spermatheca (sperm storage organ). Insemination in E. rowelli is dermal-haemocoelic: spermatophores are placed on the skin of the female, the body wall is breeched, and sperm are released into the haemocoel through which they migrate to the spermathecae. There is no obvious mechanism to prevent sperm mixing, yet microsatellite analysis indicated that offspring in a female's paired reproductive tracts can be sired by different males, and that the paired spermathecae can contain sperm from different males. More than 70% of females had broods with multiple paternity. The data are consistent with the potential for female postcopulatory influence over fertilizations: in particular, compartmentalization of sperm from different males into different spermathecae. Female control of fertilizations could lead to benefits including increased diversity of offspring, minimization of maternal-paternal genetic incompatibility, and influence on offspring genotypes. Multiple mating alone may increase the genetic diversity of offspring: this could be of importance in E. rowelli, which has very small genetic neighbourhoods and low genetic marker diversity.  相似文献   

19.
Sperm storage organs allow females to temporally separate insemination from fertilization, manipulate ejaculates and control fertilization. In the reproductive tract of female fruit flies (Diptera: Tephritidae), sperm are found in two different organs--a pair or triplet of spermathecae, and a "fertilization chamber". In order to understand the specific function of each of these organs, we tested the following hypotheses: (1) Sperm are distributed equally amongst the various sperm storage organs; (2) Both organ types maintain sperm viability; and (3) Sperm used in fertilization come from the fertilization chamber. We counted sperm in spermathecae and fertilization chamber of Mediterranean fruit flies (Ceratitis capitata) every 3 days for 18 days following insemination, and used a live/dead staining technique to determine the viability of sperm in these organs. Finally, by extirpating spermathecae from inseminated females and allowing them to oviposit, we were able to identify the fertilization chamber as the source of fertilizing sperm. Numbers of sperm in the spermathecae declined from an average of 3575 on the day of copulation to 649, 18 days later. Conversely, the fertilization chamber maintained a fairly constant level of sperms, ranging between an average of 207 cells on day 3 to 115 sperms on day 18. Throughout the period we monitored, we found high levels of sperm viability in both organs (> 80%). Sperm viability was similarly high in the fertilization chambers of females without spermathecae. However, fertility of eggs laid by these females declined rapidly, as did the number of sperm in the fertilization chamber. We conclude that both the spermathecae and the fertilization chamber are active sperm storage organs, with separate functions: the spermathecae for long-term storage and the fertilization chamber, periodically filled by the spermathecae, a staging point for fertilizing sperm. We suggest that the use of both organs by females results in sperm economy, which adaptively prolongs the intervals between copulations.  相似文献   

20.
A cost of cryptic female choice in the yellow dung fly   总被引:1,自引:1,他引:0  
Ward PI  Wilson AJ  Reim C 《Genetica》2008,134(1):63-67
Female dung flies Scathophaga stercoraria (L.) store sperm from several males in three or four spermathecae. Selection on the number of spermathecae was successful and the morphological intermediate stages in the evolution from three to four spermathecae are illustrated. The genetic quality of a male from a female's perspective depends on an interaction between their genotypes and the microhabitat in which the offspring will grow. Females influence the paternity pattern of their offspring, and do this differently in different microhabitats. Females with four spermathecae are better able to influence paternity than are those with three spermathecae. However, there must be a cost to building and maintaining an extra spermatheca. We estimate, using the animal model on pedigree data, that this cost is approximately five eggs per clutch, i.e. around 8% of the mean clutch size. This is a substantial cost and such costs should not be ignored in discussions of the benefits to females of assessing the genetic qualities of their mating partners. We suggest that the number of spermathecae in the study population is stable because the relative benefits in quality of offspring through cryptic female choice is balanced by the costs in total numbers of offspring.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号