首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Asymmetric dimethylarginine (ADMA), an endogenous inhibitor of nitric oxide synthase (NOS), may be related to reduced biosynthesis of nitric oxide in diseases associated with accelerated atherosclerosis. The closely related compound symmetric dimethylarginine (SDMA) does not inhibit NOS, but may compete with arginine for cellular uptake, thereby limiting substrate availability for NOS. We report on a method for the simultaneous measurement of arginine, ADMA, and SDMA as a tool to gain insight in the role of these compounds in the regulation of NOS activity. Sample cleanup was performed by solid-phase extraction on polymeric cation-exchange columns using monomethylarginine as internal standard. After derivatization with ortho-phthaldialdehyde reagent containing 3-mercaptopropionic acid, analytes were separated by isocratic reversed-phase HPLC with fluorescence detection. The stable derivatives were separated with near baseline resolution. Using a sample volume of 0.2 ml, linear calibration curves were obtained with limits of quantification of 0.08 microM for arginine and 0.01 microM for ADMA and SDMA. Analytical recovery was 98-102%, and interassay CV was better than 3%. Plasma from healthy volunteers (n = 53) contained 94 +/- 26 microM arginine, 0.42 +/- 0.06 microM ADMA, and 0.47 +/- 0.08 microM SDMA. Due to its high precision and sensitivity this method is a valuable tool in research on the metabolism of dimethylated arginines and their role in the regulation of NOS activity.  相似文献   

2.
The balance between nitric oxide (NO) and vasoconstrictors like endothelin is essential for vascular tone and endothelial function. L-Arginine is converted to NO and L-citrulline by NO synthase (NOS). Asymmetric dimethylarginine (ADMA) and symmetric dimethylarginine (SDMA) are endogenous inhibitors of NO formation. ADMA is degraded by dimethylamino dimethylhydrolases (DDAHs), while SDMA is exclusively eliminated by the kidney. In the present article we report a LC-tandem MS method for the simultaneous determination of arginine, ADMA, and SDMA in plasma. This method is designed for high sample throughput of only 20-mul aliquots of human or mouse plasma. The analysis time is reduced to 1.6 min by LC-tandem MS electrospray ionisation (ESI) in the positive mode. The mean plasma levels of l-arginine, ADMA, and SDMA were 74+/-19 (SD), 0.46+/-0.09, and 0.37+/-0.07 microM in healthy humans (n=85), respectively, and 44+/-14, 0.72+/-0.23, and 0.19+/-0.06 microM in C57BL/6 mice. Also, the molar ratios of arginine to ADMA were different in man and mice, i.e. 166+/-50 and 85+/-22, respectively.  相似文献   

3.
Post-translational methylation of arginine residues in proteins leads to generation of N(G)-monomethylarginine (MMA) and both symmetric and asymmetric dimethylarginine (SDMA and ADMA), that are released into the cytosol upon proteolysis. Both MMA and ADMA are inhibitors of nitric oxide synthase and especially elevated levels of ADMA are associated with endothelial dysfunction and cardiovascular disease. Plasma concentrations of ADMA and SDMA are very low, typically between 0.3 and 0.8 microM, making their quantification by HPLC an analytical challenge. Sample preparation usually involves a cleanup step by solid-phase extraction on cation-exchange columns followed by derivatization of amino acids into fluorescent adducts. Because ADMA and SDMA concentrations in healthy subjects show a very narrow distribution, with a between-subject variability of 13% for ADMA and 19% for SDMA, very low imprecision is an essential assay feature. Procedures for sample cleanup, derivatization, and chromatographic separation of arginine and its methylated analogs are the main topics of this review. In addition, important aspects of method validation, pre-analytical factors, and reference values are discussed.  相似文献   

4.
Accumulation of symmetric dimethylarginine in hepatorenal syndrome   总被引:4,自引:0,他引:4  
In patients with cirrhosis, nitric oxide (NO), asymmetric dimethylarginine (ADMA), and possibly symmetric dimethylarginine (SDMA) have been linked to the severity of the disease. We investigated whether plasma levels of dimethylarginines and NO are elevated in patients with hepatorenal syndrome (HRS), compared with patients with cirrhosis without renal failure (no-HRS). Plasma levels of NO, ADMA, SDMA, and l-arginine were measured in 11 patients with HRS, seven patients with no-HRS, and six healthy volunteers. SDMA concentration in HRS was higher than in no-HRS and healthy subjects (1.47 +/- 0.25 vs. 0.38 +/- 0.06 and 0.29 +/- 0.04 microM, respectively; P < 0.05). ADMA and NOx concentrations were higher in HRS and no-HRS patients than in healthy subjects (ADMA, 1.20 +/- 0.26, 1.11 +/- 0.1, and 0.53 +/- 0.06 microM, respectively; P < 0.05; NOx, 94 +/- 9.1, 95.5 +/- 9.54, and 37.67 +/- 4.62 microM, respectively; P < 0.05). In patients with HRS there was a positive correlation between serum creatinine and plasma SDMA (r2 =0.765, P < 0.001) but not between serum creatinine and ADMA or NOx. The results suggest that renal dysfunction is a main determinant of elevated SDMA concentration in HRS. Accumulation of ADMA as a result of impaired hepatic removal may be the causative factor initiating renal vasoconstriction and SDMA retention in the kidney.  相似文献   

5.
There is increasing recognition of the clinical importance of endogenous nitric oxide synthase inhibitors in critical illness. This has highlighted the need for an accurate high performance liquid chromatography (HPLC) method for detection of asymmetric dimethylarginine (ADMA) and symmetric dimethylarginine (SDMA) in small volumes of blood. Here, the validation of an accurate, precise HPLC method for the determination of ADMA, SDMA, homoarginine and arginine concentrations in plasma is described. Solid phase extraction is followed by derivatisation with AccQ-Fluor™ and reversed phase separation on a Gemini-NX column at pH 9. Simultaneous detection by both UV–vis and fluorescence detectors affords extra validation. This solid phase extraction method gives absolute recoveries of more than 85% for ADMA and SDMA and relative recoveries of 102% for ADMA and 101% for SDMA. The intra-assay relative standard deviations are 2.1% and 2.3% for ADMA and SDMA, respectively, with inter-assay relative standard deviations of 2.7% and 3.1%, respectively. Advantages of this method include improved recovery of all analytes using isopropanol in the solid phase extraction; sharp, well-resolved chromatographic peaks using a high pH mobile phase; a non-endogenous internal standard, n-propyl l-arginine; and accurate and precise determination of methylated arginine concentrations from only 100 μL of plasma.  相似文献   

6.
Elevated plasma concentrations of symmetrical dimethylarginine (SDMA) and asymmetrical dimethylarginine (ADMA) are repeatedly associated with kidney failure. Both ADMA and SDMA can be excreted in urine. We tested whether renal excretion is necessary for acute, short-term maintenance of plasma ADMA and SDMA. Sprague-Dawley rats underwent sham operation, bilateral nephrectomy (NPX), ureteral ligation, or ureteral section under isoflurane anesthesia. Tail-snip blood samples (250 microl) were taken before and at 6- or 12-h intervals for 72 h after operation. Plasma clearance was assessed in intact and NPX rats. High-performance liquid chromatography determined SDMA and ADMA concentrations. Sodium, potassium, creatinine, blood urea nitrogen (BUN), and body weight were also measured. Forty-eight hours after NPX, SDMA increased 25 times (0.23 +/- 0.03 to 5.68 +/- 0.30 microM), whereas ADMA decreased (1.17 +/- 0.08 to 0.73 +/- 0.08 microM) by 38%. Creatinine and BUN increased, paralleling SDMA. Sham-operated animals showed no significant changes. Increased SDMA confirms continuous systemic production of SDMA and its obligatory renal excretion, much like creatinine. In contrast, decreased plasma ADMA suggests that acute total NPX either reduced systemic ADMA formation and/or systemic hydrolysis of ADMA increased 48-h post-NPX. However, plasma clearance of ADMA appeared unchanged 48 h after NPX. We conclude that renal excretory function is needed for SDMA elimination but not needed for acute, short-term ADMA elimination in that systemic hydrolysis is fully capable of clearing plasma ADMA.  相似文献   

7.
Asymmetric dimethylarginine (ADMA) is an emerging cardiovascular risk factor. Its increased levels have been hypothesized to be a cause of endothelial dysfunction in pathological conditions such as hypertension, dyslipidemia, renal failure, hyperglycemia, and hyperhomocysteinemia. It acts as a potent competitive inhibitor of nitric oxide synthase. Methods using ortho-phthaldialdehyde (OPA) as derivatization reagent are widely performed in HPLC determination of ADMA, but they produce derivatives whose fluorescence rapidly decreases during time. Moreover, these methods do not allow a clear separation of ADMA from its stereoisomer symmetric dimethylarginine (SDMA). Our work describes a new method to determine ADMA, SDMA, and arginine that uses, as derivatizing reagent, naphthalene-2,3-dicarboxaldehyde (NDA). Chromatograms with low background, showing a complete separation of ADMA and SDMA, are obtained. NDA derivatives are considerably more stable than the OPA derivatives. The calibration curves of ADMA and SDMA are linear within the range of 0.01-16.0 microM. Coefficients of variation are less than 1.7% for within day and less then 2.3% for day to day. Absolute mean recoveries from supplemented samples are between 100 and 104%. These characteristics make this method reliable and easily manageable for large routine analyses.  相似文献   

8.
Within the paraventricular nucleus (PVN), there is a balance between the excitatory and inhibitory neurotransmitters that regulate blood pressure; in hypertension, the balance shifts to enhanced excitation. Nitric oxide (NO) is an atypical neurotransmitter that elicits inhibitory effects on cardiovascular function. We hypothesized that reduced PVN NO led to elevations in blood pressure during both the onset and sustained phases of hypertension due to decreased NO synthase (NOS) and increased asymmetrical dimethylarginine (ADMA; an endogenous NOS inhibitor) and symmetric dimethylarginine (SDMA). Elevated blood pressure, in response to PVN bilateral microinjections of a NO inhibitor, nitro-L-arginine methyl ester, was blunted in renal wrapped rats during the onset of hypertension (day 7) and sustained renal wrap hypertension (day 28) compared with sham-operated rats. Adenoviruses (Ad) encoding endothelial NOS (eNOS) or LacZ microinjected into the PVN [1 × 10(9) plaque-forming units, bilateral (200 nl/site)] reduced mean arterial pressure compared with control (Day 7, Ad LacZ wrap: 144 ± 7 mmHg and Ad eNOS wrap: 117 ± 5 mmHg, P ≤ 0.05) throughout the study (Day 28, Ad LacZ wrap: 123 ± 1 mmHg and Ad eNOS wrap: 108 ± 4 mmHg, P ≤ 0.05). Western blot analyses of PVN NOS revealed significantly lower PVN neuronal NOS during the onset of hypertension but not in sustained hypertension. Reduced SDMA was found in the PVN during the onset of hypertension; however, no change in ADMA was observed. In conclusion, functional indexes of NO activity indicated an overall downregulation of NO in renal wrap hypertension, but the mechanism by which this occurs likely differs throughout the development of hypertension.  相似文献   

9.
Arginine methylation constitutes a posttranslational modification dependent on the action of protein arginine methyltransferases (PRMTs). Using S-adenosylmethionine as a methyl donor, PRMTs catalyze the formation of monomethylarginine (L-NMMA), asymmetric dimethylarginine (ADMA), or symmetric dimethylarginine (SDMA). Protein arginine methylation is involved in the regulation of signal transduction, RNA export, and cell proliferation, but a quantitative view of arginine methylation of the cell and tissue proteome remains to be performed. In this study, we developed a high-performance liquid chromatography (HPLC)-based method to accurately quantify methylated arginines in free and protein-incorporated amino acid pools of cell and tissue extracts, using protein precipitation and hydrolysis, HPLC separation, and fluorescence detection for the simultaneous quantification of L-arginine (L-Arg), L-NMMA, ADMA, and SDMA. This method permits accurate assessment of the degree of protein arginine methylation in complex biological samples. Using this method, we determined dynamic changes in protein methylation in vitro in cells subjected to proteasome inhibition. We furthermore demonstrate differential methylation patterns in heart and kidney lysates in vivo. Thus, the described method will greatly facilitate our understanding of the role of arginine methylation in physiology and pathophysiology and of the effects of pharmacological interventions on arginine methylation in select cell culture models.  相似文献   

10.

Background

Major depression is a well-known risk factor for cardiovascular diseases and increased mortality following myocardial infarction. However, biomarkers of depression and increased cardiovascular risk are still missing. The aim of this prospective study was to evaluate, whether nitric-oxide (NO) related factors for endothelial dysfunction, such as global arginine bioavailability, arginase activity, L-arginine/ADMA ratio and the arginine metabolites asymmetric dimethylarginine (ADMA) and symmetric dimethylarginine (SDMA) might be biomarkers for depression-induced cardiovascular risk.

Methods

In 71 in-patients with major depression and 48 healthy controls the Global Arginine Bioavailability Ratio (GABR), arginase activity (arginine/ornithine ratio), the L-arginine/ADMA ratio, ADMA, and SDMA were determined by high-pressure liquid chromatography. Psychiatric and laboratory assessments were obtained at baseline at the time of in-patient admittance and at the time of hospital discharge.

Results

The ADMA concentrations in patients with major depression were significantly elevated and the SDMA concentrations were significantly decreased in comparison with the healthy controls. Even after a first improvement of depression, ADMA and SDMA levels remained nearly unchanged. In addition, after a first improvement of depression at the time of hospital discharge, a significant decrease in arginase activity, an increased L-arginine/ADMA ratio and a trend for increased global arginine bioavailability were observed.

Conclusions

Our study results are evidence that in patients with major depression ADMA and SDMA might be biomarkers to indicate an increased cardiovascular threat due to depression-triggered NO reduction. GABR, the L-arginine/ADMA ratio and arginase activity might be indicators of therapy success and increased NO production after remission.  相似文献   

11.
The endogenous nitric oxide (NO) synthase (NOS) inhibitor asymmetrical dimethylarginine (ADMA) is elevated in many patients and may contribute to the initiation and progression of their disease. While some mechanistic pathways have been identified, tissue-specific contributions to ADMA control remain unclear. We sought to determine if whole blood (WB) could participate in ADMA control ex vivo. Anesthetized male Sprague-Dawley rats underwent exsanguinations, and WB preparations were incubated at 37 degrees C for 5 h. ADMA and symmetrical dimethylarginine were analyzed by high-pressure liquid chromatography. Incubation of lysed red blood cell (RBC) supernatant yielded a significant decrease in ADMA that was blocked by 4124W, a synthetic inhibitor of dimethylarginine dimethylaminohydrolase, the only reported enzyme to hydrolyze ADMA. Hydrolysis of ADMA was diminished by addition of physiologically relevant concentrations of zinc (i.e., 20 microM). Conversely, when rat WB or WB supernatant was incubated at 37 degrees C, it liberated quantities of free ADMA (1-2 microM) that in vivo would likely have pathological consequences. Addition of arginine methyltransferase inhibitors to these incubations did not reduce ADMA release, indicating no dominant role for active protein methylation during these incubations. This ADMA liberation was significantly reduced by addition of protease inhibitors, indicating a dependence on peptide bond hydrolysis. Total ADMA (protein incorporated plus free) was determined by acid hydrolysis and found to be 43.18 +/- 4.79 microM in WB with approximately 95% of this in RBCs. These ex vivo data demonstrate the potential of blood to control the NO-NOS system by modulating free ADMA.  相似文献   

12.
A fully validated gas chromatographic-mass spectrometric (GC-MS) method for the accurate and precise quantification of NG,NG-dimethyl-L-arginine (asymmetric dimethylarginine, ADMA), an endogenous inhibitor of the NO synthase, in cell culture supernatants and in small volumes of plasma is described. ADMA was concentrated by solid phase extraction and converted to its methyl ester pentafluoropropionic amide derivative. The derivatives were analyzed without any further purification. Using gas chromatography-chemical ionization mass spectrometry, fragment ions at m/z 634 and m/z 640 were obtained for ADMA and for NG,NG-[2H6]-dimethyl-L-arginine ([2H6]-ADMA) as internal standard, respectively. [2H6]-ADMA was synthesized by reaction of L-ornithine fastened at bromcyan-agarose with dimethylamine. The limit of detection of the method was 2 fmol, while the limit of quantitation for cell culture supernatants was 0.05 microM. The method was validated in a concentration range of 0-1.2 microM in cell culture medium and 0-2 microM in 50 microl aliquots of human plasma. The precision was > or =97% and the accuracy was determined to be > or =94%. This method is fast, rugged and an alternative to high performance liquid chromatography (HPLC) analysis of ADMA in cell culture supernatants and small volumes of human plasma.  相似文献   

13.
The performance of a new ELISA assay kit (DLD Diagnostika GmbH, Hamburg, Germany) for the determination of asymmetric dimethylarginine (ADMA) was evaluated against a reversed phase HPLC method. ADMA concentrations of 55 serum samples were measured with both methods. The intra-assay CV for ADMA-ELISA was 19% (n=10). Inter-assay CVs for ADMA-ELISA were 9% for kit control 1 (0.410+/-0.037 microM) and 14% for kit control 2 (1.174+/-0.165 microM). The intra- and inter-assay CVs for HPLC assay for ADMA were 2.5% (0.586+/-0.015 microM) and 4.2% (0.664+/-0.028 microM), respectively. There was no correlation between these two methods (R(2)=0.0972). The effect of storage conditions of the samples on ADMA concentrations was investigated by HPLC. ADMA concentration was stable after four freezing and thawing cycles. Overall, the HPLC method offered better sensitivity, selectivity and, very importantly, simultaneous determination of ADMA, SDMA, l-homoarginine and l-arginine.  相似文献   

14.
Intimal infiltration by monocytes and accumulation of lipids represent a critical step in the formation of fatty streaks during atherogenesis. Because elevated plasma levels of asymmetric dimethylarginine (ADMA), a potent nitric oxide (NO) synthase (NOS) inhibitor, are prevalent in diverse cardiovascular diseases, the goal of this study was to examine the contribution of NO deficiency to macrophage lipid accumulation. Inhibition of NO synthesis in PMA-primed human monocytic leukemia HL-60 cells resulted in a twofold increase in expression of the receptor for oxidized LDL (OxLDL), termed the lectin-like OxLDL receptor (LOX-1). Blockade of inducible NOS in activated macrophages resulted in 1,1'-dioctadecyl-3,3,3',3'-tetramethylindocarbocyanine perchlorate (DiI)-OxLDL accumulation and imparted macrophages with a foamy appearance as detected with oil-red O lipid staining. ADMA (15 microM) or N(G)-nitro-l-arginine methyl ester (l-NAME, 300 microM), both of which suppress inducible NOS activity, increased oil-red staining 1.9- and 2.8-fold, respectively. Macrophages treated with ADMA or l-NAME showed a 2.4-fold increase in accumulation of DiI-OxLDL. To examine the role of LOX-1 in this process, we used small interfering RNA (siRNA) duplex-mediated LOX-1 gene silencing. LOX-1 expression was suppressed twofold by siRNA as shown by Western blot analysis. This suppression was associated with a two- to fourfold decrease in DiI-OxLDL uptake as identified by fluorescence microscopy and decreased oil-red O staining by activated macrophages. In conclusion, accumulation of ADMA (a competitive inhibitor of NOS) in patients with chronic renal failure may be responsible for upregulation of LOX-1 receptor and increased OxLDL uptake, thus contributing to lipidosis and foam cell formation. The data illustrate an additional nonendothelial mode of antiatherogenic action of NO: prevention of LOX-1 induction and lipid accumulation by macrophages.  相似文献   

15.
Nitric oxide synthase is inhibited by NG-methylated derivatives of arginine whose cellular levels are controlled by dimethylarginine dimethylamino-hydrolase (DDAH). DDAH-1 is a Zn(II)-containing enzyme that through hydrolysis of methylated l-arginines regulates the activity of NOS. Herein, we report the kinetic properties of hDDAH-1 and its redox-dependent regulation. Kinetic studies using recombinant enzyme demonstrated Km values of 68.7 and 53.6 microM and Vmax values of 356 and 154 nmols/mg/min for ADMA and L-NMMA, respectively. This enzymatic activity was selective for free ADMA and L-NMMA and was incapable of hydrolyzing peptide incorporated methylarginines. Subsequent studies performed to determine the effects of reactive oxygen and reactive nitrogen species on DDAH activity demonstrated that low level oxidant exposure had little effect on enzyme activity and that concentrations approaching >or=100 microM were needed to confer significant inhibition of DDAH activity. However, exposure of DDAH to the lipid oxidation product, 4-HNE, dose-dependently inhibited DDAH activity with 15% inhibition observed at 10 microM, 50% inhibition at 50 microM, and complete inhibition at 500 microM. Mass spectrometry analysis demonstrated that the mechanism of inhibition resulted from the formation of Michael adducts on His 173, which lies within the active site catalytic triad of hDDAH-1. These studies were performed with pathophysiologicaly relevant concentrations of this lipid peroxidation product and suggest that DDAH activity can be impaired under conditions of increased oxidative stress. Because DDAH is the primary enzyme involved in methylarginine metabolism, the loss of activity of this enzyme would result in impaired NOS activity and reduced NO bioavailability.  相似文献   

16.
Nitric oxide (NO) is synthesized from arginine (ARG) by NO synthase (NOS). Asymmetric dimethylarginine (ADMA), a competitive inhibitor of NOS, participates in the endogenous regulation of NO synthesis. The main amount of ADMA is enzymatically degraded by dimethylarginine dimethylaminohydrolase (DDAH) widely expressed in renal tissue. The aim of our study was to compare the changes in DDAH activity and ARG synthesis in kidneys, ADMA and ARG concentration in plasma and their urinary excretion under physiological conditions and in acute renal injury (ARI) induced by glycerol in rats. Urinary nitrite/nitrate excretion (NOx) was estimated as an indicator of whole-body NO synthesis. DDAH activity was decreased, ADMA excretion was increased and plasma ADMA did not change in ARI. Plasma ARG concentration, renal ARG synthesis and urinary NOx excretion were decreased. In conclusion, the diminished enzymatic hydrolysis of the NOS inhibitor ADMA and the reduced synthesis of the NOS substrate ARG might affect NO production in ARI.  相似文献   

17.
A high-throughput analytical method was developed for the measurement of asymmetric dimethylarginine (ADMA) and L-arginine (ARG) from plasma using LC/MS/MS. The sample preparation was simple and only required microfiltration prior to analysis. ADMA and ARG were assayed using mixed-mode ion-exchange chromatography which allowed for the retention of the un-derivatized compounds. The need for chromatographic separation of ADMA from symmetric dimethylarginine (SDMA) was avoided by using an ADMA specific product ion. As a result, the analytical method only required a total run time of 2 min. The method was validated by linearity, with r2>or=0.995 for both compounds, and accuracy, with no more than 7% deviation from the theoretical value. The estimated limit of detection and limit of quantification were suitable for clinical evaluations. The mean values of plasma ADMA and ARG taken from healthy volunteers (n=15) were 0.66+/-0.12 and 87+/-35 microM, respectively; the mean molar ratio of ARG to ADMA was 142+/-81.  相似文献   

18.
Nitric oxide (NO) synthesis is modulated by dimethylarginine dimethylaminohydrolase (DDAH) via metabolizing asymmetric dimethylarginine (ADMA), an endogenous NO synthase (NOS) inhibitor. This study investigated whether glycosylated bovine serum albumin (GBSA) could impair NO synthesis by inhibition of DDAH expression and activity, and whether DDAH2 overexpression could reverse the impaired NO synthesis induced by GBSA in endothelial cells. Overexpression of DDAH2 gene was established by liposome-mediated gene transfection in ECV304 endothelial cell line. Cells were incubated with 1.70 mmol/L GBSA for 48h. And the expressions of DDAH1 and DDAH2, gene activities of DDAH and NOS in cells, as well as concentrations of ADMA and NO in media were assayed. The activity of DDAH and expression of DDAH2 gene but not DDAH1 gene were inhibited in endothelial cells after exposure to GBSA, whereas the concentrations of ADMA were increased concomitantly with the decrease of NOS activity in cells and NO production in media. Overexpression of DDAH2 gene could prevent the inhibition of DDAH activity induced by GBSA (0.55+/-0.02 vs 0.42+/-0.02U/g pro; n=3; P<0.05), decrease ADMA concentration (0.59+/-0.04 vs 1.13+/-0.11 micromol/L; n=3; P<0.01), and increase NOS activity and NO production (53.77+/-3.40 vs 34.59+/-2.57 micromol/L; P<0.05) compared with untransfected cells treated with GBSA. These results suggest that decreased DDAH activity and subsequent elevated endogenous ADMA are implicated in the inhibition of NO synthesis induced by GBSA, and overexpression of DDAH2 gene can prevent these changes in DDAH/ADMA/NOS/NO pathway of endothelial cells exposed to GBSA.  相似文献   

19.
Nitric oxide (NO) has been suggested to play a key role in the pathogenesis of pulmonary hypertension (PH). To determine which mechanism exists to affect NO production, we examined the concentration of endogenous nitric oxide synthase (NOS) inhibitors and their catabolizing enzyme dimethylarginine dimethylaminohydrolase (DDAH) activity and protein expression (DDAH1 and DDAH2) in pulmonary artery endothelial cells (PAECs) of rats given monocrotaline (MCT). We also measured NOS and arginase activities and NOS protein expression. Twenty-four days after MCT administration, PH and right ventricle (RV) hypertrophy were established. Endothelium-dependent, but not endothelium-independent, relaxation and cGMP production were significantly impaired in pulmonary artery specimens of MCT group. The constitutive NOS activity and protein expression in PAECs were significantly reduced in MCT group, whereas the arginase, which shares l-arginine as a common substrate with NOS, activity was significantly enhanced in PAECs of MCT group. The contents of monomethylarginine (MMA) and asymmetric dimethylarginine (ADMA), but not symmetric dimethylarginine (SDMA), were increased in PAECs of MCT group. The DDAH activity and DDAH1, but not DDAH2, protein expression were significantly reduced in PAECs of MCT group. These results suggest that the impairment of cGMP production as a marker of NO production is possibly due to the blunted endothelial NOS activity resulting from the downregulation of endothelial NOS protein, accumulation of endogenous NOS inhibitors, and accelerated arginase activity in PAECs of PH rats. The decreased overall DDAH activity accompanied by the downregulation of DDAH1 would bring about the accumulation of endogenous NOS inhibitors.  相似文献   

20.
Previously, we demonstrated the utility of a gas chromatography–tandem mass spectrometry (GC–MS/MS) method for the quantitative determination of asymmetric dimethylarginine (ADMA) in biological samples. Here we report the extension of this method to symmetric dimethylarginine (SDMA) in human urine. SDMA and ADMA were simultaneously quantitated in urine by using their in situ prepared trideuteromethyl esters as internal standards. The GC–MS/MS method was validated for SDMA and ADMA in spot urine samples of 19 healthy adults. In these samples, the creatinine-corrected excretion rate was 3.23 ± 0.63 μmol/mmol for SDMA and 3.14 ± 0.98 μmol/mmol for ADMA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号