首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
Proteomics in the post-genome age.   总被引:12,自引:0,他引:12  
The genome sequencing effort has helped spawn the burgeoning field of proteomics. This review article examines state-of-the-art proteomics methods that are helping change the discovery paradigm in a variety of biological disciplines and, in particular, protein biochemistry. The review discusses both classical and novel methods to perform high-throughput qualitative and quantitative "global" as well as targeted proteome analysis of complex biological systems. From a drug discovery standpoint, the synergy between genomics and proteomics will help elucidate disease mechanisms, identify novel drug targets, and identify surrogate biomarkers that could be used to conduct clinical trials.  相似文献   

2.
A unique characteristic of carbohydrates is their structural diversity which is greater than that of many other classes of biological compounds. Carbohydrate-containing natural products show many different biological activities and some of them have been developed as drugs for medical use. The biosynthesis of carbohydrate-containing natural products is catalysed by glycosyltransferases. In this review we will present information on the function of glycosyltransferases involved in the biosynthesis of oligosaccharide antibiotics focusing especially on urdamycins and landomycins, two angucycline antibiotics with interesting antitumor activities. We will also discuss the use of glycosyltransferases in combinatorial biosynthesis to generate new "hybrid" antibiotics.  相似文献   

3.
The aim of this paper is to present a critical analysis of the kind of biological systems identified in the main explanatory theories of cancer (i.e. Somatic Mutation Theory and Tissue Organization Field Theory) and how references to the hierarchical organization of these biological systems are used in their explanatory arguments. I will discuss these aspects in terms of the isolation of the "locus of control" (Bechtel and Richardson 2010); that is, the point at which decisions are made shaping the explanatory endeavour. In fact, the current view of the neoplastic process, not as a static circumstance but as an evolving molecular and cellular process, makes it evident that the choice of the right level of analysis is not self-evident. This focus clarifies some epistemological reasons for the divergence between reductionist and organicist accounts and seems to suggest that the basis for distinctions among causal relationships that scientists sometimes make can be found in the hierarchical character of complex biological systems. I will argue that these different causal relationships reflect different levels of epistemic concern.  相似文献   

4.
With advances in determining the entire DNA sequence of the human genome, it is now critical to systematically identify the function of a number of genes in the human genome. These biological challenges, especially those in human diseases, should be addressed in human cells in which conventional (e.g. genetic) approaches have been extremely difficult to implement. To overcome this, several approaches have been initiated. This review will focus on the development of a novel "chemical genetic/genomic approach" that uses small molecules to "probe and identify" the function of genes in specific biological processes or pathways in human cells. Due to the close relationship of small molecules with drugs, these systematic and integrative studies will lead to the "medicinal systems biology approach" which is critical to "formulate and modulate" complex biological (disease) networks by small molecules (drugs) in human bio-systems.  相似文献   

5.
Homology is the similarity between organisms due to common ancestry. Introduced by Richard Owen in 1843 in a paper entitled "Lectures on comparative anatomy and physiology of the invertebrate animals", the concept of homology predates Darwin's "Origin of Species" and has been very influential throughout the history of evolutionary biology. Although homology is the central concept of all comparative biology and provides a logical basis for it, the definition of the term and the criteria of its application remain controversial. Here, I will discuss homology in the context of the hierarchy of biological organization. I will provide insights gained from an exemplary case study in evolutionary developmental biology that indicates the uncoupling of homology at different levels of biological organization. I argue that continuity and hierarchy are separate but equally important issues of homology.  相似文献   

6.
Personalized medicine is a term for a revolution in medicine that envisions the individual patient as the central focus of healthcare in the future. The term "personalized medicine", however, fails to reflect the enormous dimensionality of this new medicine that will be predictive, preventive, personalized, and participatory-a vision of medicine we have termed P4 medicine. This reflects a paradigm change in how medicine will be practiced that is revolutionary rather than evolutionary. P4 medicine arises from the confluence of a systems approach to medicine and from the digitalization of medicine that creates the large data sets necessary to deal with the complexities of disease. We predict that systems approaches will empower the transition from conventional reactive medical practice to a more proactive P4 medicine focused on wellness, and will reverse the escalating costs of drug development an will have enormous social and economic benefits. Our vision for P4 medicine in 10 years is that each patient will be associated with a virtual data cloud of billions of data points and that we will have the information technology for healthcare to reduce this enormous data dimensionality to simple hypotheses about health and/or disease for each individual. These data will be multi-scale across all levels of biological organization and extremely heterogeneous in type - this enormous amount of data represents a striking signal-to-noise (S/N) challenge. The key to dealing with this S/N challenge is to take a "holistic systems approach" to disease as we will discuss in this article.  相似文献   

7.
The definition of biological individuality is one of the most discussed topics in philosophy of biology, but current debate has focused almost exclusively on evolution-based accounts. Moreover, several participants in this debate consider the notions of a biological individual and an organism as equivalent. In this paper, I show that the debates would be considerably enriched and clarified if philosophers took into account two elements. First, physiological fields are crucial for the understanding of biological individuality. Second, the category of biological individuals should be divided into two subcategories: physiological individuals and evolutionary individuals, which suggests that the notions of organism and biological individual should not be used interchangeably. I suggest that the combination of an evolutionary and a physiological perspective will enable biologists and philosophers to supply an account of biological individuality that will be both more comprehensive and more in accordance with scientific practices.  相似文献   

8.
9.
Catastrophe Theory was developed in an attempt to provide a form of Mathematics particularly apt for applications in the biological sciences. It was claimed that while it could be applied in the more conventional physical way, it could also be applied in a new metaphysical way, derived from the Structuralism of Saussure in Linguistics and Lévi-Strauss in Anthropology.Since those early beginnings there have been many attempts to apply Catastrophe Theory to Biology, but these hopes cannot be said to have been fully realised.This paper will document and classify the work that has been done. It will be argued that, like other applied Mathematics, applied Catastrophe Theory works best where the underlying laws are securely known and precisely quantified, requiring those same guarantees as does any other branch of Mathematics when it confronts a real-life situation.  相似文献   

10.
Biological technologies are becoming an important part of the economy. Biotechnology already contributes at least 1% of US GDP, with revenues growing as much as 20% annually. The introduction of composable biological parts will enable an engineering discipline similar to the ones that resulted in modern aviation and information technology. As the sophistication of biological engineering increases, it will provide new goods and services at lower costs and higher efficiencies. Broad access to foundational engineering technologies is seen by some as a threat to physical and economic security. However, regulation of access will serve to suppress the innovation required to produce new vaccines and other countermeasures as well as limiting general economic growth.
Robert CarlsonEmail:
  相似文献   

11.
A renaissance in organismal biology has been sparked by recent conceptual, theoretical, methodological, and computational advances in the life sciences, along with an unprecedented interdisciplinary integration with Mathematics, Engineering, and the physical sciences. Despite a decades-long trend toward reductionist approaches to biological problems, it is increasingly recognized that whole organisms play a central role in organizing and interpreting information from across the biological spectrum. Organisms represent the nexus where sub- and supra-organismal processes meet, and it is the performance of organisms within the environment that provides the material for natural selection. Here, we identify five "grand challenges" for future research in organismal biology. It is intended that these challenges will spark further discussion in the broader community and identify future research priorities, opportunities, and directions, which will ultimately help to guide the allocation of support for and training in organismal biology.  相似文献   

12.
This article argues that a life course approach is necessary to understand social variations in health. This is needed in order to take into account the complex ways in which biological risk interacts with economic, social, and psychological factors in the development of chronic disease. Such an approach reveals biological and social "critical periods" during which social policies that will defend individuals against an accumulation of risk are particularly important. In many ways, the authors of modern welfare states were implicitly addressing these issues, and the contribution of these policies to present day high standards of health in developed countries should not be ignored.  相似文献   

13.
The complete sequence of the human and other vertebrate and nonvertebrate genomes provide a wealth of information on the organization, relationships and evolution of the metazoans. Soon the fine structure of our innermost biological identity will be unveiled and what has so far remained deep and secret will shine like an unearthed treasure and shape and fuel our future quests. A key treasure, for many molecular scientists interested in molecular evolution and development would be the knowledge of the genome of the ancestral precursor of all metazoans. In the absence of fossil DNA, this knowledge will forever remain a yearning for dreamy molecular biologists. And yet, will not the power of deduction and reconstitution of information gained through man's sophisticated technologies one day recreate a "virtual" metazoan ancestor?  相似文献   

14.

Background

Nanoparticles in contact with biological fluids interact with proteins and other biomolecules, thus forming a dynamic corona whose composition varies over time due to continuous protein association and dissociation events. Eventually equilibrium is reached, at which point the continued exchange will not affect the composition of the corona.

Results

We developed a simple and effective dynamic model of the nanoparticle protein corona in a body fluid, namely human plasma. The model predicts the time evolution and equilibrium composition of the corona based on affinities, stoichiometries and rate constants. An application to the interaction of human serum albumin, high density lipoprotein (HDL) and fibrinogen with 70 nm N-iso-propylacrylamide/N-tert-butylacrylamide copolymer nanoparticles is presented, including novel experimental data for HDL.

Conclusions

The simple model presented here can easily be modified to mimic the interaction of the nanoparticle protein corona with a novel biological fluid or compartment once new data will be available, thus opening novel applications in nanotoxicity and nanomedicine.  相似文献   

15.
Many powerful analytical techniques for investigation of nucleic acids exist in the average modern molecular biology lab. The current review will focus on questions in RNA biology that have been answered by the use of mass spectrometry, which means that new biological information is the purpose and outcome of most of the studies we refer to. The review begins with a brief account of the subject "MS in the biology of RNA" and an overview of the prevalent RNA modifications identified to date. Fundamental considerations about mass spectrometric analysis of RNA are presented with the aim of detailing the analytical possibilities and challenges relating to the unique chemical nature of nucleic acids. The main biological topics covered are RNA modifications and the enzymes that perform the modifications. Modifications of RNA are essential in biology, and it is a field where mass spectrometry clearly adds knowledge of biological importance compared to traditional methods used in nucleic acid research. The biological applications are divided into analyses exclusively performed at the building block (mainly nucleoside) level and investigations involving mass spectrometry at the oligonucleotide level. We conclude the review discussing aspects of RNA identification and quantifications, which are upcoming fields for MS in RNA research. This article is part of a Special Section entitled: Understanding genome regulation and genetic diversity by mass spectrometry.  相似文献   

16.

Background

Characteristics of aquatic habitats determine whether mosquitoes will oviposit, hatch, develop, pupate and successfully emerge into adults or not, thus influencing which mosquito species will occupy a habitat. This study determined whether physiochemical and biological characteristics differ between habitats with high and low presence of anopheline larvae.

Methods

Physical, chemical and biological characteristics were evaluated in selected habitats twice per month within three highland valleys in western Kenya. Aquatic macro-organisms were sampled using a sweep-net. Colorimetric methods were used to determine levels of iron, phosphate, nitrate, ammonium and nitrite in water samples. Generalized Estimating Equations (GEE) was used to compare parameters between the two categories of anopheline presence.

Results

Habitats with high anopheline presence had greater abundance of mosquito aquatic stages and tadpoles and two times more levels of nitrate in water, whereas habitats with low anopheline presence had wider biofilm cover and higher levels of iron in water.

Conclusion

Habitats of high and low presence of anopheline larvae, which differed in a number of physical, chemical and biological characteristics, were identified in valleys within western Kenya highlands. Differences in habitat characteristics are critical in determining the number of anopheline larvae that will fully develop and emerge into adults.  相似文献   

17.
Recent attention to causes of seasonality of births leads to an interest in seasonality patterns in the antecedents to birth, including gestational length, conception, and coital activity. In this paper we study the beginning of the process: first intercourse among adolescents and young adults. Analysis of a small and local dataset is suggestive that loss of virginity is particularly likely during the summer. A test of this "Summer Vacation Theory" using a large national dataset supports the generality of the phenomenon. Further, a prediction that seasonality patterns will change during the transition from high school to work and college is tested and supported. The existence of both biological and psycho-social mechanisms is suggested. Policy implications are reviewed.  相似文献   

18.
It is well established that sequence templates (e.g., PROSITE) and databases are powerful tools for identifying biological function and tertiary structure for an unknown protein sequence. Here we describe a method for automatically deriving 3D templates from the protein structures deposited in the Brookhaven Protein Data Bank. As an example, we describe a template derived for the Ser-His-Asp catalytic triad found in the serine proteases and triacylglycerol lipases. We find that the resultant template provides a highly selective tool for automatically differentiating between catalytic and noncatalytic Ser-His-Asp associations. When applied to nonproteolytic proteins, the template picks out two "non-esterase" catalytic triads that may be of biological relevance. This suggests that the development of databases of 3D templates, such as those that currently exist for protein sequence templates, will help identify the functions of new protein structures as they are determined and pinpoint their functionally important regions.  相似文献   

19.
Former discussions of biological generalizations have focused on the question of whether there are universal laws of biology. These discussions typically analyzed generalizations out of their investigative and explanatory contexts and concluded that whatever biological generalizations are, they are not universal laws. The aim of this paper is to explain what biological generalizations are by shifting attention towards the contexts in which they are drawn. I argue that within the context of any particular biological explanation or investigation, biologists employ two types of generations. One type identifies causal regularities exhibited by particular kinds of biological entities. The other type identifies how these entities are distributed in the biological world.  相似文献   

20.
Considerable tension among the subfields has existed within the discipline of anthropology. As a result, some anthropology departments have splintered, and the hallmark "holistic approach" of anthropology has been considered more myth than reality. However, as promoted by the American Anthropological Association and the American Anthropologist for over one hundred years, enhancing the holistic nature of anthropology remains an important and necessary endeavor. This article provides an introduction to this special issue of the American Anthropologist , which focuses on the subfield of biological anthropology. Hopefully, as a result, increased connections among the subfields will be fostered, for the betterment of both biological anthropology and anthropology in general. The underlying theme of this article and the subtext for the entire special issue is clear: Biological anthropology needs anthropology, and anthropology needs biological anthropology. [Keywords: biological anthropology, subfields, four-field approach, holistic]  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号