首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 337 毫秒
1.
Animals that maintain near homeostatic elemental ratios may get rid of excess ingested elements from their food in different ways. C regulation was studied in juveniles of Daphnia magna feeding on two Selenastrum capricornutum cultures contrasting in P content (400 and 80 C:P atomic ratios). Both cultures were labelled with 14C in order to measure Daphnia ingestion and assimilation rates. No significant difference in ingestion rates was observed between P-low and P-rich food, whereas the net assimilation of 14C was higher in the treatment with P-rich algae. Some Daphnia were also homogeneously labelled over 5 days on radioactive algae to estimate respiration rates and excretion rates of dissolved organic C (DOC). The respiration rate for Daphnia fed with high C:P algae (38.7% of body C day-1) was significantly higher than for those feeding on low C:P algae (25.3% of body C day-1). The DOC excretion rate was also higher when animals were fed on P-low algae (13.4% of body C day-1) than on P-rich algae (5.7% of body C day-1) . When corrected for respiratory losses, total assimilation of C did not differ significantly between treatments (around 60% of body C day-1). Judging from these experiments, D. magna can maintain its stoichiometric balance when feeding on unbalanced diets (high C:P) primarily by disposing of excess dietary C via respiration and excretion of DOC.  相似文献   

2.
Jensen TC  Hessen DO 《Oecologia》2007,152(2):191-200
Like many invertebrate herbivores, Daphnia frequently face diets with excess carbon (C) relative to elements like phosphorus (P), and with limited ability to store C-rich compounds. To cope with this relative surplus of C they may either regulate the net uptake of C or dispose of excess assimilated C via increased release of dissolved organic carbon or CO2. Here we investigate whether juvenile Daphnia magna use respiration as a means of stoichiometrically regulating excess C. Growth rate and respiration were measured under different algal food qualities (P-replete and P-depleted algae). Growth rate was strongly reduced by P-depleted food, implying a stoichiometric disposal of excess ingested C. Respiration rates of feeding animals were measured after short- (0.5 h), medium- (12 h) and long- (five days) term acclimation to P-limited food. The respiration rates of animals during active feeding were not affected by the acclimation period per se, whereas food quality had a significant effect; respiration rates of feeding animals increased slightly in individuals receiving low-P food under all acclimation regimes. Respiration was also measured on nonfeeding and fasting animals that had been acclimated for five days to P-limited food. Respiration rates of these animals were strongly affected by feeding conditions but not by food quality; feeding individuals had higher respiration rates than those deprived of food, which again had higher respiration than fasting animals. Although animals grown on low-P food had strongly reduced growth and thus were expected to have decreased respiration rates due to reduced growth-related costs, this seems to be canceled out by increased stoichiometric respiration under P-deficiency. These results indicate that D. magna partly releases excess C as CO2, but other means of stoichiometric regulation most likely add to this.  相似文献   

3.
Gulati  R. D.  Ejsmont-Karabin  J.  Rooth  J.  Siewertsen  K. 《Hydrobiologia》1989,(1):347-354
Phosphorus (PO4-P) and nitrogen (NH4-N) excretion rates of Euchlanis dilatata lucksiana, a rotifer, isolated from Lake Loosdrecht (The Netherlands) and cultured in the lake water at 18–19 °C, were measured in the laboratory.In a series of experiments, the effects of experiment duration on the P and N excretion rates were examined. The rates measured in the first half-hour were about 2 times higher for P and 2–4 times for N than the rates in the subsequent three successive hours which were quite comparable.Eight experiments were carried out in triplicate, 4 each for P and N excretion measurements, using animals of two size ranges: 60–125 µm and > 125 µm. The specific excretion rates varied from 0.06 to 0.18 µg P.mg–1 DW.h–1 and 0.21 to 0.76 µg N.mg–1 DW.h–1. Generally an inverse relationship was observed between the specific excretion rates and the mean individual weight. The excretion rates of Euchlanis measured by us are lower than those reported for several other rotifer species, most of which are much smaller than Euchlanis.Extrapolating the excretion rates of Euchlanis to the other rotifer species in Lake Loosdrecht, and accounting for their density, size and temperature, rotifer excretion appears to be a significant, potential nutrient (N,P) source for phytoplankton growth in the lake. The excretion rates for the rotifers appear to be about two thirds of the total zooplankton excretion, even though the computed rotifer mean biomass is about one-third of the total zooplankton biomass.  相似文献   

4.
1. Herbivorous zooplankton face considerable temporal and spatial variation in food quality, to which they respond by adapting their life histories. Zooplankton may even take up mineral nutrients directly, and use these to counter the effects of algal nutrient limitation (mineral compensation). This study examined the life history of the rotifer Brachionus calyciflorus fed phosphorus‐, and nitrogen‐limited Scenedesmus obliquus (Chlorophyta), and investigated whether B. calyciflorus was capable of mineral compensation. 2. Both phosphorus‐ and nitrogen‐limited algae gave similar life history responses: somatic growth and reproduction were reduced, whereas lifespan remained unaffected. 3. No evidence was found for mineral compensation in B. calyciflorus in relation to detrimental life history effects, so mineral compensation does not seem to be relevant for this species under field conditions. 4. The similarity in life history responses of B. calyciflorus and the low levels of ω‐3 PUFAs in both phosphorus‐ and nitrogen‐depleted algae suggest that ω‐3 PUFAs were limiting to B. calyciflorus, although other (bio)chemicals or mineral nutrients may also have been important. 5. No trade‐off was observed between life span and reproduction during algal nutrient limitation. Reduced population growth rates of B. calyciflorus were caused by shorter reproductive periods.  相似文献   

5.
《农业工程》2014,34(4):191-195
Organisms rely on a series of chemical reactions, which are constrained by the availability of key chemical elements, such as carbon (C), nitrogen (N), and phosphorus (P). Ecological stoichiometry provides a tool for analyzing how the balance of elements required by organisms affects food-web dynamics. Ecological stoichiometric theory suggests that the balance between supply and demand of elements is determined by the conversion efficiency from resources to organisms.Autotrophs and heterotrophs commonly face unequal access to and uptake of elements. The stoichiometric variability of autotrophs is based on their ability to maintain the balance of elements required for growth. This creates a challenge for their grazers. Phytoplankton can adjust their P content to ambient nutrient concentrations, while zooplankton cannot store excess nutrients. Ecological stoichiometric theory thus suggests that zooplankton have relatively fixed stoichiometry compared with phytoplankton.Nutrient limitation is common in aquatic systems. Stoichiometric imbalances between phytoplankton and zooplankton mean that zooplankton rarely find optimal food sources, and phytoplankton production is in excess. P availability potentially limits zooplankton growth, because of the high C:P ratio in phytoplankton relative to zooplankton demand. Based on the Liebig minimum principle, organisms are normally limited by a single nutrient, while everything else is in excess. Under P deficiency, excess C cannot be allocated to zooplankton somatic growth, and the net intake of C must balance the C:P ratio of zooplankton. Thus, when zooplankton encounter nutritionally imbalanced foods the elements in excess are released in order to maintain homeostasis. Excess C, released by zooplankton results in two biochemical challenges: (1) to sequester the limiting element and (2) to either store or dispose of the element in surplus.Zooplankton must resort to various physiological solutions to cope with these challenges. As a first option, zooplankton can reduce their C assimilation efficiency but maintain their P assimilation efficiency. Alternatively, after assimilation, excess C may be stored in C-rich compounds. Finally, assimilated excess C could also be disposed of through respiration or extracellular release. Excess C released by zooplankton reduces C transfer efficiency and sequestration in aquatic ecosystems.In aquatic ecosystems, C sequestration largely depends on the balance between uptake and demand for key nutrient elements. These feedback mechanisms have arisen only because organisms must obey stoichiometric rules at the cell and body levels, which greatly constrain the range of element values in ecosystems. Thus, the fate of C in ecosystems is determined by the absolute and relative demands for N and P of each organism. Limiting elements are utilized for growth and transferred in food chains with high efficiency, while non-limiting elements must be disposed of. Therefore, low C:P phytoplankton communities subject to high turnover rates and high productivity are selectively channeled into zooplankton. When zooplankton face high C:P foods, excess C is returned to the environment. Hence, nutrient-deficient phytoplankton constitute poor food, influencing the entire food web and adversely affecting secondary production at all levels.Excess C processed by zooplankton has far-reaching implications for ecosystem food-web functioning and C sequestration. Studies of the fate of excess C in zooplankton would increase the understanding of energy flow and material cycling in aquatic ecosystems. This paper reviews the reasons for P limitation and excess C in zooplankton, principal routes for the disposal of excess C, and the ecological effects of this. In addition, the paper aims to provide insight and a theoretical foundation for related studies in China.  相似文献   

6.
Dag O. Hessen 《Hydrobiologia》1992,229(1):115-123
Allochthonous matter was the main source of carbon for pelagic bacteria in a humic lake, accounting for almost 90% of the carbon required to support observed bacterial growth. The estimated contribution from zooplankton excretion was of the same magnitude as direct phytoplankton release, both accounting for 5–7% of bacterial demands for dissolved carbon. Bacteria were an important source of carbon both for heterotrophic phytoplankton and for filter feeding zooplankton species, further stressing the role of humus DOC in overall lake productivity. The high contribution of allochthonous DOC implies a stoichiometry of dissolved nutrients with a surplus of C relative to P. The high P cell quota of bacteria suggest that under such conditions they are P-limited and act like net consumers of P. Excess C will be disposed of, and bacterial respiration rate will increase following a transition from carbon-limited bacterial growth towards mineral-nutrient-limited growth. Thus the high community respiration and frequent CO2-supersaturation in humic lakes may be caused not only by the absolute supply of organic C, but also by the stoichiometry of the dissolved nutrient pool.  相似文献   

7.
1. Sloppy and inefficient feeding by zooplankton is generally thought to make a major contribution to the regeneration of the dissolved organic carbon (DOC) pool in aquatic environments. In this study, we tested experimentally the regeneration of DOC by a freshwater zooplankter feeding on two species of phytoplankton at different food concentrations and C : P ratios. We separated the DOC production because of inefficient feeding (pre‐ingestive regeneration) and zooplankton excretion and faeces release (postdigestive regeneration). 2. Within a brief incubation period (10 min), DOC production in the presence of Daphnia was not significantly different from that in the control treatment without grazers. During a longer incubation period (4 h), the amounts of radiocarbon retained in the algal cells per se were constant or were not different from those in the control treatments. These experimental results strongly suggest that inefficient feeding did not contribute significantly to DOC production in the grazer–prey system. 3. During the 4‐h incubation, calculations of the DOC per ingestion rate (i.e. DOC produced by Daphnia alone) showed that food concentration and algal species did not affect the relative DOC production, but there was considerable difference at different algal C : P ratios and grazer densities. We found that direct excretion of DOC by Daphnia occurred rapidly following food digestion and accounted for >65% of the total DOC production. Maximum DOC leakage from Daphnia faeces contributed less to DOC production than the grazer excretion, except under P‐limited conditions. 4. This study highlights the dominant role of postingestive process, especially the direct excretion by zooplankton, in DOC production in a grazer–prey system.  相似文献   

8.
浮游动物化学计量学稳态性特征研究进展   总被引:5,自引:1,他引:4  
苏强 《生态学报》2012,32(22):7213-7219
稳态性是有机体的基本属性,也是生态化学计量学理论成立的前提和基础。一般来讲,浮游植物的元素组成变化较大,而浮游动物具有明显的稳态性特征。浮游动物稳态性特征的研究不仅有助于了解水生生态系统的能量流动和物质循环,同时也对研究营养元素如何调节生物生长、繁殖和代谢起到促进作用。在综述生态化学计量学研究的基础上,主要介绍了稳态性的概念和浮游动物稳态性特征的基本框架及变化规律,以期为促进国内相关研究工作的开展提供参考。  相似文献   

9.
Little is known about the stoichiometry of nutrient cycling by detritivores. Therefore, we explored stoichiometric relationships in an omnivorous/detritivorous fish (gizzard shad, Dorosoma cepedianum) in three lakes that differed in productivity. Gizzard shad can feed on plankton and sediment detritus, but in all three lakes adult gizzard shad derived >98% of carbon (C) and phosphorus (P), and >90% of nitrogen (N) from sediment detritus, and the remainder from zooplankton.
Gizzard shad selectively consumed detritus with higher C, N and P concentrations than ambient lake sediments. Selective detritivory (i.e. the nutrient content of consumed detritus divided by the nutrient content of ambient detritus) was most pronounced in the lake with the lowest detrital nutrient concentrations. N and P cycling rates per fish were also consistently higher in this lake, in agreement with the prediction of stoichiometry theory that excretion rates should increase with food nutrient content. Among-lake differences in nutrient cycling rates were unrelated to inter-lake variation in fish body nutrient contents, which was minimal. The N:P ratio excreted was near Redfield (∼14:1) in all three lakes.
Stoichiometric analyses showed that the C:N and C:P ratios of sediment detritus were much higher (∼2.8×) than ratios of gizzard shad bodies, revealing substantial N and P imbalances between consumers and their food source. Gizzard shad alleviate N imbalance by selectively feeding on high N detritus (low C:N, high N:P), and apparently alleviate P imbalance by excreting nutrients at a higher N:P than that of their food or their bodies. Thus, this detritivore apparently regulates nutrient acquisition and allocation via both pre-absorption processes (selective feeding) and post-absorptive processes (differential N and P excretion).  相似文献   

10.
The stoichiometry of N and P in the pelagic zone of Castle Lake, California   总被引:2,自引:0,他引:2  
We measured the concentrations, as well as lake-wide amounts,of nitrogen (N) and phosphorus (P) in dissolved, seston andzooplankton pools throughout the water column of Castle Lake,California, during summer, 1991. This allowed us to determinethe stoichiometric ratios of important elements in each pool(C:N, C:P, N:P) as well as for the entire lake. Dissolved andseston pools were the predominant storage compartments for bothN and P; zooplankton never contained >5% of N or 10% of Plake wide. However, by late summer, the concentrations of Pin seston and in zooplankton were similar in the upper portionsof the water column, suggesting that changes in food web structurethat alter zooplankton biomass and community composition (andhence elemental storage in the zooplankton) may produce significantshifts in nutrient storage among pelagic pools. Lake-wide levelsof dissolved N were largely constant over the study period;however, lake-wide dissolved P increased. These dynamics suggestedthat the majority of nutrients stored in dissolved pools wereunavailable for phytoplankton growth. N:P and C:P ratios indicatedthat Castle Lake phytoplankton became severely deficient inP during the course of our observations. These ratios also greatlyexceeded recently reported threshold values for elemental constraintson growth and reproduction for several species of zooplankton.The ratio of N to P in the zooplankton pool was relatively constantand consistently lower than that in the sestion. As a result,the predicted N:P ratio of zooplankton-regenerated nutrientsexceeded the N:P ratio of the seston, implying that zooplanktonnutrient regeneration further skewed N and P supply ratios,and potentially enhanced P limitation of phytoplankton in CastleLake. 1Present address: Department of Biology, Box 19498, Universityof Texas at Arlington, Arlington, TX 76019, USA  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号