首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 296 毫秒
1.
2.
3.
4.
5.
6.
Two cDNA clones, specifically expressed in Nicotiana sylvestris anthers during uninucleate microspore development, were isolated using a subtractive hybridization approach. Sequence analysis showed that one of them, NSCHSLK, displayed a high level of similarity to several anther-specific chalcone synthase-like (CHSLK) proteins and an ORF from chromosome 1 of Arabidopsis thaliana. A lower, but significant, similarity to chalcone synthases and closely related enzymes (CHSRE) was also detected. The structure of the nschslk gene was found to be typical of the chalcone (chs) / stilbene (sts) synthase family. Expression of NSCHSLK mRNA was confined to microspores and tapetal cells. UV-irradiation or infection with Phytophthora parasitica var. nicotianae of transgenic Nicotiana benthamiana plants carrying a chimeric nschslk/GUS gene indicated that the nschslk promoter exhibits the same anther-specific, developmentally regulated expression pattern. Comparison of CHSRE and CHSLK polypeptide sequences revealed some important similarities and differences between the two groups. The data presented in this study, suggest that the anther-specific chslk genes represent a separate sub-family of plant polyketide synthases related to chs/sts in terms of gene structure, polypeptide sequence and the possible catalytic mechanism, but differing in substrate/product specificity. The putative role of CHSLK enzymes in anther development and particularly in exine synthesis is discussed.  相似文献   

7.
8.
9.
10.
A tapetum-specific gene, RTS, has been isolated by differential screening of a cDNA library from rice panicles. RTS is a unique gene in the rice genome. RNA blot analysis and in situ hybridization indicates that this gene is predominantly expressed in the anther’s tapetum during meiosis and disappears before anthesis. RTS has no introns and encodes a putative polypeptide of 94 amino acids with a hydrophobic N-terminal region. The nucleotide and deduced amino acid sequence of the gene do not show significant homology to any known sequences. However, a sequence in the promoter region, GAATTTGTTA, differs only by one or two nucleotides from one of the conserved motifs in the promoter region of two pollen-specific genes of tomato. Several other sequence motifs found in other anther-specific promoters were also identified in the promoter of the RTS gene. Transgenic and antisense RNA approaches revealed that RTS gene is required for male fertility in rice. The promoter region of RTS, when fused to the Bacillus amyloliquefaciens ribonuclease gene, barnase, or the antisense of the RTS gene, is able to drive tissue-specific expression of both genes in rice, creeping bentgrass (Agrostis stolonifera L.) and Arabidopsis, conferring male sterility to the transgenic plants. Light and near-infrared confocal microscopy of cross-sections through developing flowers of male-sterile transgenics shows that tissue-specific expression of barnase or the antisense RTS genes interrupts tapetal development, resulting in deformed non-viable pollen. These results demonstrate a critical role of the RTS gene in pollen development in rice and the versatile application of the RTS gene promoter in directing anther-specific gene expression in both monocotyledonous and dicotyledonous plants, pointing to a potential for exploiting this gene and its promoter for engineering male sterility for hybrid production of various plant species. Data deposition: The sequence reported in this paper have been deposited in the GeneBank database (Accession No. U12171)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号