首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
Single-read sequence analysis of the termini of eight randomly picked clones ofAshbya gossypii genomic DNA revealed seven sequences with homology toSaccharomyces cerevisiae genes (15% to 69% on the amino acid level). One of these sequences appeared to code for the carboxy-terminus of threonine synthase, the product of theS. cerevisiae THR4 gene (52.4% identity over 82 amino acids). We cloned and sequenced the complete putativeAgTHR4 gene ofA. gossypii. It comprises 512 codons, two less than theS. cerevisiae THR4 gene. Overall identity at the amino acid sequence level is 67.4%. A continuous stretch of 32 amino acids displaying complete identity between these two fungal threonine synthases presumably contains the pyridoxal phosphate attachment site. Disruption of theA. gossypii gene led to threonine auxotrophy, which could be complemented by transformation with replicating plasmids carrying theAgTHR4 gene and variousS. cerevisiae ARS elements. Using these plasmids only very weak complementation of aS. cerevisiae thr4 mutation was observed. Investigation of sequences adjacent to theAgTHR4 gene identified three additional ORFs. Surprisingly, the order and orientation of these four ORFs is conserved inA. gossypii andS. cerevisiae.  相似文献   

2.
To explore the potential of Ashbya gossypii as a host for the expression of recombinant proteins and to assess whether protein secretion would be more similar to the closely related Saccharomyces cerevisiae or to other filamentous fungi, endoglucanase I (EGI) and cellobiohydrolase I (CBHI) from the fungus Trichoderma reesei were successfully expressed in A. gossypii from plasmids containing the two micron sequences from S. cerevisiae, under the S. cerevisiae PGK1 promoter. The native signal sequences of EGI and CBHI were able to direct the secretion of EGI and CBHI into the culture medium in A. gossypii. Although CBHI activity was not detected using 4-methylumbelliferyl-β-d-lactoside as substrate, the protein was detected by Western blot using monoclonal antibodies. EGI activity was detectable, the specific activity being comparable to that produced by a similar EGI producing S. cerevisiae construct. More EGI was secreted than CBHI, or more active protein was produced. Partial characterization of CBHI and EGI expressed in A. gossypii revealed overglycosylation when compared with the native T. reesei proteins, but the glycosylation was less extensive than on cellulases expressed in S. cerevisiae.  相似文献   

3.
Riboflavin production in the filamentous fungus Ashbya gossypii is limited by glycine, an early precursor required for purine synthesis. We report an improvement of riboflavin production in this fungus by overexpression of the glycine biosynthetic enzyme threonine aldolase. The GLY1 gene encoding the threonine aldolase of A. gossypii was isolated by heterologous complementation of the glycine-auxotrophic Saccharomyces cerevisiae strain YM13 with a genomic library from A. gossypii. The deduced amino acid sequence of GLY1 showed 88% similarity to threonine aldolase from S. cerevisiae. In the presence of the GLY1 gene, 25 mU of threonine aldolase specific activity mg−1 was detectable in crude extracts of S. cerevisiae YM13. Disruption of GLY1 led to a complete loss of threonine aldolase activity in A. gossypii crude extracts, but growth of and riboflavin production by the knockout mutant were not affected. This indicated a minor role of the enzyme in glycine biosynthesis of A. gossypii. However, overexpression of GLY1 under the control of the constitutive TEF promoter and terminator led to a 10-fold increase of threonine aldolase specific activity in crude extracts along with a 9-fold increase of riboflavin production when the medium was supplemented with threonine. This strong enhancement, which could not be achieved by supplementation with glycine alone, was attributed to an almost quantitative uptake of threonine and its intracellular conversion into glycine. This became evident by a subsequent partial efflux of the glycine formed.  相似文献   

4.
InSaccharomyces cerevisiae the only known role of theCBP2 gene is the excision of the fifth intron of the mitochondrialcyt b gene (bI5). We have cloned theCBP2 gene fromSaccharomyces douglasii (a close relative ofS. cerevisiae). A comparison of theS. douglasii andS. cerevisiae sequences shows that there are 14% nucleotide substitutions in the coding region, with transitions being three times more frequent than transversions. At the protein level sequence identity is 87%. We have demonstrated that theS. douglasii CBP2 gene is essential for respiratory growth in the presence of a wild-typeS. douglasii mitochondrial genome, but not in the presence of an intronlessS. cerevisiae mitochondrial genome. Also theS. douglasii andS. cerevisiae CBP2 genes are completely interchangeable, even though the intron bI5 is absent from theS. douglasii mitochondrial genome.  相似文献   

5.
Ashbya gossypii carries only a single gene (TEF) coding for the abundant translation elongation factor 1α. Cloning and sequencing of this gene and deletion analysis of the promoter region revealed an extremely high degree of similarity with the well studied TEF genes of the yeast Saccharomyces cerevisiae including promoter upstream activation sequence (UAS) elements. The open reading frames in both species are 458 codons long and show 88.6% identity at the DNA level and 93.7% identity at the protein level. A short DNA segment in the promoter, between nucleotides -268 and -213 upstream of the ATG start codon, is essential for high-level expression of the A. gossypii TEF gene. It carries two sequences, GCCCATACAT and ATCCATACAT, with high homology to the UASrpg sequence of S. cerevisiae, which is an essential promoter element in genes coding for highly expressed components of the translational apparatus. UASrpg sequences are binding sites for the S. cerevisiae protein TUF, also called RAP1 or GRF1. In gel retardation with A. gossypii protein extracts we demonstrated specific protein binding to the short TEF promoter segment carrying the UASrpg homologous sequences.  相似文献   

6.
InSaccharomyces cerevisiae the only known role of theCBP2 gene is the excision of the fifth intron of the mitochondrialcyt b gene (bI5). We have cloned theCBP2 gene fromSaccharomyces douglasii (a close relative ofS. cerevisiae). A comparison of theS. douglasii andS. cerevisiae sequences shows that there are 14% nucleotide substitutions in the coding region, with transitions being three times more frequent than transversions. At the protein level sequence identity is 87%. We have demonstrated that theS. douglasii CBP2 gene is essential for respiratory growth in the presence of a wild-typeS. douglasii mitochondrial genome, but not in the presence of an intronlessS. cerevisiae mitochondrial genome. Also theS. douglasii andS. cerevisiae CBP2 genes are completely interchangeable, even though the intron bI5 is absent from theS. douglasii mitochondrial genome.  相似文献   

7.
PCR-based gene targeting with heterologous markers is an efficient method to delete genes, generate gene fusions, and modulate gene expression. For the yeasts Saccharomyces cerevisiae and Schizosaccharomyces pombe, several plasmid collections are available covering a wide range of tags and markers. For several reasons, many of these cassettes cannot be used in the filamentous ascomycete Ashbya gossypii. This article describes the construction of 93 heterologous modules for C- and N-terminal tagging and promoter replacements in A. gossypii. The performance of 12 different fluorescent tags was evaluated by monitoring their brightness, detectability, and photostability when fused to the myosin light-chain protein Mlc2. Furthermore, the thiamine-repressible S. cerevisiae THI13 promoter was established to regulate gene expression in A. gossypii. This collection will help accelerate analysis of gene function in A. gossypii and in other ascomycetes where S. cerevisiae promoter elements are functional.  相似文献   

8.
Two plasmids containing an autonomously replicating sequence from Saccharomyces cerevisiae were constructed. Using these vectors, the AGX1 gene encoding alanine:glyoxylate aminotransferase (AGT) from S. cerevisiae, which converts glyoxylate into glycine but is not present in Ashbya gossypii, was expressed in A. gossypii. Geneticin-resistant transformants with the plasmid having the kanamycin resistance gene under the control of the translation elongation factor 1 α (TEF) promoter and terminator from A. gossypii were obtained with a transformation efficiency of approximately 10–20 transformants per microgram of plasmid DNA. The specific AGT activities of A. gossypii pYPKTPAT carrying the AGX1 gene in glucose- and rapeseed-oil-containing media were 40 and 160 mU mg−1 of wet mycelial weight, respectively. The riboflavin concentrations of A. gossypii pYPKTPAT carrying AGX1 gene in glucose- and rapeseed-oil-containing media were 20 and 150 mg l−1, respectively. In the presence of 50 mM glyoxylate, the riboflavin concentration and the specific riboflavin concentration of A. gossypii pYPKTPAT were 2- and 1.3-fold those of A. gossypii pYPKT without the AGX1 gene.  相似文献   

9.
The development of a xylose-fermentingSaccharomyces cerevisiae yeast would be of great benefit to the bioethanol industry. The conversion of xylose to ethanol involves a cascade of enzymatic reactions and processes. Xylose (aldose) reductases catalyse the conversion of xylose to xylitol. The aim of this study was to clone, characterise and express a cDNA copy of a novel aldose reductase (NCAR-X) from the filamentous fungusNeurospora crassa inS. cerevisiae. NCAR-X harbours an open reading frame (ORF) of 900 nucleotides. This ORF encodes a protein (NCAR-X, assigned NCBI protein accession ID: XP_956921) consisting of 300 amino acids, with a predicted molecular weight of 34 kDa. TheNCAR-X-encoded aldose reductase showed significant homology to the xylose reductases ofCandida tenuis andPichia stipitis. WhenNCAR-X was expressed under the control of phosphoglycerate kinase I gene (PGK1) regulatory sequences inS. cerevisiae, its expression resulted in the production of biologically active xylose reductase. Small-scale oxygen-limited xylose fermentation with theNCAR-X containingS. cerevisiae strains resulted in the production of less xylitol and at least 15% more ethanol than the strains transformed with theP. stipitis xylose reductase gene (PsXYL1). TheNCAR-X-encoded enzyme produced byS. cerevisiae was NADPH-dependent and no activity was observed in the presence of NADH. The co-expression of theNCAR-X andPsXYL1 gene constructs inS. cerevisiae constituted an important part of an extensive research program aimed at the development of xylolytic yeast strains capable of producing ethanol from plant biomass.  相似文献   

10.
Using a two-hybrid system, we cloned a human cDNA encoding a ubiquitin-conjugating enzyme (UBC), hUBC9, which interacts specifically with all three subunits of theSaccharomyces cerevisiae centromere DNA-binding core complex, CBF3. The hUBC9 protein shows highest homology to a new member of the UBC family: 54% identity toS. cerevisiae Ubc9p and 64% identity toSchizosaccharomyces pombe (Sp) hus5. Overexpression of hUBC9 partially suppresses aS. cerevisiae ubc9 temperature-sensitive mutation, indicating that theUBC9 gene family is also functionally conserved. Like hUBC9, Sphus5 also interacts specifically with all three subunits of the CBF3 complex. However,S. cerevisiae Ubc9p interacts only with the Cbf3p subunit (64 kDa) of the CBF3 complex, indicating the specificity of the interaction betweenS. cerevisiae Ubc9 and Cbf3p proteins. The function of Ubc9p in the G2/M phase ofS. cerevisiae could be related to regulation of centromere proteins in chromosome segregation in mitosis. Therefore, the ubiquitination process and centromere function may be linked to chromosome segregation. We also provide further in vivo evidence that Mck1p, a protein kinase, is specifically associated with the centromere proteins Cbf2p and Cbf5p, which were previously shown to interact in vitro.  相似文献   

11.

Background

Ashbya gossypii is an industrially relevant microorganism traditionally used for riboflavin production. Despite the high gene homology and gene order conservation comparatively with Saccharomyces cerevisiae, it presents a lower level of genomic complexity. Its type of growth, placing it among filamentous fungi, questions how close it really is from the budding yeast, namely in terms of metabolism, therefore raising the need for an extensive and thorough study of its entire metabolism. This work reports the first manual enzymatic genome-wide re-annotation of A. gossypii as well as the first annotation of membrane transport proteins.

Results

After applying a developed enzymatic re-annotation pipeline, 847 genes were assigned with metabolic functions. Comparatively to KEGG’s annotation, these data corrected the function for 14% of the common genes and increased the information for 52 genes, either completing existing partial EC numbers or adding new ones. Furthermore, 22 unreported enzymatic functions were found, corresponding to a significant increase in the knowledge of the metabolism of this organism. The information retrieved from the metabolic re-annotation and transport annotation was used for a comprehensive analysis of A. gossypii’s metabolism in comparison to the one of S. cerevisiae (post-WGD – whole genome duplication) and Kluyveromyces lactis (pre-WGD), suggesting some relevant differences in several parts of their metabolism, with the majority being found for the metabolism of purines, pyrimidines, nitrogen and lipids. A considerable number of enzymes were found exclusively in A. gossypii comparatively with K. lactis (90) and S. cerevisiae (13). In a similar way, 176 and 123 enzymatic functions were absent on A. gossypii comparatively to K. lactis and S. cerevisiae, respectively, confirming some of the well-known phenotypes of this organism.

Conclusions

This high quality metabolic re-annotation, together with the first membrane transporters annotation and the metabolic comparative analysis, represents a new important tool for the study and better understanding of A. gossypii’s metabolism.

Electronic supplementary material

The online version of this article (doi:10.1186/1471-2164-15-810) contains supplementary material, which is available to authorized users.  相似文献   

12.
TheSaccharomyces cerevisiae geneABC1 is required for the correct functioning of thebc 1 complex of the mitochondrial respiratory chain. By functional complementation of aS. cerevisiae abc1 ? mutant, we have cloned aSchizosaccharomyces pombe cDNA, whose predicted product is 50% identical to the Abc1 protein. Significant homology is also observed with bacterial, nematode, and even human amino acid sequences of unknown function, suggesting that the Abc1 protein is conserved through evolution. The cloned cDNA corresponds to a singleS. pombe geneabc1Sp, located on chromosome II, expression of which is not regulated by the carbon source. Inactivation of theabc1Sp gene by homologous gene replacement causes a respiratory deficiency which is efficiently rescued by the expression of theS. cerevisiae ABC1 gene. The inactivated strain shows a drastic decrease in thebc 1 complex activity, a decrease in cytochromeaa3 and a slow growth phenotype. To our knowledge, this is the first example of the inactivation of a respiratory gene inS. pombe. Our results highlight the fact thatS. pombe growth is highly dependent upon respiration, and thatS. pombe could represent a valuable model for studying nucleo-mitochondrial interactions in higher eukaryotes.  相似文献   

13.
The repertoire of hydrolytic enzymes natively secreted by the filamentous fungus Ashbya (Eremothecium) gossypii has been poorly explored. Here, an invertase secreted by this flavinogenic fungus was for the first time molecularly and functionally characterized. Invertase activity was detected in A. gossypii culture supernatants and cell-associated fractions. Extracellular invertase migrated in a native polyacrylamide gel as diffuse protein bands, indicating the occurrence of at least two invertase isoforms. Hydrolytic activity toward sucrose was approximately 10 times higher than toward raffinose. Inulin and levan were not hydrolyzed. Production of invertase by A. gossypii was repressed by the presence of glucose in the culture medium. The A. gossypii invertase was demonstrated to be encoded by the AFR529W (AgSUC2) gene, which is highly homologous to the Saccharomyces cerevisiae SUC2 (ScSUC2) gene. Agsuc2 null mutants were unable to hydrolyze sucrose, proving that invertase is encoded by a single gene in A. gossypii. This mutation was functionally complemented by the ScSUC2 and AgSUC2 genes, when expressed from a 2-μm-plasmid. The signal sequences of both AgSuc2p and ScSuc2p were able to direct the secretion of invertase into the culture medium in A. gossypii.  相似文献   

14.
15.
16.
17.
Plasmids without an origin of replication, but bearing theURA3 gene ofSaccharomyces cerevisiae as a selective marker for transformation, are shown to replicate autonomously inHansenula polymorpha, indicating that parts of theS. cerevisiae URA3 gene can fulfil an autonomous replication and stabilization function inH. polymorpha. Such plasmids, replicated in low copy number in monomeric conformation, could be rescued inE. coli, and showed a low mitotic stability under selective and non-selective conditions. Selective propagation of such transformants, however, led to the integration of plasmid sequences into theH. polymorpha genome. The integration event usually occurred in high copy number (approx. 30–50) at a single non-homologous site of the genome. The plasmid sequences were found to be present in tandem array and stable under non-selective conditions. It contrast, the use of homologousURA3 gene under similar conditions led to low-copy-number transformants.  相似文献   

18.
19.
Using a two-hybrid system, we cloned a human cDNA encoding a ubiquitin-conjugating enzyme (UBC), hUBC9, which interacts specifically with all three subunits of theSaccharomyces cerevisiae centromere DNA-binding core complex, CBF3. The hUBC9 protein shows highest homology to a new member of the UBC family: 54% identity toS. cerevisiae Ubc9p and 64% identity toSchizosaccharomyces pombe (Sp) hus5. Overexpression of hUBC9 partially suppresses aS. cerevisiae ubc9 temperature-sensitive mutation, indicating that theUBC9 gene family is also functionally conserved. Like hUBC9, Sphus5 also interacts specifically with all three subunits of the CBF3 complex. However,S. cerevisiae Ubc9p interacts only with the Cbf3p subunit (64 kDa) of the CBF3 complex, indicating the specificity of the interaction betweenS. cerevisiae Ubc9 and Cbf3p proteins. The function of Ubc9p in the G2/M phase ofS. cerevisiae could be related to regulation of centromere proteins in chromosome segregation in mitosis. Therefore, the ubiquitination process and centromere function may be linked to chromosome segregation. We also provide further in vivo evidence that Mck1p, a protein kinase, is specifically associated with the centromere proteins Cbf2p and Cbf5p, which were previously shown to interact in vitro.  相似文献   

20.
Ashbya gossypii carries only a single gene (TEF) coding for the abundant translation elongation factor 1. Cloning and sequencing of this gene and deletion analysis of the promoter region revealed an extremely high degree of similarity with the well studied TEF genes of the yeast Saccharomyces cerevisiae including promoter upstream activation sequence (UAS) elements. The open reading frames in both species are 458 codons long and show 88.6% identity at the DNA level and 93.7% identity at the protein level. A short DNA segment in the promoter, between nucleotides -268 and -213 upstream of the ATG start codon, is essential for high-level expression of the A. gossypii TEF gene. It carries two sequences, GCCCATACAT and ATCCATACAT, with high homology to the UASrpg sequence of S. cerevisiae, which is an essential promoter element in genes coding for highly expressed components of the translational apparatus. UASrpg sequences are binding sites for the S. cerevisiae protein TUF, also called RAP1 or GRF1. In gel retardation with A. gossypii protein extracts we demonstrated specific protein binding to the short TEF promoter segment carrying the UASrpg homologous sequences.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号