首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The generation of a fermentable hydrolysate from arabinoxylan is an important prerequisite for utilization of wheat hemicellulose in production of ethanol or other value added products. This study examined the individual and combined efficiencies of four selected, commercial, multicomponent enzyme preparations Celluclast 1.5 L (from Trichoderma reesei), Finizym (from Aspergillus niger), Ultraflo L (from Humicola insolens), and Viscozyme L (from Aspergillus aculeatus) in catalyzing arabinose and xylose release from water-soluble wheat arabinoxylan in an industrial fermentation residue (still bottoms) in lab scale experiments. Different reaction conditions, i.e. enzyme dosage, reaction time, pH, and temperature, were evaluated in response surface and ternary mixture designs. Ultraflo L treatment gave optimal arabinose release: treatment (6 h, 60 °C, pH 6) with this enzyme preparation liberated up to 46% by weight (wt.%) of the theoretically maximal arabinose yield from the substrate. Celluclast 1.5 L was superior to the other enzyme preparations in releasing xylose and catalyzed release of up to 25 wt.% of the theoretical maximum xylose yield (6 h, 60 °C, pH 4). Prolonged treatment for 24 h with a 50:50 mixture of Celluclast 1.5 L and Ultraflo L at 50 °C, pH 5 exhibited a synergistic effect in xylose release and 62 wt.% of the theoretically maximal xylose yield was achieved. Addition of pure β-xylosidase from T. reesei to the Ultraflo L preparation released the same amounts of xylose from the substrate as the 50:50 mixture of Celluclast 1.5 L and Ultraflo L. The data thus signified that the synergistic effect in xylose release between Celluclast 1.5 L and Ultraflo L is the result of a three-step interaction mechanism involving α-l-arabinofuranosidase and different xylan degrading enzyme activities in the two enzyme preparations.  相似文献   

2.
Hydrolysis of arabinoxylan is an important prerequisite for improved utilization of wheat hemicellulose in the ethanol fermentation industry. This study investigates the individual and combined efficiencies of three commercial, cellulytic and hemicellulytic enzyme preparations, Celluclast 1.5 L, Ultraflo L, and Viscozyme L, in catalyzing the liberation of arabinose and xylose from water-soluble wheat arabinoxylan. Ultraflo L was the best enzyme preparation for releasing arabinose, liberating 53 wt% of the theoretical maximum after 48 h of reaction (10 wt% enzyme/substrate ratio, 40 degrees C, pH 6). Celluclast 1.5 L was superior to the other enzyme preparations in releasing xylose, liberating 26 wt% of the theoretical maximum after 48 h of reaction (10 wt% enzyme/substrate ratio, 50 degrees C, pH 5). The 50:50 mixtures of the enzyme preparations showed no synergistic cooperation in arabinose release, but a synergistic interaction in xylose release was found between Ultraflo L and Celluclast 1.5 L. On the basis of high-performance anion exchange chromatography (HPAEC) analysis of the hydrolysates after enzymatic reaction, we propose that the observed synergism between Celluclast 1.5 L and Ultraflo L is the result of positive interaction between alpha-L-arabinofuranosidase and endo-1,4-beta-xylanase activities present in Ultraflo L that released arabinose, xylobiose and xylotriose, and beta-xylosidase activities in Celluclast 1.5 L, capable of catalyzing the hydrolysis of xylobiose and xylotriose to xylose.  相似文献   

3.
This study examined the cellulytic effects on steam-pretreated barley straw of cellulose-degrading enzyme systems from the five thermophilic fungi Chaetomium thermophilum, Thielavia terrestris, Thermoascus aurantiacus, Corynascus thermophilus, and Myceliophthora thermophila and from the mesophile Penicillum funiculosum. The catalytic glucose release was compared after treatments with each of the crude enzyme systems when added to a benchmark blend of a commercial cellulase product, Celluclast, derived from Trichoderma reesei and a beta-glucosidase, Novozym 188, from Aspergillus niger. The enzymatic treatments were evaluated in an experimental design template comprising a span of pH (3.5-6.5) and temperature (35-65 degrees C) reaction combinations. The addition to Celluclast + Novozym 188 of low dosages of the crude enzyme systems, corresponding to 10 wt % of the total enzyme protein load, increased the catalytic glucose yields significantly as compared to those obtained with the benchmark Celluclast + Novozyme 188 blend. A comparison of glucose yields obtained on steam-pretreated barley straw and microcrystalline cellulose, Avicel, indicated that the yield improvements were mainly due to the presence of highly active endoglucanase activity/activities in the experimental enzyme preparations. The data demonstrated the feasibility of boosting the widely studied T. reeseicellulase enzyme system with additional enzymatic activity to achieve faster lignocellulose degradation. We conclude that this supplementation strategy appears feasible as a first step in identifying truly promising fungal enzyme sources for fast development of improved, commercially viable, enzyme preparations for lignocellulose degradation.  相似文献   

4.
This study examined enzyme-catalyzed viscosity reduction and evaluated the effects of substrate dry matter concentration on enzymatic degradation of arabinoxylan in a fermentation residue, "vinasse", resulting from industrial ethanol manufacture on wheat. Enzymatic catalysis was accomplished with a 50:50 mixture of an enzyme preparation from Humicola insolens, Ultraflo L, and a cellulolytic enzyme preparation from Trichoderma reesei, Celluclast 1.5 L. This enzyme mixture was previously shown to exhibit a synergistic action on arabinoxylan degradation. The viscosity of vinasse decreased with increased enzyme dosage and treatment time at pH 5, 50 degrees C, 5 wt % vinasse dry matter. After 24 h of enzymatic treatment, 76-84%, 75-80%, and 43-47%, respectively, of the theoretically maximal arabinose, xylose, and glucose releases were achieved, indicating that the viscosity decrease was a result of enzyme-catalyzed hydrolysis of arabinoxylan, beta-glucan, and cellulose. In designed response surface experiments, the optimal enzyme reaction conditions with respect to pH and temperature of the vinasse, the vinasse supernatant (mainly soluble material), and the vinasse sediment (mainly insoluble substances) varied from pH 5.2-6.4 and 41-49 degrees C for arabinose release and from pH 4.9-5.3 and 42-46 degrees C for xylose release. Even though only limited hydrolysis of the arabinoxylan in the vinasse sediment fraction was obtained, the results indicated that the same enzyme activities acted on the arabinoxylan in the different vinasse fractions irrespective of the state of solubility of the substrate material. The levels of liberated arabinose and xylose increased with increased dry matter concentration during enzymatic hydrolysis in the vinasse and the vinasse supernatant, but at the same time, increased substrate dry matter concentrations gave corresponding linear decreases in the hydrolytic efficiency as evaluated from levels of monosaccharide release per weight unit dry matter. The study thus documents that enzymatic arabinoxylan hydrolysis of the vinasse significantly decreases the vinasse viscosity and that a compromise in the dry matter must be found if enzymatic efficiency must be balanced with monosaccharide yields.  相似文献   

5.
In this study, the possibility of keratin extraction from wool and feather by an enzymatic treatment along with a reducing agent has been investigated. The effects of different parameters, that is, enzyme loading, type of substrate and surfactant, hydrolysis time, and reducing agent concentration, have been examined in order to optimize the enzymatic hydrolysis. The optimal condition for maximum keratin extraction was attained by making use of 1 g/L sodium dodecyl sulfate (an anionic surfactant) and 2.6% (v/v) protease (Savinase), along with 8.6 and 6.4 g/L sodium hydrogen sulfite (a reducing agent) for wool and feathers, respectively, at liquor to fiber ratio of 25 mL/g for 4 hr. The obtained results indicated higher degradation of wool fiber in comparison with feathers, which might be due to the higher hydrophilic nature of the former. Sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) patterns revealed that the molecular weights of the extracted proteins from wool and feather were lower than those for the untreated fibers. Scanning electron micrographs showed fibers fibrillation and degradation upon enzymatic treatment. Besides, Fourier-transform infrared (FTIR) spectra indicated no evident changes in the chemical structure of the hydrolyzed fibers. However, wool and feather remainders were mostly composed of α-helix and β-sheets conformations, respectively.  相似文献   

6.
As a prerequisite to the study of the fine chemical structure of the branched region of pectin, an exo-β-(1,4)-galactanase was purified from a commercial preparation (Pectinex AR). Purification was carried out by precipitation with 70% saturated ammonium sulfate, preparative electrofocusing, anion-exchange chromatography and affinity chromatography on cross-linked alginate. Exogalactanase specific activity was 992 nkat mg-1 and the enzyme was devoid of β-(1,3)- or β-(1,6)-galactanase, arabinanase, β-d-galactosidase and -l-arabinofuranosidade activities. Residual exopolygalacturonase activity represented 2.9% of the galactanase activity. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis and isoelectric focusing showed two close bands with molecular weights of 120 000 and 90 000 and pHi of 3.8 and 4.1, respectively. The enzyme acted in an exo manner and its activity was optimum at pH 3.5 and 60°C. When incubated with galacto-oligosaccharides, new oligosaccharides with a higher degree of polymerization appeared, indicating the ability of the enzyme to transfer galactose residues.  相似文献   

7.
《Process Biochemistry》2007,42(6):1003-1009
Olive tree pruning biomass, pretreated by either liquid hot water or steam explosion under selected conditions, was used as a substrate for enzymatic hydrolysis. The pretreated material was further submitted to alkaline delignification, the objective being to improve hydrolysis yields as well as increasing cellulose content in the pretreated feedstock. The enzymatic hydrolysis of pretreated residues was performed using a commercial cellulase mixture supplemented with β-glucosidase, using a solid loading range from 2 to 30% (w/v). The influence of substrate concentration on the enzymatic hydrolysis yield and on glucose concentration was studied. Comparative results with and without a delignification step are presented. Enzymatic hydrolysis at high substrate concentration (≥20%) is possible, yielding a concentrated glucose solution (>50 g/L). Nevertheless, a cellulose fraction of the pretreated residue remains unaltered.  相似文献   

8.
A crude enzyme preparation, obtained by solid substrate fermentation (SSF) with a Gliocladium spp. and added at the 5% level to wilted or non-wilted alfalfa, improved the fermentation characteristics and stability of alfalfa silages as effectively as commercial preparations, Novo-Nordisk Celluclast 1.5 L and Viscozyme 120 L, applied at the 0.025% level. The effective dose of the crude enzyme costs about one-fourth of the cost of the commercial enzymes.  相似文献   

9.
In the present study Lenzites elegans, Schizophyllum commune, Ganoderma applanatum and Pycnoporus sanguineus (wood-degrading fungi) were assayed for their tannase producing potential in culture media containing plant residues or/and tannic acid as carbon source. Aspergillus niger was used as positive control for tannase production. We also carried out the isolation, purification and characterization of the enzyme from the fungi selected as the major productor. The highest fungal growth was observed in A. niger and L. elegans in the media containing tannic acid + glucose + plant residues (Fabiana densa). A. niger and L. elegans reached the highest extracellular tannase production in a medium containing tannic acid + F. densa and in a medium supplemented with glucose + tannic acid + F. densa. The produced enzyme by L. elegans was purified by DEAE-Sepharose. Km value was 5.5 mM and relative molecular mass was about 163,000. Tannase was stable at a pH range 3.0–6.0 and its optimum pH was 5.5. The enzyme showed an optimum temperature of 60°C and was stable between 40 and 60°C. This paper is the first communication of tannase production by wood-degrading fungi. Fermentation technology to produce tannase using plant residues and xylophagous fungi could be very important in order to take advantage of plant industrial waste.  相似文献   

10.
Summary Aspenwood, wheat straw, wheat chaff and alfalfa stems were treated under pressure with either steam or ammonia. The material was then water or methanol/water extracted. The extent of enzymatic hydrolysis of the cellulose portion of the treated substrates was compared using two different cellulases, a commercial preparation, Celluclast, and those from the fungus Trichoderma harzianum. Both steam and ammonia treatment enhanced the accessibility of the cellulose as measured by hydrolysis. Methanol extraction of steamed material generally reduced the access of the enzyme to the cellulose, whereas methanol extraction of ammonia-treated material increased accessibility. The optimum combinations of pretreatment and extraction method depended on the substrate and on the enzyme system; no treatment suitable for all situations could be selected.  相似文献   

11.
α-l-Rhamnosidase from Aspergillus terreus was covalently immobilized on the following ferromagnetic supports: polyethylene terephthalate (Dacron-hydrazide), polysiloxane/polyvinyl alcohol (POS/PVA), and chitosan. The powdered supports were magnetized by thermal coprecipitation method using ferric and ferrous chlorides, and the immobilization was carried out via glutaraldehyde. The activity of the Dacron-hydrazide (0.53 nkat/μg of protein) and POS/PVA (0.59 nkat/μg of protein) immobilized enzyme was significantly higher than that found for the chitosan derivative (0.06 nkat/μg of protein). The activity–pH and activity–temperature profiles for all immobilized enzymes did not show difference compared to the free enzyme, except the chitosan derivative that presented higher maximum temperature at 65 °C. The Dacron-hydrazide derivative thermal stability showed a similar behavior of the free enzyme in the temperature range of 40–70 °C. The POS/PVA and chitosan derivatives were stable up to 60 °C, but were completely inactivated at 70 °C. The activity of the preparations did not appreciably decrease after ten successive reuses. Apparent K m of α-l-rhamnosidase immobilized on magnetized Dacron-hydrazide (1.05 ± 0.22 mM), POS/PVA (0.57 ± 0.09 mM), and chitosan (1.78 ± 0.24 mM) were higher than that estimated for the soluble enzyme (0.30 ± 0.03 mM). The Dacron-hydrazide enzyme derivative showed better performance than the free enzyme to hydrolyze 0.3% narigin (91% and 73% after 1 h, respectively) and synthesize rhamnosides (0.116 and 0.014 mg narirutin after 1 h, respectively).  相似文献   

12.
Diacylglycerol acyltransferase 1 (DGAT1) catalyzes the acyl‐CoA‐dependent biosynthesis of triacylglycerol, the predominant component of seed oil. In some oil crops, including Brassica napus, the level of DGAT1 activity can have a substantial effect on triacylglycerol production. Structure–function insights into DGAT1, however, remain limited because of the lack of a three‐dimensional detailed structure for this membrane‐bound enzyme. In this study, the amino acid residues governing B. napus DGAT1 (BnaDGAT1) activity were investigated via directed evolution, targeted mutagenesis, in vitro enzymatic assay, topological analysis, and transient expression of cDNA encoding selected enzyme variants in Nicotiana benthamiana. Directed evolution revealed that numerous amino acid residues were associated with increased BnaDGAT1 activity, and 67% of these residues were conserved among plant DGAT1s. The identified amino acid residue substitution sites occur throughout the BnaDGAT1 polypeptide, with 89% of the substitutions located outside the putative substrate binding or active sites. In addition, cDNAs encoding variants I447F or L441P were transiently overexpressed in N. benthamiana leaves, resulting in 33.2 or 70.5% higher triacylglycerol content, respectively, compared with native BnaDGAT1. Overall, the results provide novel insights into amino acid residues underlying plant DGAT1 function and performance‐enhanced BnaDGAT1 variants for increasing vegetable oil production.  相似文献   

13.
Recycling of cellulases is one way of reducing the high cost of enzymes during the bioconversion process. The effects of surfactant addition on enzymatic hydrolysis and the potential recycling of cellulases were studied during the hydrolysis of steam exploded Lodgepole pine (SELP) and ethanol pretreated Lodgepole pine (EPLP). Three cellulase preparations (Celluclast, Spezyme CP, and MSUBC) were evaluated to determine their hydrolysis efficiencies over multiple rounds of recycling. The surfactant, Tween 80, significantly increased the yield from 63% to 86% during the hydrolysis of the SELP substrate. The addition of surfactant to the hydrolysis of the EPLP substrate increased the free enzymes in the supernatant from 71% of the initial protein to 96%. Based on the Langmuir adsorption constants, cellulases (Celluclast and Spezyme CP) from Trichoderma reesei showed a higher affinity (3.48 mL/mg and 3.17 mL/mg) for the EPLP substrate than did the Penicillium enzyme (0.62 mg/mg). The Trichoderma reesei enzyme was used in four successive rounds of enzyme recycling using surfactant addition and readsorption onto fresh substrates during the hydrolysis of EPLP. In contrast, the Penicillium-derived enzyme preparation (MSUBC) could only be recycled once. When the same recycling strategy was carried out using the SELP substrate, the hydrolysis yield declined during each enzyme recycling round. These results suggested that the higher lignin content of the SELP substrate, and the low affinity of cellulases for the SELP substrate limited enzyme recycling by readsorption onto fresh substrates.  相似文献   

14.
Summary Of twenty-two commercial fungal enzyme preparations used in fruit juice processing examined, Pectinex Ultra SP-L, was found to possess the highest activity of fructosyltransferase (44.8 units/ml). The enzyme preparation converted sucrose into a high fructooliogosaccharide syrup containing 42.3 % kestose, 17.2% nystose, 10.6% sucrose, 27.8% glucose, and 2.1% fructose. The efficiency was 69% based the amount of sucrose consumed.  相似文献   

15.

Objectives

To evaluate the potential of enzyme cocktails produced by five filamentous fungi to supplement the industrial cellulase cocktail, Celluclast 1.5L, in order to improve the efficiency of saccharification.

Results

The fungi were cultivated on wheat bran and the resulting supernatants were combined with Celluclast in enzymatic hydrolysis experiments to test their ability to hydrolyze wheat bran and five cellulose-rich substrates. The supernatant showing the best performance was that from an Aspergillus niger cellulase mutant. The addition of β-glucosidase only to the Celluclast cocktail was not as beneficial.

Conclusion

Supplementing commercial cocktails with enzymes from carefully selected fungi may result in significantly more efficient saccharification of lignocellulosic materials. Furthermore, such an approach could lead to the identification of novel enzyme activities crucial for saccharification.
  相似文献   

16.
A pilot plant for hydrothermal treatment of wheat straw was compared in reactor systems of two steps (first, 80°C; second, 190–205°C) and of three steps (first, 80°C; second, 170–180°C; third, 195°C). Fermentation (SSF) with Sacharomyces cerevisiae of the pretreated fibers and hydrolysate from the two-step system gave higher ethanol yield (64–75%) than that obtained from the three-step system (61–65%), due to higher enzymatic cellulose convertibility. At the optimal conditions (two steps, 195°C for 6 min), 69% of available C6-sugar could be fermented into ethanol with a high hemicellulose recovery (65%). The concentration of furfural obtained during the pretreatment process increased versus temperature from 50 mg/l at 190°C to 1,200 mg/l at 205°C as a result of xylose degradation. S. cerevisiae detoxified the hydrolysates by degradation of several toxic compounds such as 90–99% furfural and 80–100% phenolic aldehydes, which extended the lag phase to 5 h. Acetic acid concentration increased by 0.2–1 g/l during enzymatic hydrolysis and 0–3.4 g/l during fermentation due to hydrolysis of acetyl groups and minor xylose degradation. Formic acid concentration increased by 0.5–1.5 g/l probably due to degradation of furfural. Phenolic aldehydes were oxidized to the corresponding acids during fermentation reducing the inhibition level.  相似文献   

17.
Chitosan contribution on wool treatments with enzyme   总被引:2,自引:0,他引:2  
In a previous research work, it was observed that the application of biopolymer chitosan (CHT) on wool fabrics before the enzymatic treatment promotes an increase of the weight loss. In order to deep on the role played by CHT, several experimental conditions have been selected according to a hybrid experimental design and different parameters, such as weight loss and shrink-resist properties, have been controlled. To enhance the CHT sorption on the wool fibre surface, wool was submitted previously to a water-vapour low-temperature plasma treatment. The weight loss results reveal that the enzyme effect increases by increasing the CHT concentration applied to untreated wool. However, CHT concentration does not have any influence when wool has been previously treated with plasma. It is deduced that the surface free energy of wool fibres plays an important role on the enzyme activity. Therefore, the results obtained reveal that the main contribution of CHT on hydrophobic surface of untreated wool fibres is to confer hydrophilicity to wool. Furthermore, CHT tends to coat the wool fibres by film formation reducing apparently the fibre damage promoted by enzyme treatment and also reducing the wool shrinkage.  相似文献   

18.
There is currently considerable interest in the use of enzymes to achieve a variety of finishing effects on wool, but it is apparent that the extent of fibre degradation by enzymes is of major concern during their commercial application. Proteolytic enzymes are known to penetrate and degrade the internal wool structure during processing, causing fibre damage, rather than limiting the degradation to the cuticle cells. The ability to be able to control the exact location of proteolytic attack on wool protein structures will lead to the successful development of enzymatic treatments for achieving a variety of finishing effects for wool-containing products. This present work describes the modification of proteases so that enzymatic modification of wool fibres is restricted to the cuticle scales of the fibres.

Bulk trials have demonstrated that novel modifications of the enzyme enable the reaction of the enzyme with wool to be controlled, so that less degradation of the wool occurs than in similar treatments with the native protease. An anti-felting effect has been achieved without any significant weight loss being caused by the modified protease during the treatment. This novel enzymatic process leads to environmentally friendly production of machine washable wool.  相似文献   


19.
Alkaline-oxidative (A/O) pretreatment and enzymatic saccharification were optimized for bioethanol fermentation from water hyacinth by Saccharomyces cerevisiae. Water hyacinth was subjected to A/O pretreatment at various NaOH and H(2)O(2) concentrations and reaction temperatures for the optimization of bioethanol fermentation by S. cerevisiae. The most effective condition for A/O pretreatment was 7% (w/v) NaOH at 100 °C and 2% (w/v) H(2)O(2). The carbohydrate content was analyzed after reaction at various enzyme concentrations and enzyme ratios using Celluclast 1.5 L and Viscozyme L to determine the effective conditions for enzymatic saccharification. After ethanol fermentation using S. cerevisiae KCTC 7928, the concentration of glucose, ethanol and glycerol was analyzed by HPLC using a RI detector. The yield of ethanol in batch fermentation was 0.35 g ethanol/g biomass. Continuous fermentation was carried out at a dilution rate of 0.11 (per h) and the ethanol productivity was 0.77 [g/(l h)].  相似文献   

20.
The Aspergillus aculeatus MRC11624 man1 gene, encoding an endo-β-1,4-mannanase, was cloned and expressed in the promising heterologous enzyme producer, the ascomycetous yeast Yarrowia lipolytica. Both single- and multi-copy transformants were constructed, and the secretion of the enzyme was evaluated as an in-frame fusion with the LIP2 secretion signal, as well as with its natural secretion signal. In shake-flask analysis, the highest volumetric enzyme activity (13,073 nkat/ml) and specific enzyme activity (1,020 nkat/(mg dcw)) were obtained with a multi-copy integrant utilizing β-mannanase’s own secretion signal. The best β-mannanase-producing strain was subsequently evaluated in batch fermentation and resulted in a maximum volumetric enzyme activity of 6,719 nkat/ml. Fed batch fermentations resulted in a 3.9-fold increase in volumetric enzyme activity compared with batch fermentation, and a maximum titre of 26,139 nkat/ml was obtained. The results reported in this study indicate that Y. lipolytica is a promising producer of A. aculeatus β-mannanase, producing higher β-mannanase activity than that of recombinant Saccharomyces cerevisiae or Aspergillus niger when cultivated in shake flasks, which is encouraging for the use of the enzyme in industrial processes such as extraction of vegetable oil from leguminous seeds and the reduction in viscosity of coffee extracts.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号