首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
Different groups of juvenile common carp (3–4 g) were fed diets supplemented with adrenosterone at doses of 1.0, 2.5 and 10.0 mg kg-1 for 60 days and the effect on food conversion efficiency and cellular growth responses of liver, kidney, brain and muscle were investigated. At the end of the hormone feeding phase an increase of 40–75% was observed in food conversion efficiency. No change in hepato-somatic and viscero-somatic index was observed, but brain and kidney weights in relation to body weight was decreased compared with the controls. Variable changes in protein, RNA/DNA, protein/RNA and protein/DNA were seen in liver, kidney, brain and muscle. Feeding of the steroid for 60 days increased the water content of the muscle but ash contents of the muscle were decreased. No change in the total muscle lipids and total nitrogen content were observed. After the removal of the drug from the feed, some of the changes reported were ameliorated.  相似文献   

2.
BIOCHEMICAL EFFECTS OF THYROID DEFICIENCY ON THE DEVELOPING BRAIN   总被引:12,自引:1,他引:11  
Abstract— The effects of neonatal thyroidectomy on some constituents of the cerebrum, cerebellum and liver of the rat have been studied during the first 7 weeks of life. In the normal rat between the 6th and 14th post-natal days the RNA content per unit of DNA in the brain increased by 70 per cent. Although the brain continued to grow from the 14th to the 35th day, the amount of RNA relative to DNA decreased by about 20 per cent. The ratio of protein to DNA increased during the whole period studied and in the cerebral cortex it was more than trebled between the age of 6 and 35 days. The growth of the cerebellum extended over a longer period than that of the cerebrum, its weight increasing by 88 per cent between the ages of 14 and 35 days as compared with a cerebral increase of 34 per cent. The DNA content showed a 50 per cent increase during this period. Qualitatively these maturational changes were not affected by neonatal thyroidectomy. Quantitative changes, which applied equally to the cerebral cortex and brain as a whole, were observed. At the age of 35 days, the weights of the cerebral hemispheres and cerebellum were reduced by thyroidectomy by 20 per cent; the overall DNA content per organ did not change, but the amounts of protein and RNA relative to DNA decreased significantly. It is therefore inferred that thyroid deficiency affects the size of the cells in brain and cerebellum rather than their total number. Conversely, the cell population of the liver was only a quarter of that in the control. There was a small but significant decrease in the hepatic protein and RNA content in the hypothyroid animal. The activities of the following enzymes which served as markers for subcellular fractions in homogenates of cerebral cortex were determined: lactate dehydrogenase for the supernatant, glutamate dehydrogenase for the mitochondrial and glutamate decarboxylase for the synaptosomal fractions. When the activities were expressed on a fresh weight basis a significant decrease by comparison with the control values was observed only in the case of glutamate decarboxylase (—15 per cent at the age of 17–32 days); when the activities were based on DNA content all values were reduced, probably as a result of the general decrease in cell size. Pyrimidine metabolism of brain and liver, studied after the administration of [6-14C]-orotic acid, was not affected in either tissue by neonatal thyroidectomy. A small but significant reduction in the incorporation of labelled pyrimidine nucleotides in liver RNA was observed, but no significant decrease in the incorporation in cerebral RNA was found in the hypothyroid rats.  相似文献   

3.
Study of fetal organ growth in Wistar rats from day 17 to 21   总被引:1,自引:0,他引:1  
A total of 1633 Wistar rat fetuses was used to determine weights of the fetus and several fetal organs on days 17 to 21 of gestation. Heart, lung, liver, kidney, stomach, intestine, brain, femur, thyroid and adrenal weights were recorded. Growth curves of the whole body and organs were calculated. A linear semi-log relationship between organ weight and day of gestation was shown. The doubling weight times were 1.5 days for whole bodies and for organs they ranged between 0.9 (spleen) and 3.4 (adrenals) days. A correlation between the rate of organ growth and the start of the organ function was observed.  相似文献   

4.
We have isolated a glutamine synthetase cDNA clone derived from chicken retinal RNA. The clone detects a 3.2-kilobase RNA in chicken retina, liver, and brain, based on Northern blotting analysis. The dramatic developmental rise observed for the retinal enzyme, assayed as glutamyl transferase activity, is accompanied by a corresponding rise in this RNA. Injection of hydrocortisone 21-phosphate into the yolk sac of day 10 embryos produces an increase in retinal glutamine synthetase mRNA and glutamyl transferase activity, assayed 4 days after injection. An increase in glutamine synthetase mRNA is also observed within 2 h of incubation of retinal organ cultures with hydrocortisone. Moreover, incubation of these cultures with cycloheximide at a concentration that inhibits protein synthesis by 93% affects neither the basal level nor the hydrocortisone-mediated induction of glutamine synthetase mRNA. Although expression of this RNA is developmentally regulated in the brain, steroid hormone injection does not result in a substantial induction. Hepatic glutamine synthetase mRNA is expressed constitutively between embryonic day 10 and 6 days after hatching and is also not hormone inducible. Southern blotting data with chicken DNA digested with EcoRI, HindIII, and BamHI are best interpreted in terms of the cDNA clone detecting only one gene. If so, several cell-type-specific regulatory mechanisms must function to modulate expression of this gene during development.  相似文献   

5.
Ornithine decarboxylase (ODC) and the polyamines are thought to play a role in maturation of mammalian tissues. Daily postnatal administration of alpha-difluoromethylornithine (DFMO, a specific inhibitor of ODC) to newborn rats caused organ-specific deficits in tissue weight gain, with brain and kidney as the major targets. Subnormal organ weights were associated with deficits in the levels of nucleic acids and proteins in the affected tissues, and examination of the synthetic rates of DNA ([3H]thymidine incorporation), RNA ([3H]uridine incorporation) and protein ([14C]leucine incorporation) confirmed that macromolecule synthesis was inhibited in DFMO-treated pups. The time of onset of effect of DFMO on the synthesis of nucleic acids and proteins was the same as that reported for depletion of polyamines by this treatment. Potential adverse effects of DFMO on cell survival were also assessed by labeling DNA with [3H]thymidine on day 3 and examining retention of label 12 days later; DFMO did not cause an increase in cell death. In contrast to the sensitivity of brain and kidney to postnatally administered DFMO, development of cardiac tissue was relatively resistant to growth inhibition despite polyamine depletion. The organ specificity of effect of DFMO results, in part, from the different timetables for cellular events in tissue development displayed by each organ type; administration of DFMO earlier in development (during days 15 to 17 of gestation) did produce deficiencies in cardiac growth and nucleic acid levels similar to those which had been seen for brain and kidney. These data support the view that polyamines play a key role in cell replication, differentiation and growth during critical periods of mammalian organ development through their regulation of DNA, RNA, and protein synthesis.  相似文献   

6.
Starvation does not change the actual activity per g of tissue of the branched-chain 2-oxo acid dehydrogenase in skeletal muscles, but affects the total activity to a different extent, depending on the muscle type. The activity state (proportion of the enzyme present in the active state) does not change in diaphragm and decreases in quadriceps muscle. Liver and kidney show an increase of both activities, without a change of the activity state. In heart and brain no changes were observed. Related to organ wet weights, the actual activity present in the whole-body muscle mass decreases on starvation, whereas the activities present in liver and kidney do not change, or increase slightly. Exercise (treadmill-running) of untrained rats for 15 and 60 min causes a small increase of the actual activity and the activity state of the branched-chain 2-oxo acid dehydrogenase complex in heart and skeletal muscle. Exercise for 1 h, furthermore, increased the actual and the total activity in liver and kidney, without a change of the activity state. In brain no changes were observed. The actual activity per g of tissue in skeletal muscle was less than 2% of that in liver and kidney, both before and after exercise and starvation. Our data indicate that the degradation of branched-chain 2-oxo acids predominantly occurs in liver and to a smaller extent in kidney and skeletal muscle in fed, starved and exercised rats.  相似文献   

7.
Male and female weanling rats were fed ad libitum for 28 days on purified diets with metabolizable energy levels of 8.0, 9.5, 11.0 or 12.5 MJ/kg and protein:energy ratios of 1:1, 1.33:1, 1.67:1 or 2:1 %:MJ/kg at each energy level. Major nutrients were balanced in proportion to energy and protein. The following parameters were measured: food intake, bodyweight, body length, abdominal fat, liver and kidney weights. Increasing dietary energy level reduced food intake but the reduction was not sufficient to prevent an increase in energy intake. This was reflected by increases in bodyweight, body length, abdominal fat, and relative liver and kidney weights, especially in male rats. Higher energy intake increased weight gain and food conversion efficiency to a greater extent than higher protein intake. The response to protein intake at different energy levels was not consistent. There was no common protein:energy ratio for overall good performance. It is concluded that rat growth and other features can be controlled by the alteration of dietary energy and protein levels.  相似文献   

8.
Starvation induced changes in citrate synthase (CS), glucose-6-phosphate dehydrogenase (G6-PDH), lactate dehydrogenase (LDH), DNA, RNA, RNA/DNA ratio and protein were studied in the freshwater catfish Clarias batrachus. Starvation gradually decreased the activity of CS, G6-PDH and LDH in brain, liver and skeletal muscle of the freshwater catfish. The maximum reduction in these enzyme activities upto 35-45% was observed after 35 days of fasting. This shows substantial decline in aerobic and biosynthetic capacity during starvation period. DNA, RNA, RNA/DNA ratio and protein contents were also reduced from 40-67% which reflects reduction in an overall capacity of the protein synthesis. Starvation-induced macromolecular changes indicate impairment of metabolism in fish.  相似文献   

9.
Garcinia cambogia-derived (-)-hydroxycitric acid (HCA) is a popular and natural supplement for weight management. HCA is a competitive inhibitor of the enzyme ATP citrate lyase, which catalyzes the conversion of citrate and coenzyme A to oxaloacetate and acetyl coenzyme A (acetyl CoA) in the cytosol. Acetyl CoA is used in the synthesis of fatty acids, cholesterol and triglycerides, and in the synthesis of acetylcholine in the central nervous system. Studies have demonstrated the efficacy of a novel 60% calcium-potassium salt of HCA derived from Garcinia cambogia (HCA-SX, Super CitriMax) in weight management. Results have shown that HCA-SX promotes fat oxidation, enhances serotonin release and availability in the brain cortex, normalizes lipid profiles, and lowers serum leptin levels in obese subjects. Acute oral, acute dermal, primary dermal irritation and primary eye irritation toxicity, as well as Ames bacterial reverse mutation studies and mouse lymphoma tests have demonstrated the safety of HCA-SX. However, no detailed long-term safety of HCA-SX or any other HCA extract has been previously assessed. We evaluated the dose- and time-dependent effects of HCA-SX in Sprague-Dawley rats on body weight, selected organ weights, hepatic lipid peroxidation and DNA fragmentation, hematology and clinical chemistry over a period of 90 days. Furthermore, a 90-day histopathological evaluation was conducted. The animals were treated with 0, 0.2, 2.0 and 5.0% HCA-SX of feed intake and were sacrificed on 30, 60 or 90 days of treatment. The body weight and selected organ weights were assessed and correlated as a % of body weight and brain weight at 90 days of treatment. A significant reduction in body weight was observed in treated rats as compared to control animals. An advancing age-induced marginal increase in hepatic lipid peroxidation was observed in both male and female rats, while no such difference in hepatic DNA fragmentation was observed as compared to the control animals. Furthermore, selected organ weights individually and as a % of body weight and brain weight at 90 days of treatment exhibited no significant difference between the groups. No difference was observed in hematology and clinical chemistry or the histopathological evaluation. Taken together, these results show that 90 day treatment of HCA-SX results in a reduction in body weight, and does not cause any changes in major organs or in hematology, clinical chemistry, and histopathology.  相似文献   

10.
This study was designed to quantitate the effects of 5-(3,3-dimethyl-1-triazeno)-imidazole-4-carboxamide (DIC) and 5-(3,3-bis(2-chlorethyl)-1-triazeno)-imidazole-4-carboxamide (BIC) on growth and selected components of rat fetal organs. Twelve-day pregnant rats were given single intraperitoneal injections of 600 mg/kg of DIC and 900 mg/kg of BIC and autopsied on day 21 of gestation. Fetal liver, brain, kidney, and placenta were removed, weighed, and assayed for total DNA, RNA, and protein. DIC significantly reduced weight, total DNA, RNA, and protein of all four fetal organs as compared to age-matched controls. The brain was most severely affected by this compound. BIC also significantly reduced weight, DNA, RNA, and protein of fetal brain, kidney, and placenta, but in fetal liver only weight and total protein were significantly depressed, while DNA and RNA remained essentially unchanged. The effect of BIC was maximal on the placenta.  相似文献   

11.
Natural diets with metabolizable energy levels of 8.5, 10.0, 11.5 or 13.0 MJ/kg and protein:energy ratios of 1:1, 1.33:1, 1.67:1 or 2:1 %:MJ/kg were fed ad libitum for 28 days to male and female weanling rats. Records of food intake and bodyweight were maintained weekly, and at post mortem examination body length, abdominal fat, liver and kidney weights were measured. Food intake was reduced when dietary energy level increased but this reduction was not sufficient to prevent energy intake increasing, especially in males. Female rats showed only small increases in energy intakes as dietary energy levels rose. The increase in energy intake at higher dietary energy levels increased food conversion efficiency, weight gain and abdominal fat deposition. The responses of male rats were greater than females. Protein intake had a smaller and less consistent effect than energy intake. Increased protein:energy ratio resulted in higher absolute and relative liver and kidney weights and greater body length. This reflected the increase of bodyweight gain at higher protein:energy ratios.  相似文献   

12.
Skeletal muscle growth, muscle nucleic acids and muscle protein synthesis capacity, were measured to evaluate the protein requirement of adult rats. Wistar rats were fed on diets containing 4%, 10% or 20% casein + D,L-methionine. All diets were provided for 21 days beginning at 90 days of age. Body weight, food efficiency and net weight change increased as the casein content of the diet increased. Muscle DNA, RNA and RNA/protein were lost, but protein and protein/DNA increased on the 4% and 20% protein diet. This fact involves an aplasia phenomenon although the hypertrophic growth is maintained. Alterations of the insulin and GH plasma levels were observed. These findings indicate that for adult rats the 4% and 20% protein diets are not adequate for the period of adult maintenance.  相似文献   

13.
Effects of obesity and age on copper, iron, zinc, sodium, potassium, and protein were compared in liver, kidney, brain, and muscle of obese (fa/fa) and nonobese (non-fa/fa) male Zucker rats. Blood plasma cerulopasmin, copper, zinc, sodium, and potassium were also determined. Mean brain weight of fa/fa rats was less than that of non-fa/fa rats at 12 weeks of age; mean brain protein concentration was greater in fa/fa than in non-fa/fa at 5 and 12 weeks of age. At 18-19 days of age, mean sodium concentration (mg/g protein) in liver of fa/fa was less than that of non-fa/fa. At 5 weeks of age, mean copper concentration (microgram/g protein) in kidney was greater in fa/fa. Mean total copper, iron, zinc, sodium, and potassium in liver and kidney were greater in fa/fa than in non-fa/fa at 5 weeks because of the larger livers and kidneys of fa/fa. Mean concentrations of copper, zinc, sodium, and potassium per gram of brain protein were slightly (6-10%) less in fa/fa than in non-fa/fa at 5 weeks. By 12 weeks, mean concentrations of copper in liver, kidney, (tibialis) muscle, and blood plasma, ceruloplasmin in blood plasma, zinc in liver and muscle, iron in muscle, and sodium in liver were greater in fa/fa than in non-fa/fa. However, total amount of each mineral in muscle at 12 weeks was less in fa/fa than in non-fa/fa because of the smaller mean muscle weight of fa/fa. Mean concentrations of copper and zinc in brain and of iron in liver and brain were less in fa/fa than in non-fa/fa at 12 weeks. The major age-related changes in fa/fa that were not observed in non-fa/fa were large increases in liver and kidney copper between 5 and 12 weeks of age. It seems that the abnormal mineral metabolism is a consequence of the obesity, but the mechanisms are not identified.  相似文献   

14.
The responses to oxidative stress induced by chronic exercise (8-wk treadmill running) or acute exercise (treadmill running to exhaustion) were investigated in the brain, liver, heart, kidney, and muscles of rats. Various biomarkers of oxidative stress were measured, namely, lipid peroxidation [malondialdehyde (MDA)], protein oxidation (protein carbonyl levels and glutamine synthetase activity), oxidative DNA damage (8-hydroxy-2'-deoxyguanosine), and endogenous antioxidants (ascorbic acid, alpha-tocopherol, glutathione, ubiquinone, ubiquinol, and cysteine). The predominant changes are in MDA, ascorbic acid, glutathione, cysteine, and cystine. The mitochondrial fraction of brain and liver showed oxidative changes as assayed by MDA similar to those of the tissue homogenate. Our results show that the responses of the brain to oxidative stress by acute or chronic exercise are quite different from those in the liver, heart, fast muscle, and slow muscle; oxidative stress by acute or chronic exercise elicits different responses depending on the organ tissue type and its endogenous antioxidant levels.  相似文献   

15.
Solanum lycocarpum St. Hill is a common plant in the Brazilian savanna. This plant contains an alkaloid with stereospecific configuration to the synthesis of steroid hormones. Because the plant may be consumed long-term, the present study was undertaken to determine the possible toxic effects of S. lycocarpum fruit ingestion (3% added to the diet) on male (60 days of administration) and female (37 days) adult rats. Few significant differences in body weight and consumption of food and water, no significant differences in male and female weight gain or estrous cycle were detected. Female treated rats showed a significant reduction in uterus and liver weights; however, no significant differences were observed in other organ (adrenal, liver, seminal vesicle, testicle and ovary) weights in either sex. Additionally blood enzymes and proteins evaluated were not affected by treatment with 3% S. lycocarpum added to the diet. The present data, however, show sex-related differences in S. lycocarpum toxicity. Thus, other studies have to be conducted to better investigate female toxicity and other toxic effects of higher levels of exposure to this plant.  相似文献   

16.
To establish whether family origin affects the response of the threespine stickleback (Gasterosteus aculeatus) to thermal acclimation, we examined the rates of feeding, growth, and food conversion, relative tissue and organ masses and activities of a mitochondrial and a glycolytic enzyme in pectoral and axial muscle of individually housed fish from six families during acclimation to 8 degrees C and 23 degrees C. Feeding rates differed among families but were consistently higher in warm-acclimated than cold-acclimated fish. Growth rates differed among families. In four families growth was greater at 8 degrees C; these families generally had higher conversion efficiencies at 8 degrees C than 23 degrees C. For two families, growth was greater at 23 degrees C than 8 degrees C and conversion efficiencies did not differ between 8 degrees C and 23 degrees C. Relative tissue and organ masses (percent axial muscle, hepatosomatic, gut and kidney indices) differed with gender and among families (hepatosomatic, gut and kidney indices) but little with acclimation status. In all families and in both muscles, activities of the mitochondrial enzyme, citrate synthase (CS), were increased by cold acclimation. Axial muscle levels of the glycolytic enzyme, lactate dehydrogenase (LDH), were not affected by thermal acclimation or family origin, but were strongly correlated with the hepatosomatic index and axial muscle protein content. Pectoral muscle levels of LDH were affected by family origin which also influenced the response to thermal acclimation. Similar patterns were observed for specific activities and total muscle contents of these enzymes. Stickleback family origin influenced rates of feeding and growth and the thermal sensitivity of growth rates but not the compensatory increase in muscle CS levels with cold acclimation. The differing thermal sensitivities of growth could reflect distinct strategies for the timing of juvenile growth.  相似文献   

17.
Perinatal methadone exposure and brain development: a biochemical study   总被引:1,自引:0,他引:1  
Abstract— The neurochemical effect of maternally administered methadone (5 mg/kg, DL-methadone-HCI) on the brain (including the olfactory bulbs, cerebellum, and brain stem) and cerebellum of offspring exposed during gestation and/or lactation was studied in 10-, 21-, and 60-day old rats. Brain weights were significantly reduced in all methadone-exposed groups at 10 days of age, while only those rats subjected to methadone during gestation or lactation had deficits in brain weights at day 21; no differences were found at 60 days. Brain DNA content was significantly reduced in all opiate-exposed offspring at every age examined, but RNA/DNA and protein/DNA ratios were only consistently increased in rats of the gestation group. Cerebellar weight was reduced at 10 days in the gestation-lactation pups, at 21 days in rats of the gestation and lactation groups, and at 60 days in animals of the gestation and gestation-lactation groups. Cerebellar DNA content was significantly decreased in pups of the gestation group at every age investigated, but only reduced at 21 days in the lactation group and at 60 days in the gestation-lactation group. Rats in the lactation group had the greatest number of alterations in terms of RNA and protein, with the most noticeable being decreases in mean cellular RNA content on days 21 and 60 and a reduction in the mean cellular protein content on day 60. These data suggest that prenatal and/or postnatal methadone treatment affects the biochemical maturation of the central nervous system; deficits in neurons and/or glia, as well as a reduction in myelination, might be reflected in these changes.  相似文献   

18.
Newborn rats of four different strains with spontaneous hypertension show heart enlargement mainly due to cardiac hyperplasia. To determine whether this anomaly is common in all genetically hypertensive rats, we have compared newborns of Prague hypertensive rats (PHR) with their respective normotensive controls (PNR). The heart ventricles, kidneys and livers of newborn animals were analyzed for their weight, protein and DNA content. The total heart weight and the heart/body weight ratio were significantly lower in PHR than in PNR. On the other hand, there were no differences in total or relative kidney weight and in total liver weight. The relative protein content was significantly lower in kidney and liver of PHR but there were no differences between hypertensive and normotensive animals in relative DNA content of all organs studied. Our results suggest a possible dissociation of genes which determine organ weights from those responsible for blood pressure determination.  相似文献   

19.
Systemic administration of prolactin (PRL) reportedly maintains readiness to sit on eggs, increases body weights and liver weights, and reduces gonadal and reproductive tract tissue weights in male and female ring doves. To determine if these effects are mediated by PRL-induced changes in the central nervous system, ring doves were isolated from their mates, nests, and eggs on Day 4 of incubation and given twice-daily intracerebroventricular injections of PRL (1 microgram, 0.031 IU) or saline vehicle (2 microliter) during the next 10 days. Food and water consumption were monitored daily during treatment and tests for incubation behavior and observation of organ weight changes were conducted at the end of the period. The incidence of incubation behavior in the PRL-treated group was not significantly different from that in the control group and was significantly lower than that reported in a previous study following subcutaneous PRL injections. However, gonadal and reproductive tract tissue weights were markedly reduced and food and water consumption were significantly elevated in PRL-treated birds. Body weights and liver weights were also increased following PRL administration. In contrast, crop sac weight did not increase in the PRL treated birds, thereby indicating that the effects of icv prolactin treatment were not mediated by increased plasma PRL levels and peripheral target organ stimulation. These results suggest that PRL can act directly on the brain to inhibit gonadotropin release and to stimulate ingestive behavior but central effects of PRL alone are not sufficient to maintain incubation readiness.  相似文献   

20.
Garcinia cambogia-derived (—)-hydroxycitric acid (HCA) is a popular and natural supplement for weight management. HCA is a competitive inhibitor of the enzyme ATP citrate lyase, which catalyzes the conversion of citrate and coenzyme A to oxaloacetate and acetyl coenzyme A (acetyl CoA) in the cytosol. Acetyl CoA is used in the synthesis of fatty acids, cholesterol and triglycerides, and in the synthesis of acetylcholine in the central nervous system. Studies have demonstrated the efficacy of a novel 60% calcium-potassium salt of HCA derived from Garcinia cambogia(HCA-SX, Super CitriMax) in weight management. Results have shown that HCA-SX promotes fat oxidation, enhances serotonin release and availability in the brain cortex, normalizes lipid profiles, and lowers serum leptin levels in obese subjects. Acute oral, acute dermal, primary dermal irritation and primary eye irritation toxicity, as well as Ames bacterial reverse mutation studies and mouse lymphoma tests have demonstrated the safety of HCA-SX. However, no detailed long-term safety of HCA-SX or any other HCA extract has been previously assessed. We evaluated the dose- and time-dependent effects of HCA-SX in Sprague-Dawley rats on body weight, selected organ weights, hepatic lipid peroxidation and DNA fragmentation, hematology and clinical chemistry over a period of 90 days. Furthermore, a 90-day histopathological evaluation was conducted. The animals were treated with 0, 0.2, 2.0 and 5.0% HCA-SX of feed intake and were sacrificed on 30, 60 or 90 days of treatment. The body weight and selected organ weights were assessed and correlated as a % of body weight and brain weight at 90 days of treatment. A significant reduction in body weight was observed in treated rats as compared to control animals. An advancing age-induced marginal increase in hepatic lipid peroxidation was observed in both male and female rats, while no such difference in hepatic DNA fragmentation was observed as compared to the control animals. Furthermore, selected organ weights individually and as a % of body weight and brain weight at 90 days of treatment exhibited no significant difference between the groups. No difference was observed in hematology and clinical chemistry or the histopathological evaluation. Taken together, these results show that 90 day treatment of HCA-SX results in a reduction in body weight, and does not cause any changes in major organs or in hematology, clinical chemistry, and histopathology.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号