首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Summary Beneficial plant–microbe interactions in the rhizosphere are primary determinants of plant health and soil fertility. The effect of combined inoculation of plant growth-promoting bacteria, Bacillus circulans EB 35, Serratia marcescens EB 67 and Pseudomonas sp. CDB 35 and arbascular mycorrhizal fungi, Glomus spp. on sorghum growth and mycorrhizal colonization was investigated. Plant growth observations taken at 45 days after sowing (DAS) revealed that all the three strains applied along with arbascular mycorrhizae (AM) improved plant biomass from 17 to 20% and mycorrhizal colonization from 25 to 35%. Further studies at 90 DAS also showed improvement in plant growth parameters measured. It was apparent that all the three strains stimulated plant and root growth in combination with AM and infection of sorghum roots with mycorrhizae at 45 DAS was equal to or even greater than the AM + rock phosphate (RP) inoculation at 90 DAS. This shows the possible reduction of AM culturing period to 45 days compared to its 3-month culturing in the pot cultures.  相似文献   

2.
Two hundred and seven bacteria were isolated from composts and macrofauna and screened for plant growth promoting and antagonistic traits. Seven of the 207 isolates showed antagonistic activity against Sclerotium rolfsii in plate culture. Inhibition of S. rolfsii by the bacterial isolates ranged between 61 and 84%. Two of the seven isolates were Bacillus sp. and rest belonged to Pseudomonas sp. Two isolates, Pseudomonas sp. CDB 35 and Pseudomonas sp. BWB 21 was compatible with chickpea Rhizobium sp. IC 59 and IC 76 in plate culture conditions. Increase in plant biomass (dry weight) ranged between 18 and 30% on application of these bacteria by seed coating and seed priming methods. However, by seed-priming there was an increase in plant biomass by 5–7% compared to seed coating. Number of nodules and the nodule weight was similar by both seed coating and seed priming methods. Disease incidence was reduced up to 47% in treatments where captan (fungicide) or antagonistic Pseudomonas sp. CDB 35 was applied. Increase in shoot weight was 36% by seed coating with Rhizobium sp. IC 59 and Pseudomonas sp. CDB 35 when compared to captan application. Whereas by seed priming with IC 59 and CDB 35 increased shoot weight by 3 and 39% increase in nodulation was observed.  相似文献   

3.
Five bacterial strains with phosphate-solubilizing ability and other plant growth promoting traits increased the plant biomass (20-40%) by paper towel method. Glasshouse and field experiments were conducted using two efficient strains Serratia marcescens EB 67 and Pseudomonas sp. CDB 35. Increase in plant biomass (dry weight) was 99% with EB 67 and 94% with CDB 35 under glasshouse conditions. Increase in plant biomass at 48 and 96 days after sowing was 66% and 50% with EB 67 and 51% and 18% with CDB 35 under field conditions. Seed treatment with EB 67 and CDB 35 increased the grain yield of field-grown maize by 85% and 64% compared to the uninoculated control. Population of EB 67 and CDB 35 were traced back from the rhizosphere of maize on buffered rock phosphate (RP) medium and both the strains survived up to 96 days after sowing.  相似文献   

4.
Five phosphate-solubilizing bacteria (PSB) used in this study were isolated based on their ability to solubilize tricalcium phosphate (TCP) in Pikovskaya’s medium. Among the tested bacterial strains Burkholderia sp. strain CBPB-HIM showed the highest solubilization (363 μg of soluble P ml−1) activity at 48 h of incubation. Further, this strain has been selected to assess its shelf life in nutrient-amended and -unamended clay, rice bran and rock phosphate (RP) pellet-based granular formulation. The results showed that the maximum viability of bacterium was observed in clay and rice bran (1:1) + 10% RP pellets than clay-RP pellets, irrespective of tested storage temperatures. Further, clay and rice bran (1:1) + 10% RP pellets amended with 1% glucose supported the higher number of cells compared to glycerol-amended and nutrient-unamended pellets. In this carrier solubilization of Morocco rock phosphate (MRP) by Burkholderia sp. strain CBPB-HIM was also investigated. The maximum of water and bicarbonate extractable P (206 and 245 μg P g−1 of pellet respectively) was recorded in clay and rice bran (1:1) + 10% RP pellets amended with 1% glucose and glycerol respectively on day 5 of incubation. Therefore, this study proved the possibility of developing granular inoculant technology combining clay, rice bran and RP as substrates with phosphate-solubilizing Burkholderia.  相似文献   

5.
Fluorescent Pseudomonas sp. strain 267 promotes growth of nodulated clover plants under gnotobiotic conditions. In the growth conditions (60 M FeCl3), the production of siderophores of the pseudobactin-pyoverdin group was repressed. Plant growth enhancement results from secretion of B vitamins by Pseudomonas sp. strain 267. This was proven by stimulation of clover growth by naturally auxotrophic strains of Rhizobium leguminosarum bv. trifolii and marker strains E. coli thi- and R. meliloti pan- in the presence of the supernatant of Pseudomonas sp. strain 267. The addition of vitamins to the plant medium increased symbiotic nitrogen fixation by the clover plants.  相似文献   

6.
An attempt was made to study the efficient use of rice straw and indigenous source of phosphorus and potassium in crop production through composting technology. Various enriched composts were prepared using rice straw, rock phosphate (RP), waste mica and bioinoculant (Aspergillus awamori) and kinetics of release of phosphorus and potassium from enriched composts and their effect on yield and nutrient uptake by wheat (Triticum aestivum) were carried out. Results showed sharp increases in release in water-soluble P and K from all the composts at 8th to 12th day of leaching, thereafter, it decreased gradually. Maximum release of water-soluble P and K were obtained in ordinary compost than enriched composts during the initial stages of leaching, but their differences narrowed down at latter stages. Data in pot experiments revealed that enriched composts performed poorly than diammonium phosphate during initial stages of crop growth, but they out yielded at the latter stages, particularly at maturity stage, as evident from their higher yield, uptake, nutrient recoveries and fertility status of P and K in soils. Moreover, enriched composts prepared with RP and waste mica along with A. awamori resulted in significantly higher biomass yield, uptake and recoveries of P and K as well as available P and K in soils than composts prepared without inoculant. Results indicated that enriched compost could be an alternate technology for the efficient management of rice straw, low-grade RP and waste mica in crop production, which could help to reduce the reliance on costly chemical fertilizers.  相似文献   

7.

In the research, the single-and dual effects of phosphate-solubilizing bacteria (PSB) (B0, Pseudomonas sp. FA1, and Bacillus simplex UT1) and silicon (Si) (0, 150, 300, and 600 mg kg−1 used as silicic acid) on P uptake by sorghum (Sorghum bicolor L.) plant fertilized with soluble or insoluble P (rock phosphate—RP) were studied via a perlite-potted experiment. Moreover, the effects of various treatments on morphological (shoot and root dry weight), nutritional (the uptake of Si and K) and physiological parameters (activity of catalase, superoxide dismutase, and peroxidase enzymes) of this plant were also measured. When grown in RP-fertilized medium compared with those grown in soluble P-fertilized medium, both shoot biomass and root biomass of sorghum plants were noticeably diminished. The PSB strains and Si levels independently improved all the aforementioned parameters. Use of Si and PSB strains to sorghum plants grown in soluble P or insoluble P medium significantly augmented P use efficiency. Silicon not only augmented the uptake of P from sparingly soluble-P source (RP), but also augmented uptake of P from water-soluble P source. Both B. simplex UT1 and Pseudomonas sp. FA1 indicated a meaningful betterment in sorghum plant dry matter and uptake of P (and K and Si) under both soluble and insoluble P fertilization conditions with Pseudomonas sp. FA1 being more efficacious than B. simplex UT1. But, the dual use of the PSB with Si resulted in the greatest increase in sorghum plant P uptake and other measured growth indices. Application of 600 mg Si kg−1 and Pseudomonas sp. FA1 significantly augmented the P shoot concentration of sorghum plant fertilized with RP to an sufficient level (> 0.3%) in the range of P-fertilized sorghum plants. Therefore, in addition to PSB utilization, Si should be considered as soil amendment in agricultural soils inadequate in plant-available Si as a means of sustainable agriculture with respect to possible savings of scarce P resources.

  相似文献   

8.
The plant growth–promoting potentials, production of siderophore and solubilization of insoluble phosphorus (P) and zinc and lead by the chromium (vi) -reducing Bacillus species, PSB 1, PSB 7, and PSB 10, was assessed both in the presence and absence of chromium under in vitro conditions. The Bacillus strains tolerated chromium up to the concentration of 500 (PSB1), 400 (PSB7), and 550 μg ml−1 (PSB10), respectively, on nutrient agar plates. Bacillus sp. PSB 10 reduced Cr (vi) by 87% at pH 7, which was followed by Bacillus sp. PSB 1 (83%) and PSB 7 (74%) in nutrient broth after 120 h of incubation. A concentration of 50 μg ml−1 of Cr (vi) was completely reduced by Bacillus sp. PSB 1 and PSB 10 (after 100 h) and PSB 7 (after 120 h). The Bacillus strains PSB 1, PSB 7, and PSB 10 produced 19.3, 17.7, and 17.4 μg ml−1 of indole acetic acid, respectively, in luria bertani broth at 100 μg ml−1 of tryptophan, which consistently decreased with an increase in chromium concentration. The Bacillus strains were positive for siderophore, HCN, and ammonia both in the absence and presence of chromium. The Bacillus strains solubilized 375 (PSB 1), 340 (PSB 7), and 379 (PSB 10) μg ml−1 P, respectively, in Pikovskaya broth devoid of chromium. In contrast, chromium at 150 μg ml−1 reduced the amount of P solubilized by 17 (PSB 1), 15 (PSB 7), and 9% (PSB 10) compared to control. The tested bacterial strains solubilized a considerable amount of zinc and lead in nutrient broth both in the absence and presence of chromium. Generally, the chromium reduction and the plant growth–promoting potentials of chromium-reducing Bacillus were strongly correlated at the tested concentration of chromium. The present observations demonstrated that the chromium-reducing, metal-solubilizing, and plant growth–promoting potentials of the Bacillus strains PSB1, PSB 7, and PSB10 were not adversely affected by the chromium application and, hence, may be applied for raising the productivity of crops under metal-contaminated soils.  相似文献   

9.
Acinetobacter johnsonii A2 isolated from the natural community of Laguna Azul (Andean Mountains at 4,560 m above sea level), Serratia marcescens MF42, Pseudomonas sp. strain MF8 isolated from the planktonic community, and Cytophaga sp. strain MF7 isolated from the benthic community from Laguna Pozuelos (Andean Puna at 3,600 m above sea level) were subjected to UV-B (3,931 J m−2) irradiation. In addition, a marine Pseudomonas putida strain, 2IDINH, and a second Acinetobacter johnsonii strain, ATCC 17909, were used as external controls. Resistance to UV-B and kinetic rates of light-dependent (UV-A [315 to 400 nm] and cool white light [400 to 700 nm]) and -independent reactivation following exposure were determined by measuring the survival (expressed as CFU) and accumulation of cyclobutane pyrimidine dimers (CPD). Significant differences in survival after UV-B irradiation were observed: Acinetobacter johnsonii A2, 48%; Acinetobacter johnsonii ATCC 17909, 20%; Pseudomonas sp. strain MF8, 40%; marine Pseudomonas putida strain 2IDINH, 12%; Cytophaga sp. strain MF7, 20%; and Serratia marcescens, 21%. Most bacteria exhibited little DNA damage (between 40 and 80 CPD/Mb), except for the benthic isolate Cytophaga sp. strain MF7 (400 CPD/Mb) and Acinetobacter johnsonii ATCC 17909 (160 CPD/Mb). The recovery strategies through dark and light repair were different in all strains. The most efficient in recovering were both Acinetobacter johnsonii A2 and Cytophaga sp. strain MF7; Serratia marcescens MF42 showed intermediate recovery, and in both Pseudomonas strains, recovery was essentially zero. The UV-B responses and recovery abilities of the different bacteria were consistent with the irradiation levels in their native environment.  相似文献   

10.
Bacillus sp. ORAs2 and Pseudomonas sp. ORAs5, two arsenic-resistant bacterial strains previously isolated from sediments of the Orbetello Lagoon, Italy, were tested for their adaptation to mixed contaminants on the level of membrane fatty acid composition. The two bacterial strains were characterized by high levels of arsenic resistance, and Pseudomonas sp. ORAs5 was also shown to be solvent-tolerant. The bacterial strains were exposed to mixtures of two toxic compounds: arsenic at fixed concentrations and toluene in variable amounts or, alternatively, toluene at constant values along with arsenic added at variable concentrations. Both strains react to the contaminants by changing the composition of their membrane fatty acids. Bacillus sp. strain ORAs2 showed a correlation between growth rate decreases and fatty acids degree of saturation increases in both cases, although pointedly in the presence of 1, 2, and 3 mM of toluene and different additions of arsenic, counteracting membranes fluidity induced by toxic compounds. In Pseudomonas sp. ORAs5, adaptive changes in membrane composition was observed both in terms of increases in the degree of saturation and in the trans/cis ratio of unsaturated fatty acids in the presence of varying toluene and constant arsenic concentrations, whereas only minor changes occurred with increasing arsenic and constant toluene concentrations. Thus, on the level of membrane composition, Bacillus sp. ORAs2 showed a higher potential for adaptation to the presence of mixed pollutants, suggesting its probable suitability for bioremediation purposes.  相似文献   

11.
Hemolysin as a marker for Serratia   总被引:3,自引:0,他引:3  
All Serratia marcescens strains (total of 33) of different sources were hemolytic including clinical strains previously classified as being nonhemolytic. DNA fragments of the two hemolysin genes hybridized with the chromosomal DNA of S. marcescens, S. liquefaciens, S. kiliensis, S. grimesii, S. proteamaculans, S. plymutica, S. rubridaea which were also hemolytic. The restriction pattern of the hemolysin locus differed in each strain. S. ficaria and S. marinorubra expressed a different hemolysin which was much smaller than the S. marcescens hemolysin since it diffused through dialysis membranes. The DNA of the latter strains did not hybridize with the S. marcescens hemolysin DNA probes. Some S. marcescens strains, S. kiliensis and S. liquefaciens also expressed in addition the small hemolysin. No hybridization was found with DNA of Escherichia coli, Salmonella typhimurium, Proteus mirabilis, Proteus vulgaris, Citrobacter freundii, Enterobacter cloacae, Klebsiella arerogenes, Klebsiella pneumoniae, Shigella dysenteriae, Yersinia enterocolitica, Yersinia pseudotuberculosus, Listeria sp., Aeromonas sp., Legionella sp. and a Meningococcus sp., indicating that the hemolysin DNA probes are specific for Serratia, or that the hemolysin genes occur rarely in genera other than Serratia.  相似文献   

12.
The effect of 23 bacterial strains from ricefields in the tropics on rice seed germination and on radicle and hypocotyl development of four rice cultivars was determined. There was a varietal difference in response to seed bacterization with the different bacterial strains. Germination of cv. IR58 increased from 78 to 93 %, that of cv. IR64, from 89 to 97 %. Less effects on germination of cvs IR42 and IR36 were observed. All strains inhibited the mycelial growth of Rhizoctonia solani in vitro. The three strains, identified as Bacillus subtilis, inhibited the mycelial growth of eight fungal pathogens whereas the other strains were pathogen-specific. Seed bacterization with these bacterial strains provided a sheath blight protection of 4. 5 to 73 % in the glasshouse trial. These 23 bacterial strains were identified by phenotypic tests using the API systems, morphological and biochemical features, and by comparison of electrophoretic patterns after sodium dodecyl sulphate polyacrylamide gel electrophoresis. Bacterial strains were identified (number of strains in brackets) as: Bacillus subtilis (3), Bacillus laterosporus (1), Bacillus pumilus (1), Pseudomonas aeruginosa (7), Pseudomonas belonging to section 1 (5), Erwina herbicola-like (1), and Serratia marcescens (1). The features of the other four strains were similar to Serratia except for the DNAase and lipase activities.  相似文献   

13.
Twelve strains of algicidal bacteria were isolated from the surfacewater of the pond Shinobazu and the moat Ote-bori (Tokyo, Japan). Nine of thesestrains were considered to be in the Pseudomonas group byanalyses of 16S rDNA sequences. The methanol extract ofPseudomonas sp. K44-1 showed marked antialgal activity bythe paper disk method. Harmane (1-methyl--carboline) was isolated fromtheethyl acetate extract of the whole culture broth ofPseudomonas sp. K44-1 by using silica gel columnchromatography and high performance liquid chromatography (HPLC). Harmaneshowedantagonistic activities against several cyanobacterial strains at aconcentration of 30 g disk–1.  相似文献   

14.
The aim of this work was to isolate enzyme-producing microorganisms from the tract of the termite Reticulitermes santonensis. The microorganisms were extracted from the guts and anaerobic (CO2 or CO2/H2) and micro-aerobic atmospheres were used to stimulate growth. Three different strategies were tried out. First, the sample was spread on Petri dishes containing solid media with carboxymethylcellulose, microcrystalline cellulose or cellobiose. This technique allowed us to isolate two bacteria: Streptomyces sp. strain ABGxAviA1 and Pseudomonas sp. strain ABGxCellA. The second strategy consisted in inoculating a specific liquid medium containing carboxymethylcellulose, microcrystalline cellulose, or cellobiose. The samples were then spread on Petri dishes with the same specific medium containing carboxymethylcellulose, microcrystalline cellulose, or cellobiose. This led to the isolation of the mold Aspergillus sp. strain ABGxAviA2. Finally, the third strategy consisted in heating the first culture and spreading samples on agar plates containing rich medium. This led to the isolation of the bacterium Bacillus subtilis strain ABGx. All those steps were achieved in controlled atmospheres. The four enzyme-producing strains which were isolated were obtained by using a micro-aerobic atmosphere. Later, enzymatic assays were performed on the four strains. Streptomyces sp. strain ABGxAviA1 was found to produce only amylase, while Pseudomonas sp. strain ABGxCellA was found to produce β-glucosidase as well. Aspergillus sp. strain ABGxAviA2 showed β-glucosidase, amylase, cellulase, and xylanase activities. Finally, B. subtilis strain ABGx produced xylanase and amylase.  相似文献   

15.
The dominant bacteriaPseudomonas sp. andArthrobacter sp. were isolated from the standing water of carbofuran-retreatedAzolla plot.Arthrobacter sp. hydrolysed carbofuran added to the mineral salts medium as a sole source of carbon and nitrogen while no degradation occurred withPseudomonas sp. Interestingly, when the medium containing carbofuran was inoculated with bothArthrobacter sp. andPseudomonas sp., a synergistic increase in its hydrolysis and subsequent release of CO2 from the side chain was noticed. This synergistic interaction was better expressed at 25° C than at 35° C. Likewise, related carbamates, carbaryl, bendiocarb and carbosulfan were more rapidly degraded in the combined presence of both bacterial isolates.  相似文献   

16.
Twelve antimony-resistant bacteria were isolated from sediment collected in the vicinity of an antimony oxide-producing factory in Korea. Eight of these strains were heterotrophic Sb(III)-oxidizing bacteria. Phylogenetic study showed that the Sb(III)-oxidizing bacteria fell within two subdivisions of Proteobacteria. Cupriavidus sp. NL4 and Comamonas sp. NL11 belong to the subdivision β-Proteobacteria. Acinetobacter sp. NL1, Acinetobacter sp. NL12, Pseudomonas sp. NL2, Pseudomonas sp. NL5, Pseudomonas sp. NL6, and Pseudomonas sp. NL10 are the members of the γ-subdivision of the Proteobacteria. Among them, Cupriavidus sp. NL4 completely oxidized 100 μmoles of Sb(III) per liter of medium in 500 h, while the other strains were not able to oxidize all of the Sb(III) in the medium, even with longer incubation. The results imply that diverse bacterial lineages are able to detoxify sites polluted with Sb(III) by oxidizing it to Sb(V), and to contribute to antimony cycling in natural environments.  相似文献   

17.
Five arsenic-resistant bacterial strains (designated MP1400, MP1400a, MP1400d, APSLA3, and BPSLA3) were isolated from soils collected at the Alps region (Italy), which showed no contamination by arsenic. Phylogenetic analysis of the 16S rRNA gene sequences assigned them to the genera Pseudomonas and Bacillus. Bacillus sp. strain 1400d and Pseudomonas spp. strains APSLA3 and MP1400 showed higher tolerance to As(III), as indicated by minimum inhibitory concentrations of 10 mmol/L. Pseudomonas sp. strain MP1400 exhibited higher tolerance to As(V) (minimum inhibitory concentration of 135 mmol/L). The isolated arsenic-resistant strains were able to reduce As(V) to As(III), especially Pseudomonas sp. strain MP1400 reducing 2 mmol/L of As(V) to As(III) within 24 h. The results suggest that the isolated bacterial strains play a role in the arsenic biogeochemical cycle of arsenic-poor soils in the Alps mount area.  相似文献   

18.
S. Banik  B. K. Dey 《Plant and Soil》1982,69(3):353-364
Summary Among several phosphate-solibilizing micro-organisms isolated from an alluvial soil (Fluvaquent) in sucrose-Ca3(PO4)2 agar plates, two fungal strains, ACF2 (Aspergillus candidus) and ACF1 (A. fumigatus) two bacterial strains, ACB5 (Bacillus firmus B-7650) and ACB6 (B. firmus B-7651) and one actinomycete strain, ACS6 (Streptomyces sp.) were efficient solubilizers, solubilizing 297.0, 288.3, 49.0, 45.8 and 29.0 μg of P as free PO4 −3, respectively, containing 15 mg insoluble P from Ca3(PO4)2 in broth. Solubilization was lesser from AlPO4 and FePO4. The isolates producing oxalic and tartaric acids without or with citric acid showed higher ability of solubilizing insoluble inorganic phosphates. All the above isolates possessed the ability of solubilizing rock phosphate in considerable amounts, ACF1 (A. fumigatus) being the highest (31.5 μg), while ACB6 (B. firmus B-7651) and both the aspergilli also possessed cellulose-decomposing ability in addition. Inoculation of the isolates, in a flask culture experiment, had no significant effect on the accumulation of available phosphorus in soil even when amended with rock phosphate (RP), farm yard manure (FYM), (FYM+RP), rice straw (RS) and (RS+RP). Nevertheless, the overall performance of ACF2 (A. candidus) and ACB6 (B. firmus B-7651) was better than that of the others, in this respect, while ACB5 (B. firmus B-7650) and ACF1 (A. fumigatus) intensified the enhancing effect of FYM and RS. Partial sterilization, by autoclaving, of the soil had no significant effect on available phosphorus content of the soil irrespective of any inoculation.  相似文献   

19.
The bacterial flora of the Oberea linearis (Coleoptera: Cerambycidae) was investigated and 13 different bacteria were isolated from O. linearis larvae. Seven of these bacteria were performed and characterized at species level and the rest of them were characterized at genus level. In this study, we determined morphological and physiological characteristics of the bacterial isolates by conventional and routine techniques, biochemical properties and metabolic enzyme profiles by API20E and Phoenix 1000A panel test systems. Additionally, 16S rRNA gene sequence analysis was also performed to identify the isolates at the molecular level. The isolates were identified as Acinetobacter calcoaceticus (Ol1), Enterobacter aerogenes (Ol2), Pseudomonas sp. (Ol3), Flavobacterium sp. (Ol4), Microbacterium sp. (Ol5), Enterobacter agglomerans (Ol6), Xanthomonas sp. (Ol7), Pseudomonas syringae (Ol8), Pseudomonas sp. (Ol9), Xanthomonas sp. (Ol10), Enterobacter cancerogenus (Ol11), Xanthomonas maltophilia (Ol12), and Serratia marcescens (Ol13). This is the first record of bacterial isolates (Ol5, Ol8, Ol11, Ol12) from any insect. All these bacteria were tested against O. linearis larvae, and Serratia marcescens was found to cause the highest mortality (65%). On the other hand, we determined 90% mortality against this pest within four days by utilizing spore and crystal mixture of Bacillus thuringiensis isolated from Melolontha melolontha.  相似文献   

20.
The bacteria of PDMCd0501, PDMCd2007, and PDMZnCd2003 were isolated from a Zn/Cd contaminated soil. They were classified as salt-tolerant bacteria in this experiment. The bacteria had indole-3-acetic acids (IAA) production, nitrogen fixation, and phosphate solubilization, under 8% (w/v) NaCl condition. Biochemical test (API 20E) and 16S rDNA sequencing identified PDMCd2007 and PDMCd0501 as Serratia sp. and PDMZnCd2003 was Pseudomonas sp. The effect of Pseudomonas sp. PDMZnCd2003 on the germination and seedlings of Oryza sativa L.cv. RD6 was determined under a salinity of 0–16 dS/m. The salinity levels of 4–16 dS/m affected to decrease germination and seedlings of rice. Comparison between uninoculated and inoculated system, however, Pseudomonas sp. PDMZnCd2003 had a negative impact on the rice growth. This unexpected effect was a case that should be concerned and studied further before application as a plant growth-promoting bacteria (PGPB).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号