首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 281 毫秒
1.
Thioredoxins (Trxs) are small ubiquitous disulphide proteins widely known to enhance expression and solubility of recombinant proteins in microbial expression systems. Given the common evolutionary heritage of chloroplasts and bacteria, we attempted to analyse whether plastid Trxs could also act as modulators of recombinant protein expression in transgenic chloroplasts. For that purpose, two tobacco Trxs (m and f) with different phylogenetic origins were assessed. Using plastid transformation, we assayed two strategies: the fusion and the co-expression of Trxs with human serum albumin (HSA), which was previously observed to form large protein bodies in tobacco chloroplasts. Our results indicate that both Trxs behave similarly as regards HSA accumulation, although they act differently when fused or co-expressed with HSA. Trxs-HSA fusions markedly increased the final yield of HSA (up to 26% of total protein) when compared with control lines that only expressed HSA; this increase was mainly caused by higher HSA stability of the fused proteins. However, the fusion strategy failed to prevent the formation of protein bodies within chloroplasts. On the other hand, the co-expression constructs gave rise to an absence of large protein bodies although no more soluble HSA was accumulated. In these plants, electron micrographs showed HSA and Trxs co-localization in small protein bodies with fibrillar texture, suggesting a possible influence of Trxs on HSA solubilization. Moreover, the in vitro chaperone activity of Trx m and f was demonstrated, which supports the hypothesis of a direct relationship between Trx presence and HSA aggregates solubilization in plants co-expressing both proteins.  相似文献   

2.
Multigene engineering: dawn of an exciting new era in biotechnology   总被引:18,自引:0,他引:18  
Development of a rice variety enriched in provitamin A, the accumulation of polyhydroxybutyrate polyester in Arabidopsis nuclear transgenic plants (with enzymes targeted to chloroplasts in both), and the expression of bacterial operons via the chloroplast genome are recent landmark achievements in multigene engineering. Hyper-expression of transgenes has resulted in the formation of insecticidal protein crystals or inclusion bodies of pharmaceutical proteins in transgenic chloroplasts, achieving the highest level of transgene expression ever reported in transgenic plants. These achievements illustrate the potential of multigene engineering to realize benefits of the post-genomic revolution.  相似文献   

3.
Most human serum albumin (HSA) for medical applications is derived from human plasma due to the lack of suitable heterologous expression systems for recombinant HSA (rHSA). To determine whether plant cell cultures could provide an alternative source, we employed the hyper-translatable cowpea mosaic virus protein expression system (CPMV-HT) to stably express rHSA in tobacco Bright Yellow-2 (BY-2) cells. rHSA was stably produced with yield up to 11.88 μg/ml in the culture medium, accounting for 0.7% of total soluble protein, in a 25-ml flask. Cultivation of transgenic cells in modified Murashige and Skoog medium with a pH of 8.0 improved the yield of rHSA two-fold, which may be the result of reduced proteolytic activity in the modified medium. A simple purification scheme was developed to purify the rHSA from culture medium, resulting in a recovery of 48.41% of the secreted rHSA. Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry and N-terminal sequence analysis of the purified rHSA revealed that plant cell-derived rHSA is identical to that of the plasma-derived HSA. Our results show that the CPMV-HT system, which was originally developed as a transient expression system for use in whole plants, can also be used for high-level expression of rHSA, a protein highly susceptible to proteolysis, in transgenic tobacco cells.  相似文献   

4.
To prevent in vivo degradation, small peptides are usually expressed in fusion proteins from which target peptides can be released by proteolytic or chemical reagents. In this report, small ubiquitin-related modifier (SUMO) linked with a hexa-histidine tag was used as a fusion partner for the production of recombinant human urodilatin, a hormone for the treatment of acute decompensated heart failure. The fusion protein, which was overexpressed mainly as inclusion bodies in Escherichia coli, constituted about 25% of the total cell proteins. After purification by Ni-sepharose affinity chromatography and renaturation in refolding buffer, the fusion protein was cleaved with SUMO protease 1. Urodilatin was separated from the fusion partner by the subtractive chromatography using Ni-sepharose once again, and then further purified with reverse-phase high performance liquid chromatography. In vitro activity assay demonstrated that the recombinant urodilatin had a potent vasodilatory effect on rabbit aortic strips with an EC50 of 1.77 ± 0.53 μg/ml, which was similar to that of the synthetic urodilatin standard. The expression strategy presented in this study allows convenient high yield and easy purification of small recombinant peptides with native sequences. Z. Sun and Z. Xia contribute equally to the work.  相似文献   

5.
Rotaviruses are one of the worldwide leading causes of gastroenteritis in children under 5 yr old. The rotavirus nonstructural NSP5 is a phosphoprotein implicated in viroplasms formation, whereas NSP6 could have a possible regulatory role of NSP5. It has been reported that N- and C-termini of NSP5 are important for amount of protein is required for structural analysis, efficient expression systems are required. His-tag fusion at the C-terminus and glutathione-S-transferase (GST)-fusion at the N-terminus were used as expression systems, and conditions for recombinant proteins expression were obtained. His-tag fusion was not efficient to produce NSP5 (2% of total protein), but NSP6 was expressed in higher amounts (11% of total protein). In contrast, GST-NSP5 and GST-NSP6 proteins correspond to 34 and 31% of the total proteins, respectively. GST-fusions seem to have a protective effect against nonstructural rotavirus protein toxicity in Escherichia coli; however, in both systems, NSP5 and NSP6 recombinant proteins were expressed as inclusion bodies. Conditions for solubilization and purification of recombinant proteins were achieved. This is the first report of expression and purification of NSP5 and NSP6 recombinant proteins in suitable amounts for further structural analysis.  相似文献   

6.
7.
Ribosomes are extremely soluble ribonucleoprotein complexes. Heterologous target proteins were fused to ribosomal protein L23 (rpL23) and expressed in an rpL23 deficient Escherichia coli strain. This enabled the isolation of 70S ribosomes with covalently bound target protein. Isolation of recombinant proteins from 70S ribosomes was achieved by specific proteolytic cleavage followed by efficient removal of ribosomes by centrifugation. By this procedure we isolated active green fluorescent protein, streptavidin (SA), and murine interleukin-6 (mIL-6). Approximately 500microg of each protein was isolated per gram cellular wet weight. By pull-down assays we demonstrate that SA covalently bound to the ribosome binds d-biotin. Ribosomal coupling is therefore suggested as a method for the investigation of protein interactions. The presented strategy is in particular efficient for the expression, purification, and investigation of proteins forming inclusion bodies in the E. coli cytoplasm.  相似文献   

8.
Native Clostridium botulinum gene coding for type A neurotoxin has been used to construct recombinant derivatives coding separately for L and H polypeptide chains of the toxin. The gene derivatives have been cloned into an expression vector pET28b in E. coli BL21 (DE3) cells. The recombinant L and H proteins seem to be the major individual proteins after IPTG induction of the recombinant cells. Each of the proteins has been accumulated only in inclusion bodies. The recombinant L chain (but not H chain) has been successfully resolubilized. Each of the proteins contains six His residues on the N terminus which allows purification on Ni-agarose columns with high yield. No toxic effect has been observed for both L and H chains after injection of 10 micrograms of recombinant preparations purified from inclusion bodies. Moreover, the injection resulted in an increase in the titer of specific antibodies which protected mice from 1 DLM of type A native botulinum neurotoxin. Hence, the recombinant neurotoxin protein derivatives which are present in E. coli inclusion bodies can be a source of material for producing diagnostic and therapeutic sera against type A botulinum neurotoxin.  相似文献   

9.
Pokeweed antiviral protein (PAP) from the leaves of the pokeweed plant, Phytolacca americana, is a naturally occurring single-chain ribosome-inactivating protein, which catalytically inactivates both prokaryotic and eukaryotic ribosomes. The therapeutic potential of PAP has gained considerable interest in recent years due to the clinical use of native PAP as the active moiety of immunoconjugates against cancer and AIDS. The clinical use of native PAP is limited due to inherent difficulties in obtaining sufficient quantities of a homogenously pure and active PAP preparation with minimal batch to batch variability from its natural source. Previous methods for expression of recombinant PAP in yeast, transgenic plants and Escherichia coli have resulted in either unacceptably low yields or were too toxic to the host system. Here, we report a successful strategy which allows high level expression of PAP as inclusion bodies in E. coli. Purification of refolded recombinant protein from solubilized inclusion bodies by size-exclusion chromatography yielded biologically active recombinant PAP (final yield: 10 to 12 mg/L). The ribosome depurinating in vitro N-glycosidase activity and cellular anti-HIV activity of recombinant PAP were comparable to those of the native PAP. This expression and purification system makes it possible to obtain sufficient quantities of biologically active and homogenous recombinant PAP sufficient to carry out advanced clinical trials. To our knowledge, this is the first large-scale expression and purification of biologically active recombinant PAP from E. coli.  相似文献   

10.
Human serum albumin (HSA) is the most widely used clinical serum protein. Currently, commercial HSA can only be obtained from human plasma, due to lack of commercially feasible recombinant protein expression systems. In this study, inducible expression and secretion of HSA by transformed rice suspension cell culture was established. Mature form of HSA was expressed under the control of the sucrose starvation-inducible rice α Amy3 promoter, and secretion of HSA into the culture medium was achieved by using the α Amy3 signal sequence. High concentrations of HSA were secreted into culture medium in a short time (2–4 days) by sucrose depletion after cell concentrations had reached a peak density in culture medium containing sucrose. The recombinant HSA had the same electrophoretic mobility as commercial HSA and was stable and free from apparent proteolysis in the culture medium. In a flask scale culture with repeated sucrose provision-depletion cycles, HSA was stably produced with yields up to 11.5% of total medium proteins or 15 mg/L per cycle after each sucrose provision-depletion cycle. A bubble column type bioreactor was designed for production of HSA. In the bioreactor scale culture, HSA was produced with yields up to 76.4 mg/L 4 days after sucrose depletion. HSA was purified from the culture medium to high purity by a simple purification scheme. Enrichment of HSA in culture medium simplifies downstream purification, minimizes protease degradation, and may reduce production cost. The combination of a DNA construct containing the α Amy3 promoter and signal sequence, and the use of a rice suspension cell culture can provide an effective system for the production of recombinant pharmaceutical proteins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号