首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 19 毫秒
1.
2.
3.
Gray MW 《IUBMB life》2003,55(4-5):227-233
'RNA editing' describes the programmed alteration of the nucleotide sequence of an RNA species, relative to the sequence of the encoding DNA. The phenomenon encompasses two generic patterns of nucleotide change, 'insertion/deletion' and 'substitution', defined on the basis of whether the sequence of the edited RNA is colinear with the DNA sequence that encodes it. RNA editing is mediated by a variety of pathways that are mechanistically and evolutionarily unrelated. Messenger, ribosomal, transfer and viral RNAs all undergo editing in different systems, but well-documented cases of this phenomenon have so far been described only in eukaryotes, and most often in mitochondria. Editing of mRNA changes the identity of encoded amino acids and may create translation initiation and termination codons. The existence of RNA editing violates one of the long-accepted tenets of genetic information flow, namely, that the amino acid sequence of a protein can be directly predicted from the corresponding gene sequence. Particular RNA editing systems display a narrow phylogenetic distribution, which argues that such systems are derived within specific eukaryotic lineages, rather than representing traits that ultimately trace to a common ancestor of eukaryotes, or even further back in evolution. The derived nature of RNA editing raises intriguing questions about how and why RNA editing systems arise, and how they become fixed as additional, essential steps in genetic information transfer.  相似文献   

4.
Single-stranded DNA oligonucleotides (ssODNs) can direct the repair of a single base mutation in human genes. While the regulation of this gene editing reaction has been partially elucidated, the low frequency with which repair occurs has hampered development toward clinical application. In this work a CRISPR/Cas9 complex is employed to induce double strand DNA breakage at specific sites surrounding the nucleotide designated for exchange. The result is a significant elevation in ssODN-directed gene repair, validated by a phenotypic readout. By analysing reaction parameters, we have uncovered restrictions on gene editing activity involving CRISPR/Cas9 complexes. First, ssODNs that hybridize to the non-transcribed strand direct a higher level of gene repair than those that hybridize to the transcribed strand. Second, cleavage must be proximal to the targeted mutant base to enable higher levels of gene editing. Third, DNA cleavage enables a higher level of gene editing activity as compared to single-stranded DNA nicks, created by modified Cas9 (Nickases). Fourth, we calculated the hybridization potential and free energy levels of ssODNs that are complementary to the guide RNA sequences of CRISPRs used in this study. We find a correlation between free energy potential and the capacity of single-stranded oligonucleotides to inhibit specific DNA cleavage activity, thereby indirectly reducing gene editing activity. Our data provide novel information that might be taken into consideration in the design and usage of CRISPR/Cas9 systems with ssODNs for gene editing.  相似文献   

5.
6.
7.
8.
RNA editing   总被引:3,自引:0,他引:3  
The term RNA editing describes those molecular processes in which the information content is altered in an RNA molecule. To date such changes have been observed in tRNA. rRNA and mRNA molecules of eukaryotes, but not prokaryotes. The demonstration of RNA editing in prokaryotes may only be a matter of time, considering the range of species in which the various RNA editing processes have been found. RNA editing occurs in the nucleus, as well as in mitochondria and plastids, which are thought to have evolved from prokaryotic-like endosymbionts. Most of the RNA editing processes, however, appear to be evolutionarily recent acquisitions that arose independently. The diversity of RNA editing mechanisms includes nucleoside modifications such as C to U and A to I deaminations, as well as non-templated nucleotide additions and insertions. RNA editing in mRNAs effectively alters the amino acid sequence of the encoded protein so that it differs from that predicted by the genomic DNA sequence.  相似文献   

9.
10.
11.
12.
Gray MW 《Biochemistry》2012,51(26):5235-5242
The term "RNA editing" encompasses a wide variety of mechanistically and phylogenetically unrelated processes that change the nucleotide sequence of an RNA species relative to that of the encoding DNA. Two general classes of editing, substitution and insertion/deletion, have been described, with all major types of cellular RNA (messenger, ribosomal, and transfer) undergoing editing in different organisms. In cases where RNA editing is required for function (e.g., to generate a translatable open reading frame in a mRNA), editing is an obligatory step in the pathway of genetic information expression. How, when, and why individual RNA editing systems originated are intriguing biochemical and evolutionary questions. Here I review briefly what is known about the biochemistry, genetics, and phylogenetics of several very different RNA editing systems, emphasizing what we can deduce about their origin and evolution from the molecular machinery involved. An evolutionary model, centered on the concept of "constructive neutral evolution", is able to account in a general way for the origin of RNA editing systems. The model posits that the biochemical elements of an RNA editing system must be in place before there is an actual need for editing, and that RNA editing systems are inherently mutagenic because they allow potentially deleterious or lethal mutations to persist at the genome level, whereas they would otherwise be purged by purifying selection.  相似文献   

13.
14.
15.
RNA editing alters the nucleotide sequence of an RNA molecule so that it deviates from the sequence of its DNA template. Different RNA-editing systems are found in the major eukaryotic lineages, and these systems are thought to have evolved independently. In this study, we provide a detailed analysis of data on C-to-U editing sites in land plant chloroplasts and propose a model for the evolution of RNA editing in land plants. First, our data suggest that the limited RNA-editing system of seed plants and the much more extensive systems found in hornworts and ferns are of monophyletic origin. Further, although some eukaryotic editing systems appear to have evolved to regulate gene expression, or at least are now involved in gene regulation, there is no evidence that RNA editing plays a role in gene regulation in land plant chloroplasts. Instead, our results suggest that land plant chloroplast C-to-U RNA editing originated as a mechanism to generate variation at the RNA level, which could complement variation at the DNA level. Under this model, many of the original sites, particularly in seed plants, have been subsequently lost due to mutation at the DNA level, and the function of extant sites is merely to conserve certain codons. This is the first comprehensive model for the evolution of the chloroplast RNA-editing system of land plants and may also be applicable to the evolution of RNA editing in plant mitochondria.  相似文献   

16.
Adenosine-to-inosine modification of RNA molecules (A-to-I RNA editing) is an important mechanism that increases transciptome diversity. It occurs when a genomically encoded adenosine (A) is converted to an inosine (I) by ADAR proteins. Sequencing reactions read inosine as guanosine (G); therefore, current methods to detect A-to-I editing sites align RNA sequences to their corresponding DNA regions and identify A-to-G mismatches. However, such methods perform poorly on RNAs that underwent extensive editing ("ultra"-editing), as the large number of mismatches obscures the genomic origin of these RNAs. Therefore, only a few anecdotal ultra-edited RNAs have been discovered so far. Here we introduce and apply a novel computational method to identify ultra-edited RNAs. We detected 760 ESTs containing 15,646 editing sites (more than 20 sites per EST, on average), of which 13,668 are novel. Ultra-edited RNAs exhibit the known sequence motif of ADARs and tend to localize in sense strand Alu elements. Compared to sites of mild editing, ultra-editing occurs primarily in Alu-rich regions, where potential base pairing with neighboring, inverted Alus creates particularly long double-stranded RNA structures. Ultra-editing sites are underrepresented in old Alu subfamilies, tend to be non-conserved, and avoid exons, suggesting that ultra-editing is usually deleterious. A possible biological function of ultra-editing could be mediated by non-canonical splicing and cleavage of the RNA near the editing sites.  相似文献   

17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号