首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 469 毫秒
1.
Leaf morphology in four species of Desmos and three species of Dasymaschalon was comparatively studied using scanning electron microscopy (SEM) together with epidermal maceration and paraffin methods. The results showed that there were some remarkable foliar anatomical differences between Desmos and Dasymaschalon. In leaves of Desmos, some of the adaxial epidermal cells were enlarged into globose cells each containing one large cluster crystal, while other epidermal cells were normal without any crystal, and in abaxial epidermis each cell contained one smaller cluster crystal. The leaf structure was typically bifacial, and the mesophyll cells were differentiated into palisade tissue and spongy tissue. Oil cells were distributed in the second layer of palisade and the whole spongy tissue, and the number of oil cells per mm leaf width ranged from 4 to 6. The vascular tissue in the midrib was separated into bundles by parenchyma cells. In leaves of Dasymaschalon, all the adaxial epidermal cells contained one cluster crystal, and the crystal size was similar to that of thecrystals in abaxial epidermal cells. The leaf structure was more or less isobilateral. Oil cells were distributed only in the spongy tissue between the two layers of the palisade, and the number of oil cells per mm leaf width ranged from 2 to 3. The vascular tissue in the midrib formed a continuous circle. It is clear that the anatomical differences between Desmos and Dasymaschalon are remarkable, supporting the treatment of Desmos and Dasymaschalon as two independent genera.  相似文献   

2.
利用扫描电镜技术、叶片离析法和石蜡切片法研究了假鹰爪属Desmos 4种植物和皂帽花属Dasy-maschalon 3种植物叶片的形态结构。结果表明:假鹰爪属植物叶片近轴面表皮具大型球状含晶簇细胞和不含晶簇的表皮细胞两种类型,远轴面表皮细胞均具一较小的晶簇;叶肉组织明显分化为栅栏组织细胞和海绵组织细胞,油细胞分布于第2层的栅栏组织和海绵组织内,单位毫米叶宽油细胞数为4~6个;主脉维管组织被薄壁细胞分隔成束状。皂帽花属植物叶片近轴面表皮细胞形状相同,均具一晶簇,远轴面表皮细胞的晶簇和近轴面表皮细胞的晶簇相似;靠近上、下表皮的叶肉组织均分化为栅栏组织细胞,在两层栅栏组织细胞之间分化为一至几层海绵组织细胞,油细胞分布于海绵组织内,单位毫米叶宽油细胞数为2~3个;主脉维管组织形成连续的环状。由此可见两属叶的结构具有明显的差异,因而支持假鹰爪属和皂帽花属为两个独立属的观点。  相似文献   

3.
盐胁迫下海马齿叶片结构变化   总被引:3,自引:0,他引:3  
用石蜡切片法制片、光学显微镜观察了海马齿植物营养器官--叶片的盐适应结构变化,以明确盐生植物对盐渍生境适应的叶片结构变化特征,为盐生植物的耐盐机理研究提供依据.结果表明:(1)海马齿植物叶片表现出许多适应干旱和盐渍环境的特点,其基本特征为:叶片肉质化,为典型的等面叶;栅栏组织发达,且含有大量叶绿体;叶表皮气孔微下陷,叶表皮细胞外壁的角质层较薄,表皮细胞大小不等,外切向壁外凸,参差不齐,有些表皮细胞特化为泡状细胞,其数量与盐胁迫的浓度呈正相关.(2)叶的海绵组织中含有大量的薄壁细胞,幼叶海绵组织的薄壁细胞在0.5%~2.5% NaCl胁迫下均变大,且数量也增加;而老叶海绵组织的薄壁细胞只有在低浓度(0.5% NaCl)的盐胁迫下变大,而在高浓度下其薄壁细胞反而变小或成不规则形状.(3)盐晶广泛分布在海马齿的叶肉组织细胞内,且其数量随着盐胁迫浓度增加而增加.  相似文献   

4.
Marrow-stem kale plants grown on plots receiving frequent additions of sulphate of ammonia showed a 40% increase in length of internode and a 25% increase in number of nodes per plant, and the leaf size was increased by between 50 and 70% over plants in plots receiving no N fertilizer. Leaves of kale continue to increase in area until they turn yellow, and the high N leaves showed a greater rate of increase in area at every stage in the life of the leaf.
Various features of leaf structure, such as stomatal index, and thickness of palisade and mesophyll, were unaffected by N treatment. The size of the epidermal cells of the leaves was very variable, and although the high N leaves showed a 12% increase in area per epidermal cell over the low N leaves, this difference is not statistically significant. The increased area of the high N leaves can therefore be attributed mainly to increased cell division during the life of the leaf. Only a very slight increase in rate of cell division is necessary to produce the observed effect.
The greater leaf area of the high N plants can be attributed mainly to increased size of individual leaves, but there was also a significantly greater number of living functional leaves per plant on the high N plants; at 23 weeks from sowing the high N plants had an average of 13.4 living leaves, while the low N plants had only 11.7 living leaves per plant.
There was an appreciable degree of N succulence in the high N kale leaves, which showed a 2% greater moisture content than the low N leaves.
A seasonal drift in epidermal cell size, palisade thickness, and total leaf thickness, is shown to be fully significant, statistically. Marked variations in stomatal frequency are barely significant at the 5% level.  相似文献   

5.
采用石蜡制片、扫描电镜和透射电镜方法,研究了祁连山植被垂直分布带海拔2300、3200和3900 m 珠芽蓼叶片组织结构、叶表皮特征和叶绿体超微结构对海拔升高的适应性变化。结果表明: 珠芽蓼为异面叶,随海拔升高,叶片表皮毛数目减少而直径增大变粗,表皮蜡质层结构更加致密。叶片厚度在海拔3200 m最大,分别比海拔2300和3900 m增加了39.6%和50.5%。从海拔2300到3200 m,栅栏组织细胞层数由2层增加为3层且细胞排列紧密,海绵组织细胞间隙逐渐增大;在海拔3900 m处,栅栏组织细胞层数减少至2层且细胞间隙增加,海绵组织细胞间隙减小,表皮细胞厚度增加,但细胞层数在3个海拔间无显著差异。随海拔升高,叶下表皮附属物和气孔下室物质的积累增加,气孔密度增加,张度降低,气孔位置由表皮拱起变为内陷。从海拔2300到3200 m,基粒片层由6~9层增至8~12层;至海拔3900 m,基粒片层降为 2~3层且片层之间变得致密,基粒数目减少且排列方向不规则,叶绿体膨大,被膜部分降解。随海拔升高,叶片部分解剖结构指标之间呈现出明显的协同进化,表现出较大的可塑性。珠芽蓼叶片解剖与超微结构在不同海拔表现出的差异显示,表型可塑性及其对高山异质环境和海拔变化的适应特征,是植物长期适应高山复杂环境的结果。  相似文献   

6.
The size, shape, and number of chloroplasts in the palisade and spongy parenchyma layers of Haberlea rhodopensis leaves changed significantly during desiccation and following rehydration. The chloroplasts became smaller and more rounded during desiccation, and aggregated in the middle of the cell. The size and number of chloroplasts in the palisade parenchyma cells were higher than in spongy parenchyma. The good correlation observed between the size or number of chloroplasts and the cross-sectional area of mesophyll cells, the cross-sectional width of the leaf and its water content suggested that the palisade cells were more responsive to water availability than the spongy cells. Changes in chloroplast number during desiccation and rehydration process are characteristic features for desiccation-tolerant plants (especially in homoiochlorophyllous strategy).  相似文献   

7.
运用石蜡切片法与组织离析法研究田菁营养器官解剖结构特征。结果表明,田菁根部显示典型的次生结构特征,内皮层具凯氏带;根表面有大量根瘤,根瘤菌分布在根部皮层,维管组织相连形成输导组织网。茎部表皮细胞壁出现角质层,皮层含有特化的厚角组织,由大型薄壁细胞构成,维管组织具有含晶韧皮纤维。茎瘤3~4个,大小不等且不连续分布,茎瘤外层为皮层,内层为含菌组织。叶片为异面叶,角质层与表皮层较厚,栅栏组织发达,近叶厚的1/2,海绵组织细胞间隙大,气孔小且多。田菁根、茎的木质部发达,有较多大孔径的导管及丰富的木纤维,叶片栅海比、组织结构紧密度(CTR)较大。田菁的解剖特点显示出其具有的固氮特性以及耐盐、抗旱的生态适应性。  相似文献   

8.
Salinity inhibits leaf growth in association with changes in cell size. The objective of this study was to determine the spatial distributions of the composition, number and dimensions of epidermal cells in the mature blades of leaf four of wheat seedlings under saline conditions. Plants were grown in loamy soil either with or without 120 mmol/L NaCl in a growth chamber, and harvested after leaf four was fully developed. The results of the spatial distribution analyses of width along the blade showed that salinity not only reduced the width of the leaf blade, but that it also altered the distribution pattern of blade width along the leaf axis. The reduction in the final size of the leaf blade was associated with a reduction in the total number of epidermal cells and in their widths and lengths. This study also revealed the spatial effects of salinity on the blade and epidermal cell dimensions along the leaf axis. In particular, salinity inhibited the total cell number for interstomatal, sister and elongated cells, implying that cell division in wheat leaves is inhibited by salinity. However, the lengths of interstomatal cells were not affected by salinity (unlike those for the sister and elongated cells), suggesting the relative contributions of cell length and numbers to the reduction in the final length of the blade under salinity is dependent on cell type.  相似文献   

9.
 对石蒜属( Lycoris Herb. ) 12 种植物叶片的比较解剖学研究表明: (1) 石蒜属植物叶片横切面的端部、中部及基部的轮廓基本呈浅“W”或“V”字型, 有些种的表皮细胞上具有明显的尖刺状乳突; ( 2)石蒜属植物均为异面叶, 叶肉组织有一定的栅栏组织和海绵组织分化, 但二者的厚度、叶肉中所占比例及栅栏组织的细胞层数在种间有一定的差异; (3) 海绵组织发达、具有大而明显的薄壁细胞或细胞裂溶后形成空腔(分泌腔或气腔); (4) 叶片中维管束数目大多为奇数, 叶脉维管束鞘由薄壁细胞组成; (5) 石蒜属植物横切面上叶缘的形状分为圆弧形和楔形两种类型。石蒜属植物叶的解剖结构具有许多相似特征; 同时又具有一定的种间差异, 可为石蒜属植物的种间关系和开发利用提供有价值的信息。  相似文献   

10.
Four-year-old seedlings ofQuercus petraea (Matt.) Liebl. andNothofagus procera (Poepp. et Endl.) Querst were grown outdoors in pots while subjected to full, medium and low irradiances. Shading and decrease in height of leaf attachment generally increased specific leaf area, the diameters of chloroplasts and of palisade and spongy mesophyll cells, but decreased leaf thickness, number of palisade cell layers, length of palisade and spongy mesophyll cells, number of chloroplasts per mesophyll cell and epidermal cell and cuticle thickness, stomata and hair densities per unit leaf area, hair length, maximum hair breath and cell wall thickness in the two species. However, inN. procera grown under full irradiance, leaves at the upper and middle positions had hairs on both upper and lower epidermes, whereas those in other treatments and all leaves in all treatments inQ. petraea, had theirs only on the upper epidermis.  相似文献   

11.
Developmental process of sun and shade leaves in Chenopodium album L.   总被引:1,自引:0,他引:1  
The authors’ previous study of Chenopodium album L. revealed that the light signal for anatomical differentiation of sun and shade leaves is sensed by mature leaves, not by developing leaves. They suggested that the two‐cell‐layered palisade tissue of the sun leaves would be formed without a change in the total palisade tissue cell number. To verify that suggestion, a detailed study was made of the developmental processes of the sun and shade leaves of C. album with respect to the division of palisade tissue cells (PCs) and the data was expressed against developmental time (leaf plastochron index, LPI). The total number of PCs per leaf did not differ between the sun and shade leaves throughout leaf development (from LPI ?1 to 10). In both sun and shade leaves, anticlinal cell division of PCs occurred most frequently from LPI ?1 to 2. In sun leaves, periclinal division of PCs occurred synchronously with anticlinal division. The constancy of the total number of PCs indicates that periclinal divisions occur at the expense of anticlinal divisions. These results support the above suggestion that two‐cell‐layered palisade tissue is formed by a change of cell division direction without a change in the total number of PCs. PCs would be able to recognize the polarity or axis that is perpendicular to the leaf plane and thereby change the direction of their cell divisions in response to the light signal from mature leaves.  相似文献   

12.
稀有植物香果树叶解剖结构的研究   总被引:3,自引:1,他引:2  
通过石蜡切片法制片,光学显微镜观察,Motic显微摄像,研究了香果树(Emmenopterys henryi Oliv.)的叶形态解剖结构。结果表明,香果树叶为典型异面叶;表皮由一层紧密的形状不规则的表皮细胞组成,细胞外壁角质膜较薄;气孔类型为平列型,仅分布于下表皮;下表皮上零星分布着多细胞表皮毛;叶肉组织发达,栅栏组织由1~2层排列整齐的圆柱形细胞构成;海绵组织枝状分布,排列极为疏松,细胞间隙大;叶脉主脉发达;上述特征反映出植物结构与环境的统一性。  相似文献   

13.
一品红试管苗移栽驯化期叶片的解剖结构变化   总被引:3,自引:0,他引:3  
对一品红试管苗移栽驯化,同时研究了驯化过程中叶片结构的变化,结果表明,一品红在珍珠岩基质中成活率达98%,随着移栽时间的延长,表皮细胞增大,排列紧密;叶肉细胞间隙减小,栅栏组织细胞长度增加,主脉增厚,导管数目增加,保水,输水和抗逆能力增强。  相似文献   

14.
暗罗属植物叶的比较解剖学研究   总被引:6,自引:0,他引:6  
利用扫描电镜技术、叶片叶片离析方法和石蜡切片法对暗罗属12种植物叶和形态结构进行了比较研究。结果表明,叶表皮细胞形状、气孔器形态、表皮毛类型、表皮细胞中晶体类型、叶肉中油细胞分布位置、栅栏组织和海绵组织厚度的比值,以及主脉维管组织的结构特征等具有明显的种间差异。可以利用这些叶的解剖特征将暗罗属植物相互区别开来。  相似文献   

15.
The leaf structure and morphology, the structure and location of oil cells in leaves of 82 species and 1 subspecies in 10 genera of the Magnoliaceae were comparatively studied using tissue clearing, paraffin sectioning and thin sectioning. In leaves of Liriodendroideae, some of abaxial epidermal cells are papillose and the vascular tissue of the main vein appeared to be separated. However, papillose cells were not found and there were uniseriate, multicellular or unicellular hairs distributed on the epiderm, and the vascular tissue of the main vein appeared to be continuous in leaves of the Magnolioideae. Furthermore, in the Magnolioideae, the structure of leaves of Manglietia were different from that of Magnolia. These results support the separation of Magnolioideae and Liriodendroideae, and suggest that Manglietia and Magnolia be independent genera, which is consistent with Law’ s taxonomic scheme. Oil cells are one of marked features of the leaf anatomy of the Magnoliaceae, and they are mainly distributed in the palisade tissue in leaves of 47 species and in the spongy tissue in leaves of 5 species, and dispersed in the whole mesophyll in leaves of 31 species. The size and location of oil cells in leaves, combined with the thickness of leaves, the number of layers of the palisade tissue, the ratio of palisade tissue to spongy tissue in thickness, the hypo-derm, and the type of hairs may be used as the characteristics of genera and even species.  相似文献   

16.
中国木兰科植物的叶结构及其油细胞的比较解剖学研究   总被引:13,自引:0,他引:13  
利用组织透明法、石蜡切片法及薄切片法对木兰科10属82种1亚种植物叶片的结构和油细胞的 分布密度、结构及其在叶肉中的分布进行了比较研究。鹅掌楸亚科和木兰亚科在叶结构上的主要区别是:鹅掌楸亚科两种植物叶的部分下表皮细胞乳突状,且整个细胞外壁只形成一个乳突,而在木兰亚科植物中有单列多细胞或单细胞的表皮毛,却未发现乳突;鹅掌楸亚科植物叶主脉维管组织环分隔呈束状,且其外包被的纤维也排列成束状,而木兰亚科的80种1亚种植物中,叶主脉维管组织连成轮状,其外面也由一圈连续的纤维环所包围。从而支持木兰科中木兰亚科和鹅掌楸亚科两个亚科的划分。并且,从叶主脉的演化趋势来看,鹅掌楸亚科较木兰亚科进化。另外,木莲属植物叶片的结构与木兰属具有明显差异,因而进一步证明木莲属是不同于木兰属的一个独立的属。油细胞是木兰科植物叶片解剖的显著特征,在叶肉中的分布可划分为3种类型:(A)主要分布于栅栏组织;(B)主要分布于海绵组织;(c)均匀散布于整个叶肉中。油细胞的大小及其在叶中的分布与叶厚、栅栏组织层数、栅栏组织与海绵组织厚度间的比值以及下皮层的有无、表皮毛的类型、叶脉的结构等特征相结合,可作为属、甚至种的鉴别特征。  相似文献   

17.
番荔枝科蚁花属和澄广花属叶的比较解剖学研究   总被引:1,自引:1,他引:0  
利用扫描电镜技术,叶片离析方法和石蜡切片法对蚁花属1种和澄广花属9种植物叶的形态结构进行比较研究。结果表明,两属植物有许多相似之处,但又有以下一些显著不同;蚁花属植物叶表皮细胞均具一晶族,叶肉组织中具1-2层栅栏组织细胞,油细胞均匀分布在栅栏组织和海绵组织中,栅栏组织在主脉处不连续,而澄广花属植物叶的表皮细胞内具一单斜晶,叶肉组织中具1层栅栏组织细胞,油细胞仅分布在海绵组织中,栅栏组织在主脉处连续,结果为蚁花属和澄广花属的分类学处理提供了新证据。  相似文献   

18.
The effects of nitrogen (N) availability on cell number andcell size, and the contribution of these determinants to thefinal area of fully expanded leaves of sunflower (Helianthusannuus L.) were investigated in glasshouse experiments. Plantswere given a high (N =315 ppm) or low (N=21 ppm) N supply andwere transferred between N levels at different developmentalstages (5 to 60% of final size) of target leaves. The dynamicsof cell number in unemerged (< 0.01 m in length) leaves ofplants growing at high and low levels of N supply were alsofollowed. Maximum leaf area (LAmax) was strongly (up to two-fold)and significantly modified by N availability and the timingof transfer between N supplies, through effects on leaf expansionrate. Rate of cell production was significantly (P<0.05)reduced in unemerged target leaves under N stress, but therewas no evidence of a change in primordium size or in the durationof the leaf differentiation–emergence phase. In fullyexpanded leaves, number of cells per leaf (Ncell), leaf areaper cell (LAcell) and cell area (Acell) were significantly reducedby N stress. WhileLAcell and Acellresponded to changeover treatmentsirrespective of leaf size, significant (P<0.05) changes inNcellonly occurred when the changeover occurred before the leafreached approx. 10% of LAmax. There were no differential effectsof N on numbers of epidermal vs. mesophyll cells. The resultsshow that the effects of N on leaf size are largely due to effectson cell production in the unemerged leaf and on both cell productionand expansion during the first phase of expansion of the emergedleaf. During the rest of the expansion period N mainly affectsthe expansion of existing cells. Cell area plasticity permitteda response to changes in N supply even at advanced stages ofleaf expansion. Increased cell expansion can compensate forlow Ncellif N stress is relieved early in the expansion of emergedleaves, but in later phases Ncellsets a limit to this response.Copyright 1999 Annals of Botany Company Helianthus annuus, leaf expansion, leaf cell number, leaf cell size, nitrogen, leaf growth, sunflower.  相似文献   

19.
在大田栽培条件下,大豆‘垦农4号’于开花始期叶面喷施植物生长物质2-N,N-二乙氨基乙基己酸酯(DTA)、氯化胆碱(CC)和SOD模拟物(SODM),并比较不同植物生长物质影响大豆叶片、叶柄和茎的解剖结构。结果表明,喷施植物生长物质后30d,叶中栅栏组织厚度及栅海比均增加;喷施SODM、DTA的叶中主脉维管束横截面积和木质部导管数目增加,CC对主脉维管柬横截面积和木质部导管数目的影响不明显;喷施3种植物生长物质的叶柄表皮细胞厚度、叶柄维管束横截面积和导管数量增加,茎部薄壁组织、韧皮部和木质部厚度增加,茎的直径也增加。  相似文献   

20.
BACKGROUND AND AIMS: Cassava (Manihot esculenta) is an important food crop in the tropics that has a high growth rate in optimal conditions, but also performs well in drought-prone climates. The objectives of this work were to determine the effects of water deficit and rewatering on the rate of expansion of leaves at different developmental stages and to evaluate the extent to which decreases in cell proliferation, expansion, and delay in development are responsible for reduced growth. METHODS: Glasshouse-grown cassava plants were subjected to 8 d of water deficit followed by rewatering. Leaves at 15 developmental stages from nearly full size to meristematic were sampled, and epidermal cell size and number were measured on leaves at four developmental stages. KEY RESULTS: Leaf expansion and development were nearly halted during stress but resumed vigorously after rewatering. In advanced-stage leaves (Group 1) in which development was solely by cell expansion, expansion resumed after rewatering, but not sufficiently for cell size to equal that of controls at maturity. In Group 2 (cell proliferation), relative expansion rate and cell proliferation were delayed until rewatering, but then recovered partially, so that loss of leaf area was due to decreased cell numbers per leaf. In Group 3 (early meristematic development) final leaf area was not affected by stress, but development was delayed by 4-6 d. On a plant basis, the proportion of loss of leaf area over 26 d attributed to leaves at each developmental stage was 29, 50 and 21 % in Group 1, 2 and 3, respectively. CONCLUSIONS: Although cell growth processes were sensitive to mild water deficit, they recovered to a large extent, and much of the reduction in leaf area was caused by developmental delay and a reduction in cell division in the youngest, meristematic leaves.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号