首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 109 毫秒
1.
Pea (Pisum sativum L. cv. Azad) plants exposed to 4 and 40 microM of Cd for 7 d in hydroponic culture were analysed with reference to the distribution of metal, the accumulation of biomass and the metal's effects on antioxidants and antioxidative enzymes in roots and leaves. Cd-induced a decrease in plant biomass. The maximum accumulation of Cd occurred in roots followed by stems and leaves. An enhanced level of lipid peroxidation and an increased tissue concentration of hydrogen peroxide (H2O2) in both roots and leaves indicated that Cd caused oxidative stress in pea plants. Roots and leaves of pea plants responded differently to Cd with reference to the induction of enhanced activities of most of the enzymes monitored in the present study. These differential responses to Cd were further found to be associated with levels of Cd to which the plants were exposed. Cd-induced enhancement in superoxide dismutase (SOD) activity was more at 40 microM than at 4 microM in leaves. While catalase (CAT) prominently increased in leaves both at 4 and 40 microM Cd, ascorbate peroxidase (APX) showed maximum stimulation at 40 microM Cd in roots. Enhancement in glutathione reductase (GR) activity was also more at 40 microM than at 4 microM Cd in roots. While glutathione peroxidase (GPOX) activity decreased in roots and remained almost unmodified in leaves, glutathione S-transferase (GST) showed pronounced stimulation in both roots and leaves of pea plants exposed to 40 microM Cd. Increased activities of antioxidative enzymes in Cd-treated plants suggest that they have some additive function in the mechanism of metal tolerance in pea plants.  相似文献   

2.
The effects of cadmium (Cd) uptake on ultrastructure and lipid composition of chloroplasts were investigated in 28-day-old tomato plants (Lycopersicon esculentum var. Ibiza F1) grown for 10 days in the presence of various concentrations of CdCl2. Different growth parameters, lipid and fatty acid composition, lipid peroxidation, and lipoxygenase activity were measured in the leaves in order to assess the involvement of this metal in the generation of oxidative stress. We first observed that the accumulation of Cd increased with external metal concentration, and was considerably higher in roots than in leaves. Cadmium induced a significant inhibition of growth in both plant organs, as well as a reduction in the chlorophyll and carotenoid contents in the leaves. Ultrastructural investigations revealed that cadmium induced disorganization in leaf structure, essentially marked by a lowered mesophyll cell size, reduced intercellular spaces, as well as severe alterations in chloroplast fine structure, which exhibits disturbed shape and dilation of thylakoid membranes. High cadmium concentrations also affect the main lipid classes, leading to strong changes in their composition and fatty acid content. Thus, the exposure of tomato plants to cadmium caused a concentration-related decrease in the fatty acid content and a shift in the composition of fatty acids, resulting in a lower degree of fatty acid unsaturation in chloroplast membranes. The level of lipid peroxides and the activity of lipoxygenase were also significantly enhanced at high Cd concentrations. These biochemical and ultrastructural changes suggest that cadmium, through its effects on membrane structure and composition, induces premature senescence of leaves.  相似文献   

3.
The phytotoxicity imposed by cadmium (Cd) and its detoxifying responses of Bacopa monnieri L. have been investigated. Effect on biomass, photosynthetic pigments and protein level were evaluated as gross effect, while lipid peroxidation and electrolyte leakage reflected oxidative stress. Induction of phytochelatins and enzymatic and non-enzymatic antioxidants were monitored as plants primary and secondary metal detoxifying responses, respectively. Plants accumulated substantial amount of Cd in different plant parts (root, stem and leaf), the maximum being in roots (9240.11 microg g(-1) dw after 7 d at 100 microM). Cadmium induced oxidative stress, which was indicated by increase in lipid peroxidation and electrical conductivity with increase in metal concentration and exposure duration. Photosynthetic pigments showed progressive decline while protein showed slight increase at lower concentrations. Enzymes viz., superoxide dismutase (SOD, EC 1.15.1.1), guaiacol peroxidase (GPX, EC 1.11.1.7) ascorbate peroxidase (APX, EC 1.11.1.11) and glutathione reductase (GR, EC 1.6.4.2) showed stimulation except catalase (CAT, EC 1.11.1.6) which showed declining trend. Initially, an enhanced level of cysteine, glutathione and non-protein thiols was observed, which depleted with increase in exposure concentration and duration. Phytochelatins induced significantly at 10 microM Cd in roots and at 50 microM Cd in leaves. The phytochelatins decreased in roots at 50 microM Cd, which may be correlated with reduced level of GSH, probably due to reduced GR activity, which exerted increased oxidative stress as also evident by the phenotypic changes in the plant like browning of roots and slight yellowing of leaves. Thus, besides synthesis of phytochelatins, availability of GSH and concerted activity of GR seem to play a central role for Bacopa plants to combat oxidative stress caused by metal and to detoxify it. Plants ability to accumulate and tolerate high amount of Cd through enhanced level of PCs and various antioxidants suggest it to be a suitable candidate for phytoremediation.  相似文献   

4.
As reported previously, atmospheric nitrogen dioxide (NO2) at an ambient level increased plant size and the contents of cell constituents. We investigated this effect of atmospheric NO2 on decontamination of cadmium (Cd) by kenaf (Hibiscus cannabinus). Seventeen-day-old seedlings of kenaf were grown in air either with NO2 or without NO2. (Plants were exposed to 100 +/- 50 ppb NO2 for 10 d under irrigation of 0.1% Hyponex supplemented with 20 microM CdCl2.) Plants were then harvested and the biomass of stems, leaves, and roots, as well as the content of Cd in the organs, was determined. The stem and root biomass per plant were 1.25-1.27-fold greater in +NO2 plants than in -NO2 plants. The Cd content per stem was more than 30% greater in +NO2 plants than in -NO2 plants.  相似文献   

5.
Cadmium accumulation and oxidative burst in garlic (Allium sativum)   总被引:13,自引:0,他引:13  
To investigate the temporal sequence of physiological reactions of garlic (Allium sativum) to cadmium (Cd) treatment, seedlings developed from cloves were grown in increasing concentrations of CdCl2, ranging from 1-10 mM, for up to 8 days in sand. Analysis of Cd uptake indicated that most Cd accumulated in roots, but some was also translocated and accumulated in leaves at longer exposure time (after 12h) and higher concentrations (5 and 10mM) of CdCl2. Changes in activities of antioxidative enzymes, including superoxide dismutase (SOD), peroxidase (POD) and catalase (CAT), were characterized in leaves of garlic seedlings. Cd (5 and 10 mM) initially inhibited the activities of SOD and CAT but thereafter recovered or even increased compared with control plants. POD activities at 5 and 10 mM of Cd increased more than 3-4 times over control plants within 12 h and then dropped, but were still higher than controls at the end of the experiment. Otherwise lipid peroxidation enhanced with the increasing of incubation time and concentrations of external Cd. Leaves exposed to 1 mM CdCl2 showed a less pronounced response and only a small reduction in shoot growth. These results suggested that in leaves of garlic seedlings challenged by CdCl2 at higher concentrations, induction of these various enzymes is part of a general defense strategy to cope with overproduction of reactive oxygen. The possible mechanism of antioxidative enzymes changing before Cd accumulation in leaves of garlic seedlings is discussed.  相似文献   

6.
The treatment of growing tomato (Lycopersicum esculentum) plants with CdCl2 (0, 1, 5, 10, 25 et 50 microM) on various plant physiological parameters and membrane lipids of primary and young leaves was studied. In leaves of tomato plants Cd produced a significant inhibition of growth, chlorophyll content and alteration of the nutrient status in both primary and young leaves. A decrease in lipid contents, specially galactolipids and phospholipids, was observed after Cd treatment.  相似文献   

7.
The behavior of glutathione reductase (GR, EC 1.6.4.2) activity and isoforms were analyzed in wheat (Triticum aestivum L.) leaves and roots exposed to a chronic treatment with a toxic cadmium (Cd) concentration. A significant growth inhibition (up to 55%) was found in leaves at 7, 14 and 21 days, whereas roots were affected (51%) only after three weeks. Wheat plants grown in the presence of 100microM Cd showed a time-dependent accumulation of this metal, with Cd concentration being 10-fold higher in roots than in leaves. Nevertheless, lipid peroxidation was augmented in leaves in all experiments, but not in roots until 21 days. Cadmium treatment altered neither the GR activity nor the isoform pattern in the leaves. However, GR activity increased 111% and 200% in roots at 7 and 14 days, respectively, returning to control levels after 21 days. Three GR isoforms were found in roots of control and treated plants, two of which were enhanced by Cd treatment at 7 and 14 days, as assessed by activity staining on native gels. The changes in the isoform pattern modified the global kinetic properties of GR, thereby decreasing significantly (2.5-fold) the Michaelis constant (K(m)) value for oxidized glutathione. Isozyme induction was not associated with an enhancement of GR mRNA and protein expression, indicating that post-translational modification could occur. Our data demonstrated that up-regulation of GR activity by the induction of distinctive isoforms occurs as a defense mechanism against Cd-generated oxidative stress in roots.  相似文献   

8.
9.
Seedlings (2 weeks old) of pepper (Capsicum annum) were grown in nutrient solution with added CdCl(2) (10 or 50 microM) for 7 days. In Cd-treated plants, changes in acyl lipids and fatty acid composition were investigated. Cd particularly lowered the amount of monogalactosyldiacylglycerol (MGDG) and enhanced accumulation of phospholipids [phosphatidylcholine (PC), phosphatidylethanolamine and phosphatidylglycerol] in leaves. In contrast, content of PC and galactolipids (MGDG and digalactosyldiacylglycerol) decreased in roots. Fatty acid composition of leaves was also changed by Cd addition to external medium, but no important changes occurred in roots. Levels of leaf polyunsaturated fatty acids, especially 18:3 and 16:3, were reduced. Lipid and fatty acid composition changes in roots are discussed in relation to Cd tolerance in pepper.  相似文献   

10.
BACKGROUND AND AIMS: To date, there are no crop mutants described in the literature that display both Cd accumulation and tolerance. In the present study a unique pea (Pisum sativum) mutant SGECd(t) with increased Cd tolerance and accumulation was isolated and characterized. METHODS: Ethylmethane sulfonate mutagenesis of the pea line SGE was used to obtain the mutant. Screening for Cd-tolerant seedlings in the M2 generation was performed using hydroponics in the presence of 6 microm CdCl2. Hybridological analysis was used to identify the inheritance of the mutant phenotype. Several physiological and biochemical characteristics of SGECd(t) were studied in hydroponic experiments in the presence of 3 microm CdCl2, and elemental analysis was conducted. KEY RESULTS: The mutant SGECd(t) was characterized as having a monogenic inheritance and a recessive phenotype. It showed increased Cd concentrations in roots and shoots but no obvious morphological defects, demonstrating its capability to cope well with increased Cd levels in its tissues. The enhanced Cd accumulation in the mutant was accompanied by maintenance of homeostasis of shoot Ca, Mg, Zn and Mn contents, and root Ca and Mg contents. Through the application of La(+3) and the exclusion of Ca from the nutrient solution, maintenance of nutrient homeostasis in Cd-stressed SGECd(t) was shown to contribute to the increased Cd tolerance. Control plants of the mutant (i.e. no Cd treatment) had elevated concentrations of glutathione (GSH) in the roots. Through measurements of chitinase and guaiacol-dependent peroxidase activities, as well as proline and non-protein thiol (NPT) levels, it was shown that there were lower levels of Cd stress both in roots and shoots of SGECd(t). Accumulation of phytochelatins [(PCcalculated) = (NPT)-(GSH)] could be excluded as a cause of the increased Cd tolerance in the mutant. CONCLUSIONS: The SGECd(t) mutant represents a novel and unique model to study adaptation of plants to toxic heavy metal concentrations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号