首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 47 毫秒
1.
We simultaneously recorded flight muscle activity and wing kinematics in tethered, flying locusts to determine the relationship between asymmetric depressor muscle activation and the kinematics of the stroke reversal at the onset of wing depression during attempted intentional steering manoeuvres. High-frequency, pulsed sounds produced bilateral asymmetries in forewing direct depressor muscles (M97, 98, 99) that were positively correlated with asymmetric forewing depression and asymmetries in stroke reversal timing. Bilateral asymmetries in hindwing depressor muscles (M127 and M128 but not M129) were positively correlated with asymmetric hindwing depression and asymmetries in the timing of the hindwing stroke reversal; M129 was negatively correlated with these shifts. Hindwing depressor asymmetries and wing kinematic changes were smaller and shifted in opposite direction than corresponding measurements of the forewings. These findings suggest that intentional steering manoeuvres employ bulk shifts in depressor muscle timing that affect the timing of the stroke reversals thereby establishing asymmetric wing depression. Finally, we found indications that locusts may actively control the timing of forewing rotation and speculate this may be a mechanism for generating steering torques. These effects would act in concert with forces generated by asymmetric wing depression and angle of attack to establish rapid changes in direction.Abbreviations ASR acoustic startle response - dB SPL decibel sound pressure level (re: 20 Pa RMS) - EMG electromyogram - FWA forewing asymmetry - HWA hindwing asymmetry  相似文献   

2.
Locusts are passively yawed in the laminar air current of a wind tunnel (Fig. 1). In order to study the influence of depressor muscles of the forewing on its movement, electromyography is combined with true 3-dimensional inductive forewing movement recording. In quick response to the yaw stimulus, many kinematic parameters (e.g. shape of the wing tip path, amplitudes of wingstroke, ratios of downstroke to upstroke duration, time interval between beginning of downstroke and time of maximum pronation etc.) vary differently in both forewings (Figs. 3–5). Pronation changes in correlation to yawing reciprocally on both forewings with comparable differences of pronation angles (Fig. 5a). Maximum pronation is decreased on that side, to which the animal is-passively-yawed, whereas the slope of the wing tip paths remains almost constant. Therefore, decreasing pronation most probably indicates increasing thrust. The animal appears to perform a disturbance avoidance behaviour. Although the burst length of muscle firing is almost constant here, the onset of 8 depressor muscles (1 st basalar and subalar muscles of all 4 wings) varies in correlation to the stimulus (Figs. 6–8). The changing time intervals between the 1 st basalar muscle M97 and subalar muscle M99 are responsible for the alterations of forewing downstroke. Quantitative analysis of combined motor and movement pattern (Fig. 9) shows the following: (i) the maximum pronation and time interval between the onset of 1 st basalar muscle M97 as well as subalar muscle M99 and the beginning of downstroke are positively correlated (Figs. 10 and 12a and b). (ii) Maximum pronation is greatest, when muscles M97 and M99 act simultaneously (Fig. 12c). Thus, both muscles work synergistically, concerning pronation. Muscle M99 is of less importance than muscle M97. On failing activity of the depressor muscle M97, downstroke is greatly reduced. Some depressor as well as elevator muscles are switched on and off separately on each side (Fig. 11).  相似文献   

3.
Desert locusts, tethered on a roll torque meter and flying in a wind tunnel are surrounded by an artificial horizon (Fig. 1). Flight motor activity and movement of forewings are monitored continuously. Movements of the artificial horizon elicit roll manoeuvers of the animal with latencies of several seconds; concomitant changes in flight motor pattern and wing movement can be correlated with the animal's roll angle and roll torque. Flight sequences with constant torque and roll angle (steady state) have been analysed with the following results. Wing Kinematics. A phase difference between the movements of the forewings on either side is correlated with roll angle (Fig. 3). Pronation of a forewing is always greater on the side to which the animal rolls, i.e. on the side that produces less lift (Fig. 5). In some experiments the slope of the wing tip path is also decreased (Fig. 5). In both cases, the aerodynamic angle of attack is decreased and the forewing on this side produces less lift. In most experiments, changes in pronation are less pronounced in the contralateral wing (Fig. 11). All factors contribute to a net roll torque that sustains the animal's roll angle. Other kinematic parameters of forewing movement, e.g. wing stroke amplitude, were not found to be correlated with roll angle and torque (Fig. 4). Motor Pattern. Activity of several flight muscles (depressors M97, M98, M99, and M129; elevators M83, M84, and M90) was investigated for changes in burst length and temporal coordination in response to roll stimuli. Most flight muscles fired only once per wing beat cycle in our preparations. Thus, burst length was not found to be correlated with roll angle. Time intervals of firing between all muscle pairs investigated change in correlation with the torque and roll angle (Fig. 9).All mesothoracic muscles are active earlier-relative to the ipsilateral metathoracic subalar muscle M129-during roll to the ipsilateral side than during roll to the contralateral side. Correlations Between Motor and Movement Pattern. The phase of muscle firing within the wing beat cycle varies with roll angle (roll torque). The first basalar M97 and second tergosternal M84 muscles, when referenced e.g. to the upper (M97) or lower (M84) reversal point of the wing tip trajectory, are active earlier on the side the animal turns to (Fig. 10). The onset of the first basalar M97 relative to the beginning of downstroke is correlated with maximum pronation and roll angle (Fig. 11). Mechanisms of Lift Control. Wing pronation, which is very important for lift production is controlled by the central nervous system by altering the phase of muscle activity within the wing beat cycle.  相似文献   

4.
The contribution of head movement to the control of roll responses in flying locusts (Locusta migratoria) has been examined (i) on a flight balance, recording the angles through which the locust turns when following an artificial horizon; (ii) by recording activity in a pair of flight muscles in restrained conditions; and (iii) by observations on free flying locusts. Responses were compared when the head was free to turn about the thorax, as normal, and when the head was waxed to the thorax, blocking any relative motion between the two (head-fixed). These experiments suggest that the major signal generating corrective roll manoeuvres is the visual error between the angle of the head and the horizon, rather than a signal that includes a measure of the head-thorax angle.
1.  On the flight balance in the head-free condition the roll angle of the thorax was consistently less than in the head-fixed state, and followed the stimulus with longer response lags. Furthermore, the difference between the angle of the thorax assumed during head-free and head-fixed rolls was close to the angle of the head relative to the thorax during head-free responses.
2.  Records of activity of the forewing first basalar muscles (M97) were made during rotation of the horizon about immobilized animals. When the head could follow the horizon, the relative latency between activity in the left and right basalar muscles decreased as the head position turned to approach the displaced horizon. When head-fixed, the relative latency was directly proportional to horizon angle.
3.  The relative latency between left and right M97 flight muscles correlates better with the visual error signal than with the horizon position signal, lagging by approximately 40 ms.
4.  In the open air, head-fixed locusts appear able to fly as well as head-free locusts.
These data suggest that the reduction in visual inputs caused by compensatory motion of the head during roll manoeuvres is not functionally replaced by inputs from cervical proprioceptors. Some reasons why the locust may nevertheless allow head movement relative to the thorax during flight are discussed.  相似文献   

5.
Summary The functional mechanics of the forewingtwisting ofLocusta migratoria L. is described and demonstrated by means of plastic models. The upstroke-supination (Z-profile) is produced by elastic and aerodynamic forces only. A tonic muscle, the muscle of the axillary 3, acts as upstroke-pronator, flattening the Z-profile. The three direct wing depressor muscles (basalar muscles, subalar muscle) pronate the wing during the downstroke. The basalar muscles initiate the wing-turning at the begin of downstroke by clicking the Z-profile into a reverse clap profile. The muscle of the axillary 3 decreases the downstroke-pronation, acting in this phase as a supinator. This muscle is therefore able to increase the aerodynamical angle of attack in both wingstroke phases. The functional significance of the muscles for the control of flight is discussed.  相似文献   

6.
Fluctuating asymmetry is often used as a measure of developmental instability, although its developmental basis is poorly understood. Theoretical models and experimental studies have suggested that feedback interactions between structures on the left and right body sides play a pivotal role in the control of asymmetry. Here we provide experimental evidence that competition for a limiting resource can generate such interactions between growing organs. In our experiments in the butterfly Precis coenia (Lepidoptera: Nymphalidae), hindwing imaginal discs were removed from one or both body sides of caterpillars. Emerging butterflies were thus missing one or both hindwings, but had heavier forewings, mid- and hindlegs than untreated controls. When only one hindwing was removed, the forewing and hindleg on the treated side were heavier than on the untreated side. The asymmetry and overall weight increase in response to wing disc removal diminished with increasing physical distance of the responding tissue from the imaginal disc removed. Our findings are consistent with the hypothesis that growing imaginal discs compete for a haemolymph-borne resource, such as a nutrient or growth factor. Such competition is a possible mechanism for feedback interactions and may thus participate in the developmental control of asymmetry.  相似文献   

7.
The form and position of the sclerites and important parts of the thorax, as well as the insertion points of the flight muscles, are described in this study with the help of three-dimensional drawings and electron micrographs. Morphological studies are used for functional analysis of the wing joint and flight muscles, and a three-dimensional model of the wing joint of a honey bee is used to demonstrate the automatic forced guidance of the forewings during the upstroke and downstroke. Accepted: 4 February 1998  相似文献   

8.
The aim of present study was to evaluate the symmetry of masticatory muscles' activity at various clenching levels in the intercuspal position in patients with functional disorders and in healthy subjects. The purpose was also to determine the effect of full-arch maxillary stabilization splint on the asymmetry of masticatory muscle activity in patients with temporomandibular dysfunction. In this study 6 TMD patients and 12 healthy subjects were investigated. Surface EMG recordings were obtained from left and right anterior temporal, left and right masseter and from the sub-mandibular group in the region of the anterior belly of the digastric muscle on the left and right side during clenching with the maximum 100% voluntary contraction (MVC) as well as during clenching at 50% and 25% of the maximum activity in the position of maximal intercuspation of teeth. In order to quantify asymmetrical masticatory muscle activity, the asymmetry index (AI) was calculated for each subject and for each muscle from the average anterior temporal, masseter and digastric potentials recorded during each test (100% MVC, 50% MVC and 25% MVC). In the group of patients EMG recordings were repeated during and after the splint therapy. The asymmetries of masticatory muscle activity was present in both groups, but in the group of TMD patients the asymmetry indices for anterior temporal muscle at 100% MVC (p = 0.049) and 50% MVC (p = 0.031) were significantly higher. Results have shown that the use of splint suppressed the asymmetry of all muscles, as during the splint therapy the asymmetry indices were lowered. After the therapy, the level of temporal muscle symmetry during submaximal clenching in the intercuspal position increased significantly (p = 0.046). This investigation points out that electromyography may be a valuable method of documenting that asymmetric activity of masticatory muscles improves after occlusal splint therapy in patients with TMD.  相似文献   

9.
Negative phonotaxis is elicited in flying Australian field crickets, Teleogryllus oceanicus, by ultrasonic stimuli. Using upright tethered flying crickets, we quantitatively examined several kinematic and aerodynamic factors which accompany ultrasound-induced negative phonotactic behavior. These factors included three kinematic effects (hindwing wingbeat frequency, hindwing elevation and depression, and forewing tilt) and two aerodynamic effects (pitch and roll). 1. Within two cycles following a 20 dB suprathreshold ultrasonic stimulus, the hindwing wingbeat frequency increases by 3-4 Hz and outlasts the duration of the stimulus. Moreover, the relationship between the maximum increase in wingbeat frequency and stimulus intensity is a two-stage response. At lower suprathreshold intensities the maximum wingbeat frequency increases by approximately 1 Hz; but, at higher intensities, the maximum increase is 3-4 Hz. 2. The maximum hindwing elevation angle increases on the side ipsilateral to the stimulus, while there was no change in upstroke elevation on the side contralateral to the stimulus. 3. An ultrasonic stimulus affects forewing tilt such that the forewings bank into the turn. The forewing ipsilateral to the stimulus tilts upward while the contralateral forewing tilts downward. Both the ipsilateral and contralateral forewing tilt change linearly with stimulus intensity. 4. Flying crickets pitch downward when presented with a laterally located ultrasonic stimulus. Amputation experiments indicate that both the fore and hindwings contribute to changes in pitch but the pitch response in an intact cricket exceeds the simple addition of fore and hindwing contributions. With the speaker placed above or below the flying cricket, the change is downward or upward, respectively.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

10.
Left/right (L/R) asymmetry is essential during embryonic development for organ positioning, looping and handed morphogenesis. A major goal in the field is to understand how embryos initially determine their left and right hand sides, a process known as symmetry breaking. A number of recent studies on several vertebrate and invertebrate model organisms have provided a more complex view on how L/R asymmetry is established, revealing an apparent partition between deuterostomes and protostomes. In deuterostomes, nodal cilia represent a conserved symmetry-breaking process; nevertheless, growing evidence shows the existence of pre-cilia L/R asymmetries involving active ion flows. In protostomes like snails and Drosophila, symmetry breaking relies on different mechanisms, involving, in particular, the actin cytoskeleton and associated molecular motors.  相似文献   

11.
Summary The output connections of a bilaterally symmetrical pair of wind-sensitive interneurones (called A4I1) were determined in a non-flying locust (Schistocerca gregaria). Direct inputs from sensory neurones of specific prosternai and head hairs initiate spikes in these interneurones in the prothoracic ganglion.The interneurone with its axon in the right connective makes direct, excitatory connections with the two mesothoracic motor neurones innervating the pleuroaxillary (pleuroalar, M85) muscle of the right forewing, but not with the comparable motor neurones of the left forewing. The connections can evoke motor spikes.The interneurones also exert a powerful, but indirect effect on the homologous metathoracic pleuroaxillary motor neurones (muscle 114), and a weaker, indirect effect on subalar motor neurones of the hindwings. No connections or effects were found with other flight motor neurones, or motor neurones innervating hindleg muscles, including common inhibitor 1 which also innervates the pleuroaxillary muscle.One thoracic interneurone with its cell body in the right half of the mesothoracic ganglion and with its axon projecting ipsilaterally to the metathoracic ganglion receives a direct input from the right A4I1 interneurone.These restricted output connections suggest a role for the A4I1 interneurones in flight steering.Abbreviations DCMD descending contralateral movement detector - EPSP excitatory postsynaptic potential - TCG tritocerebral commissure giant (interneurone)  相似文献   

12.
We studied the role of different leg and trunk muscle groups in the generation of anticipatory postural adjustments (APAs) prior to lateral and rotational perturbations associated with predictable and self-triggered postural perturbations during standing. Postural perturbations were induced by a variety of manipulations including catching and releasing a load with the right hand extended either in front of the body or to the right side, performing bilateral fast shoulder movements in different directions, and applying brief force pulses with a hand against the wall. Perturbations in a frontal plane ("lateral perturbations") were associated with significant asymmetries in APAs seen in the right and left distal (soleus and tibialis anterior) muscles; these asymmetries dependent on the direction of the perturbation. Rotational perturbations about the vertical axis of the body generated by fast movements of the two shoulders in the opposite directions were also associated with direction-dependent asymmetries in the APAs in soleus muscles. However, rotational perturbations generated by an off-body-midline force pulse application were accompanied by direction-dependent asymmetries in proximal muscle groups, but not in the distal muscles. We conclude that muscles controlling the ankle joint play an important role in the compensation of lateral and rotational perturbations. The abundance of muscles participating in maintaining vertical posture allows the control system to use different task-dependent strategies during the generation of APAs in anticipation of rotational perturbation.  相似文献   

13.
Asymmetry was investigated in the forelimbs of 150 rhesus monkey (Macaca mulatta) skeletons using measurements of right and left humerii, radii, ulnae, second metacarpals, and femora. Seven of the ten forelimb dimensions were larger on the right than on the left side. Paired t-tests revealed that the mean of the right side was significantly larger than that for the left for two measurements of the ulna and two of the humerus. No measurement was significantly larger on the left than on the right side. These results indicate a small but significant asymmetry in the forelimb bones of rhesus monkeys and, as is the case for humans, the direction of asymmetry favors the right side. Our findings are consistent with an interpretation of hypertrophy of certain muscles and opens the question of whether rhesus monkeys preferentially use their right forelimbs for manipulative tasks that require manual dexterity, as is the case for humans. These forelimb skeletal asymmetries are discussed in light of the recent literature on cortical asymmetry and handedness in nonhuman primates.  相似文献   

14.
We tested whether evening exposure to unilateral photic stimulation has repercussions on interhemispheric EEG asymmetries during wakefulness and later sleep. Because light exerts an alerting response in humans, which correlates with a decrease in waking EEG theta/alpha-activity and a reduction in sleep EEG delta activity, we hypothesized that EEG activity in these frequency bands show interhemispheric asymmetries after unilateral bright light (1,500 lux) exposure. A 2-h hemi-field light exposure acutely suppressed occipital EEG alpha activity in the ipsilateral hemisphere activated by light. Subjects felt more alert during bright light than dim light, an effect that was significantly more pronounced during activation of the right than the left visual cortex. During subsequent sleep, occipital EEG activity in the delta and theta range was significantly reduced after activation of the right visual cortex but not after stimulation of the left visual cortex. Furthermore, hemivisual field light exposure was able to shift the left predominance in occipital spindle EEG activity toward the stimulated hemisphere. Time course analysis revealed that this spindle shift remained significant during the first two sleep cycles. Our results reflect rather a hemispheric asymmetry in the alerting action of light than a use-dependent recovery function of sleep in response to the visual stimulation during prior waking. However, the observed shift in the spindle hemispheric dominance in the occipital cortex may still represent subtle local use-dependent recovery functions during sleep in a frequency range different from the delta range.  相似文献   

15.
Desert locusts (Schistocerca gregaria F.), mounted in a wind tunnel on a low-mechanical-impedance torque meter, flew for at least 30 min in the posture typical of long-term flight. As they flew, they were induced to rotate about their long axis (roll) by rotation of an artificial horizon. All maintained departures from the horizontal attitude were brought about actively, by the animal's own efforts. In the roll maneuver, the hindlegs and abdomen were bent toward the side ipsilateral to the direction of rotation. However, these rudderlike movements were not adequate to initiate and maintain a constant roll angle.During a roll, there was a change in the pattern of excitation of all the wing muscles that were monitored: the depressorsM81, 97, 99, 112, 127, and 129, and the elevatorsM83, 84, 89, 113, 118, 119 (numbering according to Snodgrass 1929). Hence all 12 muscles probably not only provide power for the flight but also steer it. Evidently, then, for these muscles a rigid distinction between power and steering muscles is not appropriate.The period of the contraction cycle changed in correlation with the roll angle, but was not a parameter for control of the roll maneuver, because the changes were the same in all muscles (Fig. 2).Even with constant burst length, the phase shifts between the muscles changed. These changes were the main control parameter for rolling (Figs. 3–9).There was a latency coupling between elevators and the following depressors (Fig. 3).The changes in phase shift were tonic or phasic (sometimes phasic-tonic) in different muscle pairs (Fig. 4).When a roll angle of ca. 15° was adopted, the phase shifts between depressor muscles in a given fore- or hindwing (e.g.,M127R vs.M129R) changed by about 5 ms, whereas the elevators changed by less than 1 ms (Fig. 6).The phase shifts between the anterior elevators and depressors of a given wing, as well as the posterior elevators and depressors, changed by ca. 5 ms (in some cases with different time courses) when the animal rolled to an angle of ca. 15° (Fig. 7).The changes in phase shift between muscles of the fore-and hindwing on one side of the body amounted, as a rule, to about 4 ms at ca. 15° roll (Fig. 8).Corresponding muscles on the two sides of the body change in phase with respect to one another by as much as 10 ms (Fig. 9). The phase shifts of all such contralateral muscle pairs except for the posterior basalar muscles,M127, have the same sign, such that the muscle ipsilateral to the direction of rotation becomes active sooner.  相似文献   

16.
Normal rats rotate (turn in circles) at night and in response to drugs (e.g. d-amphetamine) during the day. Rats with known circling biases were injected with [1,2-3H]-deoxy-d-glucose, decapitated and glucose utilization was assessed in several brain structures. Most structures showed evidence of functional brain asymmetry. Asymmetries were of three different kinds: (1) a difference in activity between sides of the brain contralateral and ipsilateral to the direction of rotation (midbrain, striatum); (2) a difference in activity between left and right sides (frontal cortex, hippocampus); and (3) an absolute difference in activity between sides that was correlated to the rate of either rotation (thalamus, hypothalamus) or random movement (cerebellum). Amphetamine, administered 15 minutes before a deoxyglucose injection in other rats, altered some asymmetries (striatum, frontal cortex, hippocampus) but not others (midbrain, thalamus, hypothalamus, cerebellum). Different asymmetries appear to be organized along different dimensions in both the rat and human brains.  相似文献   

17.
Vertebrate ancestors had extreme asymmetry of the CNS, largely imposed by bodily asymmetry. In the zebrafish a key asymmetry is that of the habenulae. Their major outflow on the left is concerned with visual control of sustained response to targets, and on the right with response to potent releasers of innate responses. Mammals retain comparable outflows but without obvious asymmetry. Behavioural asymmetries associated with the processing of perceptual information are, if anything, exaggerated. Evidence from insects suggests that these latter asymmetries are of great value in any complex CNS. Bodily asymmetry may therefore not be essential for their evolution.  相似文献   

18.
1. The connexions between stretch receptors of the wings and motoneurones innervating flight muscles have been studied anatomically and physiologically. 2. Filling with cobaltous chloride shows that the single neurone of a forewing stretch receptor has a complex pattern of branches within the mesothoracic ganglion and branches which extend into the pro- and meta-thoracic ganglia. The single neurone of a hindwing stretch receptor has extensive branches in the metathoracic ganglion and branches in themesothoracic ganglion. The branches of both receptors are confined to the ipsilateral halves of the ganglia. 3. A stretch receptor gives information about the velocity and extent of elevation of a wing. 4. Each spike of a forewing stretch receptor casuses an EPSP in ipsilateral mesothoracic depressor motoneurones and an IPSP in elevators. The connexions are thought to be monosynaptic for the following reasons. The EPSPs in the first basalar (depressor) motoneurone follow each spike of the stretch receptor at a frequency of 125 Hz and with a constant latency of about 1 msec. In a Ringer solution containing 20 mM-Mg2+ the amplitude EPSP declines gradually. The IPSP'S upon elevators have similar properties but occur with a latency of 4-6 msec. 5. The connexions therefore comprise a monosynaptic negative feed-back loop; elevation of the wing excites the stretch receptor which then inhibits the elevator motoneurones and excites the depressors. 6. A hindwing stretch receptor synapses upon metathoracic flight motoneurones in the same way, causing EPSPs in depressor and IPSPs in elevator motoneurones. 7. No connexions of either fore- or hindwing stretch receptors have been found with contralateral flight motoneurones. 8. Interganglionic connexions are made by both receptors. For example, both fore- and hindwing stretch receptors cause EPSPs upon the meso- and metathoracic first basalar motoneurones. 9. Stimulation of the axon of a stretch receptor with groups of three stimuli repeated every 50-100 msec thus simulating the pattern which it shows during flight, causes subthreshold waves of depolarization in depressor motoneurones. When summed with an unpatterned input, the stretch receptor is able to influence the production of spikes in motoneurones on each cycle. During flight, it is expected that the stretch receptor will influence the time at which a motoneurone will spike and hence have an effect on the amplitude of the upstroke and upon the phase relationship between spikes of motoneurones.  相似文献   

19.
Nuptial feeding is widespread in insects, with many species showing one form of feeding. In the wood cricket Nemobius sylvestris, the male may provide multiple forms of feeding during an encounter: two kinds of edible spermatophores (microspermatophore and macrospermatophore) and forewing secretions. We examined the roles and interactions of the spermatophores and forewing exposure in the mating sequence of this species. The small microspermatophore was not found to contain sperm, whereas the larger macrospermatophore contained sperm. In mating trials, the microspermatophore may be transferred to the female early in the trial. Transfer of the microspermatophore was not a necessary prerequisite to the subsequent transfer of one or more sperm‐filled macrospermatophores. Forewing exposure increased male mating success, as males with exposed forewings were more successful in transferring the macrospermatophore than males with experimentally covered forewings, both in terms of occurrence of successful transfer and the number of macrospermatophores transferred. Male mating success was very low when the male’s forewings were covered and when the male did not transfer a microspermatophore. The sperm‐filled macrospermatophore may have nutritional value, as females eventually consumed all transferred macrospermatophores, and males consumed all rejected macrospermatophores. Somewhat unexpectedly, this study casts doubt on the role of the forewings in nuptial feeding. Although males with exposed forewings were more successful in macrospermatophore transfer, females actually palpated these males’ forewings less. We posit the alternative hypothesis that the forewing secretions play a role in chemical communication to the female (e.g., signaling male quality), possibly instead of female nourishment.  相似文献   

20.
Detailed 3-Dimensional (3D) wing kinematics was experimentally presented in free flight of a beetle,Trypoxylus dichotomus,which has a pair of elytra (forewings) and flexible hind wings.The kinematic parameters such as the wing tip trajectory,angle of attack and camber deformation were obtained from a 3D reconstruction technique that involves the use of two synchronized high-speed cameras to digitize various points marked on the wings.Our data showed outstanding characteristics of deformation and flexibility of the beetle's hind wing compared with other measured insects,especially in the chordwise and spanwise directions during flapping motion.The hind wing produced 16% maximum positive camber deformation during the downstroke.It also experienced twisted shape showing large variation of the angle of attack from the root to the tip during the upstroke.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号