首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Hereditary motor and sensory neuropathy type I (HMSN I) or Charcot-Marie-Tooth (CMT) disease is an autosomal dominant peripheral neuropathy. In some CMT families linkage has been reported with either the Duffy blood group or the APOA2 gene, both located on chromosome 1q. More recently, linkage has been found in six CMT families with two chromosome 17p markers. We extensively analyzed a multi-generation Charcot-Marie-Tooth family by using molecular genetic techniques in order to localize the CMT gene defect. First, we constructed a continuous linkage group of 11 chromosome 1 markers and definitely excluded chromosome 1 as the site of mutation. Second, we analyzed the family for linkage with chromosome 17. The two-point lod scores obtained with D17S58 and D17S71 proved that this Charcot-Marie-Tooth family is linked to chromosome 17. Moreover, multipoint linkage results indicated that the mutation is most likely located on the chromosome 17p arm, distal of D17S71.  相似文献   

2.
Summary The Charcot-Marie-Tooth disease (hereditary motor and sensory neuropathy) loci have been reported to be on at least three chromosomes: 1 (CMT1B, HMSN1B), 17 (CMT1A), and X (CMTX). In this study multipoint linkage analysis of two Duffy-linked families given a combined LOD score of 8.65 to establish that the Duffy-linked CMT1B gene exists in the 18 centimorgan region between the antithrombin III gene and the Duffy/ sodium-potassium ATPase loci. The simultaneous segregation of polymorphisms near the CMT1A locus on chromosome 17 excludes linkage to this chromosome region in both families. Polymorphic sites that flank the CMT1B gene have been subchromosomally localized to the proximal chromosome-1 long arm (1q21.21q25) by spot blot analysis of sorted chromosomes, polymorphic deletion analysis, in situ hybridization, and multipoint linkage analysis.  相似文献   

3.
Mutations in the myelin protein zero (MPZ) gene are the third most frequent cause of hereditary motor and sensory neuropathies (HMSN), also called Charcot–Marie–Tooth disorders (CMT). Only in case of recurrent mutations occurring in the MPZ gene is it possible to draw phenotype–genotype correlations essential for establishing the prognosis and outcomes of CMT1. We have surveyed a cohort of 67 Polish patients from CMT families with demyelinating neuropathy for mutations in the MPZ gene. In this study, we report two CMT families in which the Ile135Thr and Pro132Leu mutations have been identified for the MPZ gene. These MPZ gene mutations had not been identified hitherto in the Polish population. The Pro132Leu mutation segregates with a severe early-onset dysmyelinating–hypomyelinating neuropathy, whereas the Ile135Thr substitution is associated with the classical phenotype of CMT1. To the best of our knowledge, we present here, for the first time, morphological data obtained in two sural nerve biopsies pointing to a hypomyelination–dysmyelination process in a family harboring the Pro132Leu mutation in the MPZ gene.  相似文献   

4.
Charcot-Marie-Tooth type (CMT1) disease or hereditary motor and sensory neuropathy type I (HMSNI) is an autosomal dominant peripheral neuropathy. In most CMT1 families, the disease cosegregates with a 1.5-Mb duplication on chromosome 17p11.2 (CMT1A). A few patients have been found with mutations in the peripheral myelin protein 22 (PMP-22) gene located in the CMT1A region. In other families mutations have been identified in the major peripheral myelin protein po gene localized on chromosome Iq21-q23 (CMT1B). We performed a rapid mutation screening of the PMP-22 and P0 genes in non-duplicated CMT1 patients by single-strand conformation polymorphism analysis followed by direct polymerase chain reaction sequencing of genomic DNA. Six new single base changes in the P0 gene were observed: two missense mutations in, respectively, exons 2 and 3, two nonsense mutations in exon 4, and two silent mutations or polymorphisms in, respectively, exons 3 and 6.  相似文献   

5.
Charcot-Marie-Tooth disease (CMT) and related peripheral neuropathies are the most commonly inherited neurological disorders in humans, characterized by clinical and genetic heterogeneity. The most prevalent clinical entities belonging to this group of disorders are CMT type 1A (CMT1A) and hereditary neuropathy with liability to pressure palsies (HNPP). CMT1A and HNPP are predominantly caused by a 1.5 Mb duplication and deletion in the chromosomal region 17p11.2, respectively, and less frequently by other mutations in the peripheral myelin protein 22 (PMP22) gene. Despite being relatively common diseases, they haven't been previously studied in the Slovak population. Therefore, the aim of this study was to identify the spectrum and frequency of PMP22 mutations in the Slovak population by screening 119 families with CMT and 2 families with HNPP for causative mutations in this gene. The copy number determination of PMP22 resulted in the detection of CMT1A duplication in 40 families and the detection of HNPP deletion in 7 families, 6 of which were originally diagnosed as CMT. Consequent mutation screening of families without duplication or deletion using dHPLC and sequencing identified 6 single base changes (3 unpublished to date), from which only c.327C>A (Cys109X) present in one family was provably causative. These results confirm the leading role of PMP22 mutation analysis in the differential diagnosis of CMT and show that the spectrum and frequency of PMP22 mutations in the Slovak population is comparable to that seen in the global population.  相似文献   

6.
Autosomal recessive Charcot-Marie-Tooth disease (CMT) represents a heterogeneous group of disorders affecting the peripheral nervous system. The axonal form of the disease is designated as "CMT type 2" (CMT2), and one locus (1q21.2-q21.3) has been reported for the autosomal recessive form. Here we report the results of a genomewide search in an inbred Costa Rican family (CR-1) affected with autosomal recessive CMT2. By analyzing three branches of the family we detected linkage to the 19q13.3 region, and subsequent homozygosity mapping defined shared haplotypes between markers D19S902 and D19S907 in a 5.5-cM range. A maximum two-point LOD score of 9.08 was obtained for marker D19S867, at a recombination fraction of.00, which strongly supports linkage to this locus. The epithelial membrane protein 3 gene, encoding a PMP22 homologous protein and located on 19q13.3, was ruled out as being responsible for this form of CMT. The age at onset of chronic symmetric sensory-motor polyneuropathy was 28-42 years (mean 33.8 years); the electrophysiological data clearly reflect an axonal degenerative process. The phenotype and locus are different from those of demyelinating CMT4F, recently mapped to 19q13.1-13.3; hence, the disease affecting the Costa Rican family constitutes an axonal, autosomal recessive CMT subtype (ARCMT2B).  相似文献   

7.
Charcot-Marie-Tooth (CMT) neuropathy represents a genetically heterogeneous group of diseases affecting the peripheral nervous system. We report genetic mapping of the disease to chromosome 16p13.1-p12.3, in two families with autosomal dominant CMT type 1C (CMT1C). Affected individuals in these families manifest characteristic CMT symptoms, including high-arched feet, distal muscle weakness and atrophy, depressed deep-tendon reflexes, sensory impairment, slow nerve conduction velocities, and nerve demyelination. A maximal combined LOD score of 14.25 was obtained with marker D16S500. The combined haplotype analysis in these two families localizes the CMT1C gene within a 9-cM interval flanked by markers D16S519 and D16S764. The disease-linked haplotypes in these two pedigrees are not conserved, suggesting that the gene mutation underlying the disease in each family arose independently. The epithelial membrane protein 2 gene (EMP2), which maps to chromosome 16p13.2, was evaluated as a candidate gene for CMT1C.  相似文献   

8.
Charcot-Marie-Tooth disease (CMT) and hereditary neuropathy with liability to pressure palsies (HNPP) are two inherited peripheral neuropathies. The most prevalent mutations are a reciprocal 1.5-Mb duplication and 1.5-Mb deletion, respectively, at the CMT1A/HNPP locus on chromosome 17p11.2. Point mutations in the coding region of the myelin genes, peripheral myelin protein 22 (PMP22), myelin protein zero (MPZ) or connexin 32 (Cx32) have been reported in CMT patients, including CMT type 1 (CMT1), CMT type 2 (CMT2) and Déjérine-Sottas neuropathy (DS) patients, and only in the coding region of PMP22 in HNPP families lacking a deletion. We have investigated point and small mutations in the MPZ, PMP22 and Cx32 genes in a series of patients of Spanish ancestry: 47 CMT patients without duplications, and 5 HNPP patients without deletions. We found 15 different mutations in 16 CMT patients (34%). Nine different mutations in ten patients were detected in the Cx32 gene, this being the most frequently involved gene in this series, whereas five mutations involved the MPZ gene and only one the PMP22 gene. Six out of nine nucleotide substitutions in the Cx32 gene involved two codons encoding arginine at positions 164 and 183, suggesting that these two codons may constitute two Cx32 regions prone to mutate in the Spanish population. Analysis of HNPP patients revealed a 5′ splicing mutation in intron 1 of the PMP22 gene in a family with autosomal dominance, which confirms allelic heterogeneity in HNPP. Ectopic mRNA analysis on leukocytes suggests that this mutation might behave as a null allele. Received: 25 July 1996 / Revised: 15 November 1996  相似文献   

9.
Charcot-Marie-Tooth disease (CMT) is the most common inherited peripheral neuropathy. Sporadic cases of CMT have been described since the earliest reports of the disease. The most frequent form of the disorder, CMT1A, is associated with a 1.5-Mb DNA duplication on chromosome 17p11.2, which segregates with the disease. In order to investigate the prevalence of de novo CMT1A duplications, this study examined 118 duplication-positive CMT1A families. In 10 of these families it was demonstrated that the disease had arisen as the result of a de novo mutation. By taking into account the ascertainment of families, it can be estimated that > or = 10% of autosomal dominant CMT1 families are due to de novo duplications. The CMT1A duplication is thought to be the product of unequal crossing over between parental chromosome 17 homologues during meiosis. Polymorphic markers from within the duplicated region were used to determine the parental origin of these de novo duplications in eight informative families. Seven were of paternal and one of maternal origin. This study represents the first report of a de novo duplication with a maternal origin and indicates that it is not a phenomenon associated solely with male meioses. Recombination fractions for the region duplicated in CMT1A are larger in females than in males. That suggests that oogenesis may be afforded greater protection from misalignment during synapsis, and/or that there may be lower activity of those factors or mechanisms that lead to unequal crossing over at the CMT1A locus.  相似文献   

10.
Charcot-Marie-Tooth disease (CMT) is the most common inherited motor and sensory neuropathy. The neuronal form of this disorder is referred to as Charcot-Marie-Tooth type II disease (CMT2). CMT2 is usually inherited as an autosomal dominant trait with a variable age at onset of symptoms associated with progressive axonal neuropathy. In some families, the locus that predisposes to CMT2 has been demonstrated to map to the distal portion of the short arm of chromosome 1. Other families with CMT2 do not show linkage with 1p markers, suggesting genetic heterogeneity in CMT2. We investigated linkage in a single large kindred with autosomal dominant CMT2. The gene responsible for CMT2 in this kindred (CMT2B) was mapped to the interval between the microsatellite markers D3S1769 and D3S1744 in the 3q13-22 region. Study of additional CMT2 kindreds should serve to further refine the disease gene region and may ultimately lead to the identification of a gene defect that underlies the CMT2 phenotype.  相似文献   

11.
Autosomal recessive forms of Charcot–Marie–Tooth disease (CMT) account for less than 10 % of all CMT cases, but are more frequent in the populations with a high rate of consanguinity. Roma (Gypsies) are a transnational minority with an estimated population of 10 to 14 million, in which a high degree of consanguineous marriages is a generally known fact. Similar to the other genetically isolated founder populations, the Roma harbour a number of unique or rare autosomal recessive disorders, caused by “private” founder mutations. There are three subtypes of autosomal recessive CMT with mutations private to the Roma population: CMT4C, CMT4D and CMT4G. We report on the molecular examination of four families of Roma origin in Slovakia with early-onset demyelinating neuropathy and autosomal recessive inheritance. We detected mutation p.R148X (g.631C>T) in the NDRG1 (NM_006096.3) gene in two families and mutation g.9712G>C in the HK1 (NM_033498) gene in the other two families. These mutations cause CMT4D and CMT4G, respectively. The success of molecular genetic analysis in all families confirms that autosomal recessive forms of CMT caused by mutations on the NDRG1 and HK1 genes are common causes of inherited neuropathies among Slovak Roma. Providing genetic analysis of these genes for patients with Roma origin as a common part of diagnostic procedure would contribute to a better rate of diagnosed cases of demyelinating neuropathy in Slovakia and in other countries with a Roma minority.  相似文献   

12.
Charcot-Marie-Tooth disease type 2D (CMT2D) and distal spinal muscular atrophy type V (dSMA-V) are axonal peripheral neuropathies inherited in an autosomal dominant fashion. Our previous genetic and physical mapping efforts localized the responsible gene(s) to a well-defined region on human chromosome 7p. Here, we report the identification of four disease-associated missense mutations in the glycyl tRNA synthetase gene in families with CMT2D and dSMA-V. This is the first example of an aminoacyl tRNA synthetase being implicated in a human genetic disease, which makes genes that encode these enzymes relevant candidates for other inherited neuropathies and motor neuron diseases.  相似文献   

13.
Charcot-Marie-Tooth disease (CMT) with autosomal recessive (AR) inheritance is a heterogeneous group of inherited motor and sensory neuropathies. In some families from Japan and Brazil, a demyelinating CMT, mainly characterized by the presence of myelin outfoldings on nerve biopsies, cosegregated as an autosomal recessive trait with early-onset glaucoma. We identified two such large consanguineous families from Tunisia and Morocco with ages at onset ranging from 2 to 15 years. We mapped this syndrome to chromosome 11p15, in a 4.6-cM region overlapping the locus for an isolated demyelinating ARCMT (CMT4B2). In these two families, we identified two different nonsense mutations in the myotubularin-related 13 gene, MTMR13. The MTMR protein family includes proteins with a phosphoinositide phosphatase activity, as well as proteins in which key catalytic residues are missing and that are thus called "pseudophosphatases." MTM1, the first identified member of this family, and MTMR2 are responsible for X-linked myotubular myopathy and Charcot-Marie-Tooth disease type 4B1, an isolated peripheral neuropathy with myelin outfoldings, respectively. Both encode active phosphatases. It is striking to note that mutations in MTMR13 also cause peripheral neuropathy with myelin outfoldings, although it belongs to a pseudophosphatase subgroup, since its closest homologue is MTMR5/Sbf1. This is the first human disease caused by mutation in a pseudophosphatase, emphasizing the important function of these putatively inactive enzymes. MTMR13 may be important for the development of both the peripheral nerves and the trabeculum meshwork, which permits the outflow of the aqueous humor. Both of these tissues have the same embryonic origin.  相似文献   

14.
Charcot-Marie-Tooth disease type 2A (CMT2A) is one of the subdivisions of CMT2, an axonal defective form of peripheral neuropathy. Different mutations in the mitochondrial GTPase mitofusin 2 (MFN2) gene produce various degrees of severity of CMT2A phenotype or CMT2A related hereditary motor and sensory neuropathy VI (HMSN VI). The occurrence of de novo mutations in MFN2 is by far the most frequent as compared to other CMT genes. About 26% of the pathogenic MFN2 mutations reported in the Inherited Peripheral Neuropathies Mutations Database are de novo. This study identified two de novo mutations of MFN2, c.1048T>C (S350P) and c.310C>T (R104W), from two Korean CMT2A patients with early onset severe clinical symptoms. The comparative genotype-phenotype correlations of these mutations according to a previously reported case were also viewed. The R104W mutation has been reported recurrently, outspread over different ethnic backgrounds as de novo. The re-occurrence of the same pathogenic de novo variants within and amongst different ethnic groups clearly suggests a susceptible hot spot for mutation in the MFN2 gene. If the deleterious mutations discourage fitness and reproduction, this negative selection factor should ultimately reduce the prevalence of the disease. It appears that spontaneous de novo mutations in turn seem to be maintaining the disease phenotype??s prevalence.  相似文献   

15.
To date, 12 cases of heterozygous Ser72Leu mutations in the peripheral myelin protein 22 have been reported in patients suffering from severe demyelinating form of Charcot-Marie-Tooth disease (CMT1) and congenital hypomyelinating neuropathy (CHN) [MIM# 605253]. In the present study we report two cases of de novo S72L mutations in the PMP22 gene detected in patients of Polish origin suffering from CMT1 disease.  相似文献   

16.
The myelin protein zero gene (MPZ) coding for the most abundant protein of the peripheral myelin was shown to be mutated in Charcot-Marie-Tooth type 1B disease (CMT1B). Later on MPZ mutations have been shown in axonal type of CMT (CMT2). Recently three novel MPZ gene mutations were reported in congenital hypomyelinating neuropathy (CHN). In contrast to the previously reported studies, focused on CMT1B disease, we aimed to analyze the coding and promoter sequences of the MPZ gene in a group of patients with three CMT phenotypes i.e.: CMT1, CMT2 and CHN. Over 500 PCR products were screened by single strand conformation polymorphism analysis (SSCP) and heteroduplex analysis (HA). In one CMT2 family we founded the E56K mutation in the MPZ gene and in one CHN patient the T124K substitution was detected. In agreement with previously reported studies we conclude that MPZ gene screening should be performed for wide phenotype spectrum of CMT.  相似文献   

17.
18.
Alterations in gene copy number have been shown to cause disease in humans. Two of the most common inherited peripheral neuropathies, Charcot-Marie-Tooth 1A (CMT1A) and hereditary neuropathy with liability to pressure palsies (HNPP), are two such diseases resulting from alteration in gene copy number of the dosage sensitive peripheral myelin protein 22 (PMP22) gene. Many complicated and laborious diagnostic tests exist for the diagnosis of these diseases. The aim of our study was to develop the first quantitative multiplex real-time PCR assay for the diagnosis of CMT1A and HNPP. A total of 160 individuals who were known to have CMT1A, HNPP, or were normal from previous testing were assayed by our multiplex real-time PCR method. The results confirmed the previously determined gene copy number of all patient and control individuals tested. The range of ratio values between the disease and control groups were easily defined. The assay is accurate, simple, and cost effective and can detect a 50% change in gene copy number. This represents an ideal assay for any small diagnostic laboratory.  相似文献   

19.
The X-linked dominant form of Charcot-Marie-Tooth disease (CMTX) is associated with mutations in a gene coding for the gap-junction protein connexin 32 (Cx32). We screened 32 CMT families with a pedigree pattern suggestive of X-linked inheritance for the presence of mutations in the coding region of Cx32 by direct sequencing. Five of the families had a CMT1 diagnosis, 24 had a CMT2 diagnosis and 3 patients had an unspecified CMT. Eight families with a Cx32 point mutation were detected. Five different mutations (four of them published previously) were found in six CMT2 families and one mutation was found in a sporadic CMT1 male patient. One of the mutations, Met194Val, is among the first described in the fourth transmembrane domain of Cx32. Two CMT2 families and the sporadic CMT1 patient had the same mutation, Arg22Gln. An additional, previously unpublished mutation, Arg75Trp, was found in a male patient with unspecified CMT, who subsequently was verified to have a variant Klinefelter syndrome with 48,XXYY karyotype. Our findings show the difficulty in distinguishing CMTX patients from CMT1 and CMT2 patients, and they emphasize the need for Cx32 mutation screening in families previously diagnosed with CMT2. Received: 29 November 1996 / Revised: 17 February 1997  相似文献   

20.
Charcot-Marie-Tooth neuropathy (CMT) is one of the most common hereditary disorders, affecting 1:2500 individuals. CMT is a heterogeneous group of disorders characterized by chronic peripheral motor and sensory neuropathy. We have performed the detection of 1.5 Mb CMT1A tandem duplication in 17p11.2-12 chromosome region for autosome-dominant CMT1 patients and their relatives using the analysis of two (CA)n polymorphic microsatellite loci: 17S921 and 17S1358 localised in the duplication region. CMT1A duplication was found in three of five autosome-dominant CMT1 families. It has been shown that CMT1A duplication analysis is important for early differential diagnosis of CMT including prenatal diagnosis and genetic consulting in high risk families.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号