首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
HIV‐1 invades CNS in the early course of infection, which can lead to the cascade of neuroinflammation. NADPH oxidases (NOXs) are the major producers of reactive oxygen species (ROS), which play important roles during pathogenic insults. The molecular mechanism of ROS generation via microRNA‐mediated pathway in human microglial cells in response to HIV‐1 Tat protein has been demonstrated in this study. Over‐expression and knockdown of microRNAs, luciferase reporter assay, and site‐directed mutagenesis are main molecular techniques used in this study. A significant reduction in miR‐17 levels and increased NOX2, NOX4 expression levels along with ROS production were observed in human microglial cells upon HIV‐1 Tat C exposure. The validation of NOX2 and NOX4 as direct targets of miR‐17 was done by luciferase reporter assay. The over‐expression and knockdown of miR‐17 in human microglial cells showed the direct role of miR‐17 in regulation of NOX2, NOX4 expression and intracellular ROS generation. We demonstrated the regulatory role of cellular miR‐17 in ROS generation through over‐expression and knockdown of miR‐17 in human microglial cells exposed to HIV‐1 Tat C protein.

  相似文献   


2.
The mammalian target of rapamycin (mTOR) signalling cascade is involved in the intracellular regulation of protein synthesis, specifically for proteins involved in controlling neuronal morphology and facilitating synaptic plasticity. Research has revealed that the activity of the mTOR cascade is influenced by several extracellular and environmental factors that have been implicated in schizophrenia. Therefore, there is reason to believe that one of the downstream consequences of dysfunction or hypofunction of these factors in schizophrenia is disrupted mTOR signalling and hence impaired protein synthesis. This results in abnormal neurodevelopment and deficient synaptic plasticity, outcomes which could underlie some of the positive, negative and cognitive symptoms of schizophrenia. This review will discuss the functional roles of the mTOR cascade and present evidence in support of a novel mTOR‐based hypothesis of the neuropathology of schizophrenia.

  相似文献   


3.
Over‐activation of microglia cells in the brain contributes to neurodegenerative processes promoted by the production of various neurotoxic factors including pro‐inflammatory cytokines and nitric oxide. Recently, accumulating evidence has suggested that mitochondrial dynamics are an important constituent of cellular quality control and function. However, the role of mitochondrial dynamics in microglial activation is still largely unknown. In this study, we determined whether mitochondrial dynamics are associated with the production of pro‐inflammatory mediators in lipopolysaccharide (LPS)‐stimulated immortalization of murine microglial cells (BV‐2) by a v‐raf/v‐myc carrying retrovirus (J2). Excessive mitochondrial fission was observed in lentivirus‐transfected BV‐2 cells stably expressing DsRed2‐mito following LPS stimulation. Furthermore, mitochondrial localization of dynamin‐related protein 1 (Drp1) (a key regulator of mitochondrial fission) was increased and accompanied by de‐phosphorylation of Ser637 in Drp1. Interestingly, inhibition of LPS‐induced mitochondrial fission and reactive oxygen species (ROS) generation by Mdivi‐1 and Drp1 knock‐down attenuated the production of pro‐inflammatory mediators via reduced nuclear factor kappa‐light‐chain‐enhancer of activated B cells (NF‐κB) and mitogen‐activated protein kinase (MAPK) signaling. Our results demonstrated for the first time that mitochondrial fission regulates mitochondrial ROS production in activated microglial cells and influences the expression of pro‐inflammatory mediators through the activation of NF‐κB and MAPK. We therefore suggest that mitochondrial dynamics may be essential for understanding pro‐inflammatory mediator expression in activated microglial cells. This could represent a new therapeutic approach for preventing neurodegenerative diseases.

  相似文献   


4.
Glioblastomas are lethal brain tumors that resist current cytostatic therapies. Vitamin C may antagonize the effects of reactive oxygen species (ROS) generating therapies; however, it is often used to reduce therapy‐related side effects despite its effects on therapy or tumor growth. Because the mechanisms of vitamin C uptake in gliomas are currently unknown, we evaluated the expression of the sodium‐vitamin C cotransporter (SVCT) and facilitative hexose transporter (GLUT) families in human glioma cells. In addition, as microglial cells can greatly infiltrate high‐grade gliomas (constituting up to 45% of cells in glioblastomas), the effect of TC620 glioma cell interactions with microglial‐like HL60 cells on vitamin C uptake (Bystander effect) was determined. Although glioma cells expressed high levels of the SVCT isoform‐2 (SVCT2), low functional activity, intracellular localization and the expression of the dominant‐negative isoform (dnSVCT2) were observed. The increased glucose metabolic activity of glioma cells was evident by the high 2‐Deoxy‐d ‐glucose and dehydroascorbic acid (DHA) uptake rates through the GLUT isoform‐1 (GLUT1), the main DHA transporter in glioblastoma. Co‐culture of glioma cells and activated microglial‐like HL60 cells resulted in extracellular ascorbic acid oxidation and high DHA uptake by glioma cells. This Bystander effect may explain the high antioxidative potential observed in high‐grade gliomas.

  相似文献   


5.
In this study, in vitro and in vivo experiments were carried out with the high‐affinity multifunctional D2/D3 agonist D‐512 to explore its potential neuroprotective effects in models of Parkinson's disease and the potential mechanism(s) underlying such properties. Pre‐treatment with D‐512 in vitro was found to rescue rat adrenal Pheochromocytoma PC12 cells from toxicity induced by 6‐hydroxydopamine administration in a dose‐dependent manner. Neuroprotection was found to coincide with reductions in intracellular reactive oxygen species, lipid peroxidation, and DNA damage. In vivo, pre‐treatment with 0.5 mg/kg D‐512 was protective against neurodegenerative phenotypes associated with systemic administration of MPTP, including losses in striatal dopamine, reductions in numbers of DAergic neurons in the substantia nigra (SN), and locomotor dysfunction. These observations strongly suggest that the multifunctional drug D‐512 may constitute a novel viable therapy for Parkinson's disease.

  相似文献   


6.
The effect of psychoactive drugs on depression has usually been studied in cases of prolonged drug addiction and/or withdrawal, without much emphasis on the effects of subchronic or recreational drug use. To address this issue, we exposed laboratory rats to subchronic regimens of heroin or cocaine and tested long‐term effects on (i) depressive‐like behaviors, (ii) brain‐derived neurotrophic factor (BDNF) levels in reward‐related brain regions, and (iii) depressive‐like behavior following an additional chronic mild stress procedure. The long‐term effect of subchronic cocaine exposure was a general reduction in locomotor activity whereas heroin exposure induced a more specific increase in immobility during the forced swim test. Both cocaine and heroin exposure induced alterations in BDNF levels that are similar to those observed in several animal models of depression. Finally, both cocaine and heroin exposure significantly enhanced the anhedonic effect of chronic mild stress. These results suggest that subchronic drug exposure induces depressive‐like behavior which is accompanied by modifications in BDNF expression and increases the vulnerability to develop depressive‐like behavior following chronic stress. Implications for recreational and small‐scale drug users are discussed.

  相似文献   


7.
Taste information from type III taste cells to gustatory neurons is thought to be transmitted via synapses. However, the molecular mechanisms underlying taste transduction through this pathway have not been fully elucidated. In this study, to identify molecules that participate in synaptic taste transduction, we investigated whether complexins (Cplxs), which play roles in regulating membrane fusion in synaptic vesicle exocytosis, were expressed in taste bud cells. Among four Cplx isoforms, strong expression of Cplx2 mRNA was detected in type III taste cells. To investigate the function of CPLX2 in taste transduction, we observed taste responses in CPLX2‐knockout mice. When assessed with electrophysiological and behavioral assays, taste responses to some sour stimuli in CPLX2‐knockout mice were significantly lower than those in wild‐type mice. These results suggested that CPLX2 participated in synaptic taste transduction from type III taste cells to gustatory neurons.

  相似文献   


8.
We and others have previously shown that the neuropeptide galanin modulates neurite outgrowth from adult sensory neurons via activation of the second galanin receptor; however, the intracellular signalling pathways that mediate this neuritogenic effect have yet to be elucidated. Here, we demonstrate that galanin decreases the activation state in adult sensory neurons and PC12 cells of Rho and Cdc42 GTPases, both known regulators of filopodial and growth cone motility. Consistent with this, activated levels of Rho and Cdc42 levels are increased in the dorsal root ganglion of adult galanin knockout animals compared with wildtype controls. Furthermore, galanin markedly increases the activation state of cofilin, a downstream effector of many of the small GTPases, in the cell bodies and growth cones of sensory neurons and in PC12 cells. We also demonstrate a reduction in the activation of cofilin, and alteration in growth cone motility, in cultured galanin knockout neurons compared with wildtype controls. These data provide the first evidence that galanin regulates the Rho family of GTPases and cofilin to stimulate growth cone dynamics and neurite outgrowth in sensory neurons. These findings have important therapeutic implications for the treatment of peripheral sensory neuropathies.

  相似文献   


9.
Interleukin‐1β (IL‐1β) is essential for eliciting protective immunity during the acute phase of Staphylococcus aureus (S. aureus) infection in the central nervous system (CNS). We previously demonstrated that microglial IL‐1β production in response to live S. aureus is mediated through the Nod‐like receptor protein 3 (NLRP3) inflammasome, including the adapter protein ASC (apoptosis‐associated speck‐like protein containing a caspase‐1 recruitment domain), and pro‐caspase 1. Here, we utilized NLRP3, ASC, and caspase 1/11 knockout (KO) mice to demonstrate the functional significance of inflammasome activity during CNS S. aureus infection. ASC and caspase 1/11 KO animals were exquisitely sensitive, with approximately 50% of mice succumbing to infection within 24 h. Unexpectedly, the survival of NLRP3 KO mice was similar to wild‐type animals, suggesting the involvement of an alternative upstream sensor, which was later identified as absent in melanoma 2 (AIM2) based on the similar disease patterns between AIM2 and ASC KO mice. Besides IL‐1β, other key inflammatory mediators, including IL‐6, CXCL1, CXCL10, and CCL2 were significantly reduced in the CNS of AIM2 and ASC KO mice, implicating autocrine/paracrine actions of IL‐1β, as these mediators do not require inflammasome processing for secretion. These studies demonstrate a novel role for the AIM2 inflammasome as a critical molecular platform for regulating IL‐1β release and survival during acute CNS S. aureus infection.

  相似文献   


10.
Expression of a familial Alzheimer's disease (AD)‐linked mutant of amyloid β precursor protein (APP) or the binding of transforming growth factor β2 to wild‐type (wt)‐APP causes neuronal death by activating an intracellular death signal (a APP‐mediated intracellular death signal) in the absence of the involvement of amyloid β (Aβ) toxicity in vitro. These neuronal death models may therefore be regarded as Aβ‐independent neuronal death models related to AD. A recent study has shown that the A673T mutation in the APP isoform APP770, corresponding to the A598T mutation in the most prevalent neuronal APP isoform APP695 (an AD‐protective mutant of APP), is linked to a reduction in the incidence rate of AD. Consistent with this, cells expressing the AD‐protective mutant of APP produce less Aβ than cells expressing wt‐APP. In this study, transforming growth factor β2 caused death in cultured neuronal cells expressing wt‐APP, but not in those expressing the AD‐protective mutant of APP. This result suggests that the AD‐protective mutation of APP reduces the incidence rate of AD by attenuating the APP‐mediated intracellular death signal. In addition, a mutation that causes hereditary cerebral hemorrhage with amyloidosis‐Dutch type also attenuated the APP‐mediated intracellular death signal.

  相似文献   


11.
Inflammation is a key part of central nervous system pathophysiology. However, inflammatory factors are now thought to have both beneficial and deleterious effects. Here, we examine the hypothesis that lipocalin‐2 (LCN2), an inflammatory molecule that can be up‐regulated in the distressed central nervous system, may enhance angiogenesis in brain endothelial cells. Adding LCN2 (0.5–2.0 μg/mL) to RBE (Rat brain endothelial cells). 4 rat brain endothelial cells significantly increased matrigel tube formation and scratch migration, and also elevated levels of iron and reactive oxygen species. Co‐treatment with a radical scavenger (U83836E), a Nox inhibitor (apocynin) and an iron chelating agent (deferiprone) significantly dampened the ability of LCN2 to enhance tube formation and scratch migration in brain endothelial cells. These findings provide in vitro proof of the concept that LCN2 can promote angiogenesis via iron‐ and reactive oxygen species‐related pathways, and support the idea that LCN2 may contribute to the neurovascular recovery aspects of inflammation.

  相似文献   


12.
Temozolomide (TMZ) has been widely used in the treatment of glioblastoma (GBM), although inherent or acquired resistance restricts the application. This study was aimed to evaluate the efficacy of sulforaphane (SFN) to TMZ‐induced apoptosis in GBM cells and the potential mechanism. Biochemical assays and subcutaneous tumor establishment were used to characterize the function of SFN in TMZ‐induced apoptosis. Our results revealed that β‐catenin and miR‐21 were concordantly expressed in GBM cell lines, and SFN significantly reduced miR‐21 expression through inhibiting the Wnt/β‐catenin/TCF4 pathway. Furthermore, down‐regulation of miR‐21 enhanced the pro‐apoptotic efficacy of TMZ in GBM cells. Finally, we observed that SFN strengthened TMZ‐mediated apoptosis in a miR‐21‐dependent manner. In conclusion, SFN effectively enhances TMZ‐induced apoptosis by inhibiting miR‐21 via Wnt/β‐catenin signaling in GBM cells. These findings support the use of SFN for potential therapeutic approach to overcome TMZ resistance in GBM treatment.

  相似文献   


13.
The positron emission tomography (PET) ligand 11C‐labeled Pittsburgh compound B (PIB) is used to image β‐amyloid (Aβ) deposits in the brains of living subjects with the intent of detecting early stages of Alzheimer's disease (AD). However, deposits of human‐sequence Aβ in amyloid precursor protein transgenic mice and non‐human primates bind very little PIB. The high stoichiometry of PIB:Aβ binding in human AD suggests that the PIB‐binding site may represent a particularly pathogenic entity and/or report local pathologic conditions. In this study, 3H‐PIB was employed to track purification of the PIB‐binding site in > 90% yield from frontal cortical tissue of autopsy‐diagnosed AD subjects. The purified PIB‐binding site comprises a distinct, highly insoluble subfraction of the Aβ in AD brain with low buoyant density because of the sodium dodecyl sulfate‐resistant association with a limited subset of brain proteins and lipids with physical properties similar to lipid rafts and to a ganglioside:Aβ complex in AD and Down syndrome brain. Both the protein and lipid components are required for PIB binding. Elucidation of human‐specific biological components and pathways will be important in guiding improvement of the animal models for AD and in identifying new potential therapeutic avenues.

  相似文献   


14.
15.
16.
Mutation in TAR DNA binding protein 43 (TDP‐43) is a causative factor of amyotrophic lateral sclerosis and frontotemporal lobar degeneration. Neurodegeneration may not require the presence of pathogenic TDP‐43 in all types of relevant cells. Rather, expression of pathogenic TDP‐43 in neurons or astrocytes alone is sufficient to cause cell‐autonomous or non‐cell‐autonomous neuron death in transgenic rats. How pathogenic TDP‐43 in astrocytes causes non‐cell‐autonomous neuron death, however, is not clear. Here, we examined the effect of pathogenic TDP‐43 on gene expression in astrocytes. Microarray assay revealed that pathogenic TDP‐43 in astrocytes preferentially altered expression of the genes encoding secretory proteins. Whereas neurotrophic genes were down‐regulated, neurotoxic genes were up‐regulated. Representative genes Lcn2 and chitinase‐3‐like protein 1 were markedly up‐regulated in astrocytes from primary culture and intact transgenic rats. Furthermore, synthetic chitinase‐3‐like protein 1 induced neuron death in a dose‐dependent manner. Our results suggest that TDP‐43 pathogenesis is associated with the simultaneous induction of multiple neurotoxic genes in astrocytes, which may synergistically produce adverse effects on neuronal survival and contribute to non‐cell‐autonomous neuron death.

  相似文献   


17.
Insulin receptor (IR) in the brain plays a role in synaptic plasticity and cognitive functions. Phosphorylation of α‐amino‐3‐hydroxy‐5‐methylisoxazole‐4‐propionic acid (AMPA) receptors GluR1 subunit at Serine 831 is regulated by calcium–calmodulin‐dependent protein kinase II and protein kinase C that underlie long‐term potentiation and learning/memory. Recent studies have shown that the novel Protein Kinase M zeta (PKMζ) underlies synaptic plasticity and may regulate AMPAr. In this study, we show that insulin induces phosphorylation of Serine 831 GluR1 subunit of AMPAr and induces over‐expression of PKMζ; pre‐treatment with either the IR inhibitor 3‐Bromo‐5‐t‐butyl‐4‐hydroxy‐benzylidenemalonitrile (AG1024) or PKMζ inhibitor protein kinase C zeta pseudo‐substrate inhibitor returned the phosphorylation value of GluR1 to control level. Amyloid beta (Aβ) peptide in the form of oligomers interferes with IR signaling. Pre‐treating neuronal cultures with Aβ following incubation with insulin, we found a reduction of insulin‐dependent PKMζ over‐expression and MAPK/Erk (1/2) phosphorylation, i.e., signaling pathways involved in synaptic plasticity and learning/memory. These results indicate a new intracellular insulin signaling pathway, and, additionally, that insulin resistance in Alzheimer's disease is a response to the production and accumulation of Aβ.

  相似文献   


18.
The retinoids are a family of compounds that in nature are derived from vitamin A or pro‐vitamin A carotenoids. An essential part of the diet for mammals, vitamin A has long been known to be essential for many organ systems in the adult. More recently, however, they have been shown to be necessary for function of the brain and new discoveries point to a central role in processes ranging from neuroplasticity to neurogenesis. Acting in several regions of the central nervous system including the eye, hippocampus and hypothalamus, one common factor in its action is control of biological rhythms. This review summarizes the role of vitamin A in the brain; its action through the metabolite retinoic acid via specific nuclear receptors, and the regulation of its concentration through controlled synthesis and catabolism. The action of retinoic acid to regulate several rhythms in the brain and body, from circadian to seasonal, is then discussed to finish with the importance of retinoic acid in the regular pattern of sleep.

  相似文献   


19.
20.
DJ‐1 is an oxidative stress sensor that localizes to the mitochondria when the cell is exposed to oxidative stress. DJ‐1 mutations that result in gene deficiency are linked to increased risk of Parkinson's disease (PD). Activation of microglial stress conditions that are linked to PD may result in neuronal death. We postulated that DJ‐1 deficiency may increase microglial neurotoxicity. We found that down‐regulation of DJ‐1 in microglia using an shRNA approach increased cell sensitivity to dopamine as measured by secreted pro‐inflammatory cytokines such as IL‐1β and IL‐6. Furthermore, we discovered that DJ‐1‐deficient microglia had increased monoamine oxidase activity that resulted in elevation of intracellular reactive oxygen species and nitric oxide leading to increased dopaminergic neurotoxicity. Rasagaline, a monoamine oxidase inhibitor approved for treatment of PD, reduced the microglial pro‐inflammatory phenotype and significantly reduced neurotoxicity. Moreover, we discovered that DJ‐1‐deficient microglia have reduced expression of triggering receptor expressed on myeloid cells 2 (TREM2), previously suggested as a risk factor for pro‐inflammation in neurodegenerative diseases. Further studies of DJ‐1‐mediated cellular pathways in microglia may contribute useful insights into the development of PD providing future avenues for therapeutic intervention.

  相似文献   


设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号