首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Expressions of vascular endothelial growth factor (VEGF) receptors in astrocytes are increased in damaged brains. To clarify the regulatory mechanisms of VEGF receptors, the effects of endothelin‐1 (ET‐1) were examined in rat cultured astrocytes. Expressions of VEGF‐R1 and ‐R2 receptor mRNA were at similar levels, whereas the mRNA expressions of VEGF‐R3 and Tie‐2, a receptor for angiopoietins, were lower. Placenta growth factor, a selective agonist of the VEGF‐R1 receptor, induced phosphorylation of focal adhesion kinase (FAK) and extracellular signal regulated kinase 1/2 (ERK1/2). Phosphorylations of FAK and ERK 1/2 were also stimulated by VEGF‐E, a selective VEGF‐R2 agonist. Increased phosphorylations of FAK and ERK1/2 by VEGF165 were reduced by selective antagonists for VEGF‐R1 and ‐R2. Treatment with ET‐1 increased VEGF‐R1 mRNA and protein levels. The effects of ET‐1 on VEGF‐R1 mRNA were mimicked by Ala1,3,11,15‐ET‐1, a selective agonist for ETB receptors, and inhibited by BQ788, an ETB antagonist. ET‐1 did not affect the mRNA levels of VEGF‐R2, ‐R3, and Tie‐2. Pre‐treatment with ET‐1 potentiated the effects of placenta growth factor on phosphorylations of FAK and ERK1/2. These findings suggest that ET‐1 induces up‐regulation of VEGF‐R1 receptors in astrocytes, and potentiates VEGF signals in damaged nerve tissues.

  相似文献   


2.
Temozolomide (TMZ) has been widely used in the treatment of glioblastoma (GBM), although inherent or acquired resistance restricts the application. This study was aimed to evaluate the efficacy of sulforaphane (SFN) to TMZ‐induced apoptosis in GBM cells and the potential mechanism. Biochemical assays and subcutaneous tumor establishment were used to characterize the function of SFN in TMZ‐induced apoptosis. Our results revealed that β‐catenin and miR‐21 were concordantly expressed in GBM cell lines, and SFN significantly reduced miR‐21 expression through inhibiting the Wnt/β‐catenin/TCF4 pathway. Furthermore, down‐regulation of miR‐21 enhanced the pro‐apoptotic efficacy of TMZ in GBM cells. Finally, we observed that SFN strengthened TMZ‐mediated apoptosis in a miR‐21‐dependent manner. In conclusion, SFN effectively enhances TMZ‐induced apoptosis by inhibiting miR‐21 via Wnt/β‐catenin signaling in GBM cells. These findings support the use of SFN for potential therapeutic approach to overcome TMZ resistance in GBM treatment.

  相似文献   


3.
Growth factors and nutrients, such as amino acids and glucose, regulate mammalian target of rapamycin complex 1 (mTORC1) signaling and subsequent translational control in a coordinated manner. Brain‐derived neurotrophic factor (BDNF), the most prominent neurotrophic factor in the brain, activates mTORC1 and induces phosphorylation of its target, p70S6 kinase (p70S6K), at Thr389 in neurons. BDNF also increases mammalian target of rapamycin‐dependent novel protein synthesis in neurons. Here, we report that BDNF‐induced p70S6K activation is dependent on glucose, but not amino acids, sufficiency in cultured cortical neurons. AMP‐activated protein kinase (AMPK) is the molecular background to this specific nutrient dependency. Activation of AMPK, which is induced by glucose deprivation, treatment with pharmacological agents such as 2‐Deoxy‐d ‐glucose, metformin, and 5‐aminoimidazole‐4‐carboxamide ribonucleoside or forced expression of a constitutively active AMPKα subunit, counteracts BDNF‐induced phosphorylation of p70S6K and enhanced protein synthesis in cortical neurons. These results indicate that AMPK inhibits the effects of BDNF on mTORC1‐mediated translation in neurons.

  相似文献   


4.
Alcohols and inhaled anesthetics modulate GABAA receptor (GABAAR) function via putative binding sites within the transmembrane regions. The relative position of the amino acids lining these sites could be either inter‐ or intra‐subunit. We introduced cysteines in relevant TM locations and tested the proximity of cysteine pairs using oxidizing and reducing agents to induce or break disulfide bridges between cysteines, and thus change GABA‐mediated currents in wild‐type and mutant α1β2γ2 GABAARs expressed in Xenopus laevis oocytes. We tested for: (i) inter‐subunit cross‐linking: a cysteine located in α1TM1 [either α1(Q229C) or α1(L232C)] was paired with a cysteine in different positions of β2TM2 and TM3; (ii) intra‐subunit cross‐linking: a cysteine located either in β2TM1 [β2(T225C)] or in TM2 [β2(N265C)] was paired with a cysteine in different locations along β2TM3. Three inter‐subunit cysteine pairs and four intra‐subunits cross‐linked. In three intra‐subunit cysteine combinations, the alcohol effect was reduced by oxidizing agents, suggesting intra‐subunit alcohol binding. We conclude that the structure of the alcohol binding site changes during activation and that potentiation or inhibition by binding at inter‐ or intra‐subunit sites is determined by the specific receptor and ligand.

  相似文献   


5.
Dopamine (DA) replacement therapy with L‐DOPA continues to be the primary treatment of Parkinson's disease; however, long‐term therapy is accompanied by L‐DOPA‐induced dyskinesias (LID). Several experimental and clinical studies have established that Propranolol, a β‐adrenergic receptor antagonist, reduces LID without affecting L‐DOPA's efficacy. However, the exact mechanisms underlying these effects remain to be elucidated. The aim of this study was to evaluate the anti‐dyskinetic profile of Propranolol against a panel of DA replacement strategies, as well as elucidate the underlying neurochemical mechanisms. Results indicated that Propranolol, in a dose‐dependent manner, reduced LID, without affecting motor performance. Propranolol failed to alter dyskinesia produced by the D1 receptor agonist, SKF81297 (0.08 mg/kg, sc), or the D2 receptor agonist, Quinpirole (0.05 mg/kg, sc). These findings suggested a pre‐synaptic mechanism for Propranolol's anti‐dyskinetic effects, possibly through modulating L‐DOPA‐mediated DA efflux. To evaluate this possibility, microdialysis studies were carried out in the DA‐lesioned striatum of dyskinetic rats and results indicated that co‐administration of Propranolol (20 mg/kg, ip) was able to attenuate L‐DOPA‐ (6 mg/kg, sc) induced DA efflux. Therefore, Propranolol's anti‐dyskinetic properties appear to be mediated via attenuation of L‐DOPA‐induced extraphysiological efflux of DA.

  相似文献   


6.
Tuftsin (Thr‐Lys‐Pro‐Arg) is a natural immunomodulating peptide found to stimulate phagocytosis in macrophages/microglia. Tuftsin binds to the receptor neuropilin‐1 (Nrp1) on the surface of cells. Nrp1 is a single‐pass transmembrane protein, but its intracellular C‐terminal domain is too small to signal independently. Instead, it associates with a variety of coreceptors. Despite its long history, the pathway through which tuftsin signals has not been described. To investigate this question, we employed various inhibitors to Nrp1's coreceptors to determine which route is responsible for tuftsin signaling. We use the inhibitor EG00229, which prevents tuftsin binding to Nrp1 on the surface of microglia and reverses the anti‐inflammatory M2 shift induced by tuftsin. Furthermore, we demonstrate that blockade of transforming growth factor beta (TGFβ) signaling via TβR1 disrupts the M2 shift similar to EG00229. We report that tuftsin promotes Smad3 phosphorylation and reduces Akt phosphorylation. Taken together, our data show that tuftsin signals through Nrp1 and the canonical TGFβ signaling pathway.

  相似文献   


7.
Dynamin‐2 is a pleiotropic GTPase whose best‐known function is related to membrane scission during vesicle budding from the plasma or Golgi membranes. In the nervous system, dynamin‐2 participates in synaptic vesicle recycling, post‐synaptic receptor internalization, neurosecretion, and neuronal process extension. Some of these functions are shared with the other two dynamin isoforms. However, the involvement of dynamin‐2 in neurological illnesses points to a critical function of this isoform in the nervous system. In this regard, mutations in the dynamin‐2 gene results in two congenital neuromuscular disorders. One of them, Charcot‐Marie‐Tooth disease, affects myelination and peripheral nerve conduction, whereas the other, Centronuclear Myopathy, is characterized by a progressive and generalized atrophy of skeletal muscles, yet it is also associated with abnormalities in the nervous system. Furthermore, single nucleotide polymorphisms located in the dynamin‐2 gene have been associated with sporadic Alzheimer's disease. In the present review, we discuss the pathogenic mechanisms implicated in these neurological disorders.

  相似文献   


8.
Development of the cerebral cortex is controlled by growth factors among which transforming growth factor beta (TGFβ) and insulin‐like growth factor 1 (IGF1) have a central role. The TGFβ‐ and IGF1‐pathways cross‐talk and share signalling molecules, but in the central nervous system putative points of intersection remain unknown. We studied the biological effects and down‐stream molecules of TGFβ and IGF1 in cells derived from the mouse cerebral cortex at two developmental time points, E13.5 and E16.5. IGF1 induces PI3K, AKT and the mammalian target of rapamycin complexes (mTORC1/mTORC2) primarily in E13.5‐derived cells, resulting in proliferation, survival and neuronal differentiation, but has small impact on E16.5‐derived cells. TGFβ has little effect at E13.5. It does not activate the PI3K‐ and mTOR‐signalling network directly, but requires its activity to mediate neuronal differentiation specifically at E16.5. Our data indicate a central role of mTORC2 in survival, proliferation as well as neuronal differentiation of E16.5‐derived cortical cells. mTORC2 promotes these cellular processes and is under control of PI3K‐p110‐alpha signalling. PI3K‐p110‐beta signalling activates mTORC2 in E16.5‐derived cells but it does not influence cell survival, proliferation and differentiation. This finding indicates that different mTORC2 subtypes may be implicated in cortical development and that these subtypes are under control of different PI3K isoforms.

  相似文献   


9.
The gene encoding leucine‐rich repeat kinase 2 (LRRK2) comprises a major risk factor for Parkinson's disease. Recently, it has emerged that LRRK2 plays important roles in the immune system. LRRK2 is induced by interferon‐γ (IFN‐γ) in monocytes, but the signaling pathway is not known. Here, we show that IFN‐γ‐mediated induction of LRRK2 was suppressed by pharmacological inhibition and RNA interference of the extracellular signal‐regulated kinase 5 (ERK5). This was confirmed by LRRK2 immunostaining, which also revealed that the morphological responses to IFN‐γ were suppressed by ERK5 inhibitor treatment. Both human acute monocytic leukemia THP‐1 cells and human peripheral blood monocytes stimulated the ERK5‐LRRK2 pathway after differentiation into macrophages. Thus, LRRK2 is induced via a novel, ERK5‐dependent IFN‐γ signal transduction pathway, pointing to new functions of ERK5 and LRRK2 in human macrophages.

  相似文献   


10.
Astrocyte swelling and the subsequent increase in intracranial pressure and brain herniation are major clinical consequences in patients with acute hepatic encephalopathy. We recently reported that conditioned media from brain endothelial cells (ECs) exposed to ammonia, a mixture of cytokines (CKs) or lipopolysaccharide (LPS), when added to astrocytes caused cell swelling. In this study, we investigated the possibility that ammonia and inflammatory agents activate the toll‐like receptor 4 (TLR4) in ECs, resulting in the release of factors that ultimately cause astrocyte swelling. We found a significant increase in TLR4 protein expression when ECs were exposed to ammonia, CKs or LPS alone, while exposure of ECs to a combination of these agents potentiate such effects. In addition, astrocytes exposed to conditioned media from TLR4‐silenced ECs that were treated with ammonia, CKs or LPS, resulted in a significant reduction in astrocyte swelling. TLR4 protein up‐regulation was also detected in rat brain ECs after treatment with the liver toxin thioacetamide, and that thioacetamide‐treated TLR4 knock‐out mice exhibited a reduction in brain edema. These studies strongly suggest that ECs significantly contribute to the astrocyte swelling/brain edema in acute hepatic encephalopathy, likely as a consequence of increased TLR4 protein expression by blood‐borne noxious agents.

  相似文献   


11.
The GluN2 subunits that compose NMDA receptors (NMDARs) determine functional and pharmacological properties of the receptor. In the striatum, functions and potential dysfunctions of NMDARs attributed to specific GluN2 subunits have not been clearly elucidated, although NMDARs play critical roles in the interactions between glutamate and dopamine. Through the use of amperometry and field potential recordings in mouse brain slices, we found that NMDARs that contain the GluN2D subunit contribute to NMDA‐induced inhibition of evoked dopamine release and of glutamatergic neurotransmission in the striatum of control mice. Inhibition is likely mediated through increased firing in cholinergic interneurons, which were shown to express GluN2D. Indeed, NMDA‐induced inhibition of both dopamine release and glutamatergic neurotransmission is reduced in the presence of muscarinic receptor antagonists and is mimicked by a muscarinic receptor agonist. We have also examined whether this function of GluN2D‐containing NMDARs is altered in a mouse model of Parkinson's disease. We found that the inhibitory role of GluN2D‐containing NMDARs on glutamatergic neurotransmission is impaired in the 6‐hydroxydopamine lesioned striatum. These results identify a role for GluN2D‐containing NMDARs and adaptive changes in experimental Parkinsonism. GluN2D might constitute an attractive target for the development of novel pharmacological tools for therapeutic intervention in Parkinson's disease.

  相似文献   


12.
Parkinson's disease is the second most common neurodegenerative disease and its pathogenesis is closely associated with oxidative stress. Deposition of aggregated α‐synuclein (α‐Syn) occurs in familial and sporadic forms of Parkinson's disease. Here, we studied the effect of oligomeric α‐Syn on one of the major markers of oxidative stress, lipid peroxidation, in primary co‐cultures of neurons and astrocytes. We found that oligomeric but not monomeric α‐Syn significantly increases the rate of production of reactive oxygen species, subsequently inducing lipid peroxidation in both neurons and astrocytes. Pre‐incubation of cells with isotope‐reinforced polyunsaturated fatty acids (D‐PUFAs) completely prevented the effect of oligomeric α‐Syn on lipid peroxidation. Inhibition of lipid peroxidation with D‐PUFAs further protected cells from cell death induced by oligomeric α‐Syn. Thus, lipid peroxidation induced by misfolding of α‐Syn may play an important role in the cellular mechanism of neuronal cell loss in Parkinson's disease.

  相似文献   


13.
14.
DJ‐1 is an oxidative stress sensor that localizes to the mitochondria when the cell is exposed to oxidative stress. DJ‐1 mutations that result in gene deficiency are linked to increased risk of Parkinson's disease (PD). Activation of microglial stress conditions that are linked to PD may result in neuronal death. We postulated that DJ‐1 deficiency may increase microglial neurotoxicity. We found that down‐regulation of DJ‐1 in microglia using an shRNA approach increased cell sensitivity to dopamine as measured by secreted pro‐inflammatory cytokines such as IL‐1β and IL‐6. Furthermore, we discovered that DJ‐1‐deficient microglia had increased monoamine oxidase activity that resulted in elevation of intracellular reactive oxygen species and nitric oxide leading to increased dopaminergic neurotoxicity. Rasagaline, a monoamine oxidase inhibitor approved for treatment of PD, reduced the microglial pro‐inflammatory phenotype and significantly reduced neurotoxicity. Moreover, we discovered that DJ‐1‐deficient microglia have reduced expression of triggering receptor expressed on myeloid cells 2 (TREM2), previously suggested as a risk factor for pro‐inflammation in neurodegenerative diseases. Further studies of DJ‐1‐mediated cellular pathways in microglia may contribute useful insights into the development of PD providing future avenues for therapeutic intervention.

  相似文献   


15.
16.
Sports‐related head impact and injury has become a very highly contentious public health and medico‐legal issue. Near‐daily news accounts describe the travails of concussed athletes as they struggle with depression, sleep disorders, mood swings, and cognitive problems. Some of these individuals have developed chronic traumatic encephalopathy, a progressive and debilitating neurodegenerative disorder. Animal models have always been an integral part of the study of traumatic brain injury in humans but, historically, they have concentrated on acute, severe brain injuries. This review will describe a small number of new and emerging animal models of sports‐related head injury that have the potential to increase our understanding of how multiple mild head impacts, starting in adolescence, can have serious psychiatric, cognitive and histopathological outcomes much later in life.

  相似文献   


17.
18.
We have previously shown that the selective sigma‐1 receptor (σ1R) antagonist S1RA (E‐52862) inhibits neuropathic pain and activity‐induced spinal sensitization in various pre‐clinical pain models. In this study we characterized both the behavioral and the spinal neurochemical effects of S1RA in the rat formalin test. Systemic administration of S1RA produced a dose‐related attenuation of flinching and lifting/licking behaviors in the formalin test. Neurochemical studies using concentric microdialysis in the ipsilateral dorsal horn of awake, freely moving rats revealed that the systemic S1RA‐induced antinociceptive effect occurs concomitantly with an enhancement of noradrenaline levels and an attenuation of formalin‐evoked glutamate release in the spinal dorsal horn. Intrathecal pre‐treatment with idazoxan prevented the systemic S1RA antinociceptive effect, suggesting that the S1RA antinociception depends on the activation of spinal α2‐adrenoceptors which, in turn, could induce an inhibition of formalin‐evoked glutamate release. When administered locally, intrathecal S1RA inhibited only the flinching behavior, whereas intracerebroventricularly or intraplantarly injected also attenuated the lifting/licking behavior. These results suggest that S1RA supraspinally activates the descending noradrenergic pain inhibitory system, which may explain part of its antinociceptive properties in the formalin test; however, effects at other central and peripheral sites also account for the overall effect.

  相似文献   


19.
This study examined the respective influences of cannabinoid type‐1 (CB1) receptors expressed either in forebrain GABAergic neurons, in cortical glutamatergic neurons, or in astrocytes on the turnover rates of the endocannabinoids N‐arachidonoylethanolamide (AEA) and 2‐arachidonoylglycerol (2‐AG), and the non‐cannabinoid N‐acylethanolamides, palmitoylethanolamide (PEA), and oleoylethanolamide (OEA), in mouse forebrain regions. To this end, conditional mutant mice lacking CB1 receptors from either of these cell types were pre‐treated systemically with JZL195, a dual inhibitor of fatty acid amide hydrolase, the enzyme degrading AEA, PEA, and OEA, and of monoacylglycerol lipase, the main 2‐AG‐degrading enzyme. The analyses of frontocortical, hippocampal, and striatal AEA, 2‐AG, PEA, and OEA concentrations revealed that their respective baseline concentrations were not influenced by the mouse genotype. On the other hand, the accumulation of frontocortical and/or hippocampal 2‐AG levels in JZL195‐pre‐treated mice was dependent on the mouse genotype. Thus, JZL195‐induced 2‐AG accumulation rates were diminished in the frontal cortex of mice lacking CB1 receptors in glutamatergic neurons while their respective values were increased in the frontal cortex and hippocampus of mice lacking these receptors in astrocytes. These genotypic differences occurred with parallel and proportionate changes in the fractional rate constants for degradation of 2‐AG, thus providing a mechanism whereby the baseline levels of 2‐AG remained constant between genotypes. Besides suggesting a cell‐type‐specific control of frontocortical and/or hippocampal 2‐AG synthesis and degradation rates by CB1 receptors, this study highlights the interest of assessing endocannabinoid turnover rates when questioning the status of the endocannabinoid system.

  相似文献   


20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号