首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In Brassica species, self-incompatibility has been mapped genetically to a single chromosomal location. In this region several closely linked genes have been identified. One of them, S-locus receptor kinase (SRK), determines S haplotype specificity of the stigma and it's the key protein for SI reaction. The role of the S locus glycoprotein (SLG) gene remains unclear. In the last decade approximately 15 additional genes linked to S-locus have been found. Recently, a gene has been identified (SCR) that encodes a small cysteine-rich protein which is a candidate for the pollen ligand. In addition to S locus linked genes there are unlinked SLRgenes (S-locus related genes). In this review, we discuss the role of these genes and the current view on the self-incompatibility mechanism in Brassica.  相似文献   

2.
In Brassica species, self-incompatibility has been mapped genetically to a single chromosomal location. In this region, there are two closely linked genes coding for the S locus glycoprotein (SLG) and S locus receptor kinase (SRK). They appear to comprise the pistil component of the self-incompatibility reaction. SLG and SRK are thought to recognize an unknown pollen component on the incompatible pollen, and the gene encoding this pollen component must also be linked to the SLG and SRK genes. To further our understanding of self-incompatibility, the chromosomal region carrying the SLG and SRK genes has been studied. The physical region between the SLG-910 and the SRK-910 genes in the Brassica napus W1 line was cloned, and a search for genes expressed in the anther revealed two additional S locus genes located downstream of the SLG-910 gene. Because these two genes are novel and are conserved at other S alleles, we designated them as SLL1 and SLL2 (for S locus-linked genes 1 and 2, respectively). The SLL1 gene is S locus specific, whereas the SLL2 gene is not only present at the S locus but is also present in other parts of the genomes in both self-incompatible and self-compatible Brassica ssp lines. Expression of the SLL1 gene is only detectable in anthers of self-incompatible plants and is developmentally regulated during anther development, whereas the SLL2 gene is expressed in anthers and stigmas in both self-incompatible and self-compatible plants, with the highest levels of expression occurring in the stigmas. Although SLL1 and SLL2 are linked to the S locus region, it is not clear whether these genes function in self-incompatibility or serve some other cellular roles in pollen-pistil functions.  相似文献   

3.
Self-incompatibility (SI) in Brassica is controlled by a single locus, termed the S locus. There is evidence that two of the S locus genes, SLG, which encodes a secreted glycoprotein, and SRK, which encodes a putative receptor kinase, are required for SI on the stigma side. The current model postulates that a pollen ligand recognizing the SLG/SRK receptors is encoded in the genomic region defined by the SLG and SRK genes. A fosmid contig of approximately 65 kb spanning the SLG-910 and SRK-910 genes was isolated from the Brassica napus W1 line. A new gene, SLL3, was identified using a novel approach combining cDNA subtraction and direct selection. This gene encodes a putative secreted small peptide and exists as multiple copies in the Brassica genome. Sequencing analysis of the 65-kb contig revealed seven additional genes and a transposon. None of these seven genes exhibited features expected of S genes on the pollen side. An approximately 88-kb contig of the A14 S region also was isolated from the B. napus T2 line and sequenced. Comparison of the two S regions revealed that (1) the gene organization downstream of SLG in both S haplotypes is highly colinear; (2) the distance between SLG-A14 and SRK-A14 genes is much larger than that between SLG-910 and SRK-910, with the intervening region filled with retroelements and haplotype-specific genes; and (3) the gene organization downstream of SRK in the two haplotypes is divergent. These observations lead us to propose that the SLG downstream region might be one border of the S locus and that the accumulation of heteromorphic sequences, such as retroelements as well as haplotype-unique genes, may act as a mechanism to suppress recombination between SLG and SRK.  相似文献   

4.
Self-incompatibility (SI) systems prevent self-pollination and promote outbreeding. In Brassica, the SI genes SLG (for S-locus glycoprotein) and SRK (for S-receptor kinase) are members of the S multigene family, which share the SLG-like domain (S domain), which encodes a putative receptor. We have cloned members of the S multigene family from the S9 haplotype of B. campestris (syn. rapa). In addition, eight distinct genomic regions harboring 10 SLG/SRK-like genes were characterized in the present study. Sequence analysis revealed two novel SRK-like genes, BcRK3 and BcRK6 (for B. campestris receptor kinases 3 and 6, respectively). Other genes that were characterized included SFR2 (for S gene family receptor 2), SLR2 (for S locus related gene 2), and a pseudogene. Based on phylogenetic analysis of the nucleotide sequences of the S domain regions, SLG and SRK appear to be distinct from other members of the S multigene family. Linkage analysis showed that most members of the S multigene family are dispersed in the Brassica genome, and that SLR1 (S locus related gene 1) is not linked to the SLR2 in B. campestris.  相似文献   

5.
The nucleotide sequence of an 86.4-kb region that includes the SP11, SRK, and SLG genes of Brassica rapa S-60 (a class-II S haplotype) was determined. In the sequenced region, 13 putative genes were found besides SP11-60, SRK-60, and SLG-60. Five of these sequences were isolated as cDNAs, five were homologues of known genes, cDNAs, or ORFs, and three are hypothetical ORFs. Based on their nucleotide sequences, however, some of them are thought to be non-functional. Two regions of colinearity between the class-II S-60 and Brassica class-I S haplotypes were identified, i.e., S flanking region 1 which shows partial colinearity of non-genic sequences and S flanking region 2 which shows a high level of colinearity. The observed colinearity made it possible to compare the order of SP-11, SRK, and SLG genes in the S locus between the five sequenced S haplotypes. It emerged that the order of SRK and SLG in class-II S-60 is the reverse of that in the four class-I S haplotypes reported so far, and the order of SP11, SRK and SLG is the opposite of that in the class-I haplotype S-910. The possible gene designated as SAN1 (S locus Anther-expressed Non-coding RNA like-1), which is located in the region between SP11-60 and SRK-60, has features reminiscent of genes for non-coding RNAs (ncRNAs), but no homologous sequences were found in the databases. This sequence is transcribed in anthers but not in stigmas or leaves. These features of the genomic structure of S-60 are discussed with special reference to the characteristics of class-II S haplotypes.  相似文献   

6.
The S locus receptor kinase (SRK) gene is one of two S locus genes required for the self-incompatibility response in Brassica. We have identified the product of the SRK6 gene in B. oleracea stigmas and have shown that it has characteristics of an integral membrane protein. When expressed in transgenic tobacco, SRK6 is glycosylated and targeted to the plasma membrane. These results provide definitive biochemical evidence for the existence in plants of a plasma membrane-localized transmembrane protein kinase with a known cell-cell recognition function. The timing of SRK expression in stigmas follows a time course similar to that previously described for another S locus-linked gene, the S locus glycoprotein (SLG) gene, and correlates with the ability of stigmas to mount a self-incompatibility response. Based on SRK6 promoter studies, the site of gene expression overlaps with that of SLG and exhibits predominant expression in the stigmatic papillar cells. Although reporter gene studies indicated that the SRK promoter was active in pollen, SRK protein was not detected in pollen, suggesting that SRK functions as a cell surface receptor exclusively in the papillar cells of the stigma.  相似文献   

7.
Self-incompatibility in Brassica is controlled by a single, highly polymorphic locus that extends over several hundred kilobases and includes several expressed genes. Two stigma proteins, the S locus receptor kinase (SRK) and the S locus glycoprotein (SLG), are encoded by genes located at the S locus and are thought to be involved in the recognition of self-pollen by the stigma. We report here that two different SLG genes, SLGA and SLGB, are located at the S locus in the class II, pollen-recessive S15 haplotype. Both genes are interrupted by a single intron; however, SLGA encodes both soluble and membrane-anchored forms of SLG, whereas SLGB encodes only soluble SLG proteins. Thus, including SRK, the S locus in the S15 haplotype contains at least three members of the S gene family. The protein products of these three genes have been characterized, and each SLG glycoform was assigned to an SLG gene. Evidence is presented that the S2 and S5 haplotypes carry only one or the other of the SLG genes, indicating either that they are redundant or that they are not required for the self-incompatibility response.  相似文献   

8.
姜立杰  曹家树 《植物学报》2001,18(4):411-417
芸薹属植物自交不亲和性受单一位点的复等位基因控制,此位点命名为S位点。它决定柱头表面花粉识别的专一性。S位点糖蛋白基因(SLG)和S受体激酶基因(SRK)是控制芸薹属植物花柱自交不亲和性的两个关键因子。本文介绍了编码自交不亲和性的S位点的SLG、SRK和花粉S基因的鉴定、结构及功能,并对其信号传导途径的可能机制做了简要概述。  相似文献   

9.
芸薹属植物自交不亲和性的分子机制   总被引:10,自引:0,他引:10  
芸薹属植物自交不亲和性受单一位点的复等位基因控制,此位点命名为S位点,它决定柱头表面花粉识别的专一性,S位点糖蛋白基因(SLG)和S受体激酶基因(SRK)是控制芸薹属植物花柱自交不亲和性的两个关键因子,本文介绍了编码自产不亲和性的S位点的SLG,SRK和花粉S基因的鉴定,结构及功能,并对其信号传导途径的可能机制做了简要概述。  相似文献   

10.
As a starting point for a phylogenetic study of self-incompatibility (SI) in crucifers and to elucidate the genetic basis of transitions between outcrossing and self-fertilizing mating systems in this family, we investigated the SI system of Arabidopsis lyrata. A. lyrata is an outcrossing close relative of the self-fertile A. thaliana and is thought to have diverged from A. thaliana approximately 5 million years ago and from Brassica spp 15 to 20 million years ago. Analysis of two S (sterility) locus haplotypes demonstrates that the A. lyrata S locus contains tightly linked orthologs of the S locus receptor kinase (SRK) gene and the S locus cysteine-rich protein (SCR) gene, which are the determinants of SI specificity in stigma and pollen, respectively, but lacks an S locus glycoprotein gene. As described previously in Brassica, the S haplotypes of A. lyrata differ by the rearranged order of their genes and by their variable physical sizes. Comparative mapping of the A. lyrata and Brassica S loci indicates that the S locus of crucifers is a dynamic locus that has undergone several duplication events since the Arabidopsis--Brassica split and was translocated as a unit between two distant chromosomal locations during diversification of the two taxa. Furthermore, comparative analysis of the S locus region of A. lyrata and its homeolog in self-fertile A. thaliana identified orthologs of the SRK and SCR genes and demonstrated that self-compatibility in this species is associated with inactivation of SI specificity genes.  相似文献   

11.
芸薹属的自交不亲和性是受单基因座、复等位基因控制的孢子体控制型。自交不亲和基因座位(S-locus)是由多个基因组成的复杂区域,称之为S多基因家族,其大多数成员分布于芸薹属的整个染色体组。目前已鉴定出100多个S等位基因,它们的起源分化始于一千万年前。S-座位上存在的多基因有3种:SRK,SLG和SCR/SP11;SRK和SLG在柱头中表达,SCR/SP11在雄蕊中表达。SRK蛋白在识别同类花粉的过程中起主要作用,而SLG蛋白增强了这种自交不亲和反应。SLG与SRK基因中编码S-结构域的核苷酸序列相似性程度高达85%~98%。基因转换可能是SLG和SRK的高度同源性能够得以保持的原因。SRK,SLG和SCR基因紧密相连,并表现出高水平的序列多样性。SRK与SLG基因间的距离很近,在20~25 kb之间。在柱头和花粉中,自交不亲和等位基因之间的共显性关系要比显性和隐性关系更加普遍,这是芸薹属自交不亲和性的一大特点。自交不亲和基因的进化模式存在两种假说:双基因进化模式和中性变异体进化模式;可能存在几种不同的进化方式,它们共同在自然群体中新的S等位基因进化过程中起作用。  相似文献   

12.
Expression of an S receptor kinase (SRK910) transgene in the self-compatible Brassica napus cv. Westar conferred on the transgenic pistil the ability to reject pollen from the self-incompatible Brassica napus W1 line, which carries the S910 allele. In one of the SRK transgenic lines, 1C, virtually no seeds were produced when the transgenic pistils were pollinated with W1 pollen (Mean number of seeds per pod = 1.22). This response was specific to the W1 pollen since pollen from a different self-incompatible Brassica napus line (T2) and self-pollinations were fully compatible. Westar plants expressing an S locus glycoprotein transgene (SLG910) did not show any self-incompatibility response towards W1 pollen. Transgenic Westar plants resulting from crosses between the 1C SRK transgenic line and three SLG910 transgenic lines were also tested for rejection of W1 pollen. The additional expression of the SLG910 transgene in the SRK910 transgenic plants did not cause any significant further reduction in seed production (Mean seeds/pod = 1.04) or have any detectable effects on the number of pollen grains that adhered to the pistil. Thus, while the allele-specific SLG gene was previously reported to have an enhancing effect on the self-incompatibility response, no evidence for such a role was found in this study.  相似文献   

13.
Many flowering plants possess self-incompatibility (SI) systems to prevent inbreeding. SI in Brassica species is controlled by a single S locus with multiple alleles. In recent years, much progress has been made in determining the male and female S determinant in Brassica species. In the female, a gain-of-function experiment clearly demonstrated that SRK was the sole S determinant, and that SLG enhanced the SI recognition process. By contrast, the male S determinant (termed SP11/SCR) was identified in the course of genome analysis of S locus to be a small cysteine-rich protein, which was classified as a pollen coat protein. This SP11/SCR may function as a ligand for the S domain of SRK in the SI recognition reaction of Brassica species.  相似文献   

14.
Self_incompatibility (SI) is a major genetic mechanism to prevent self_fertilization in flowering plants and, in most cases, controlled by a single multiallelic locus, known as the S locus. In Brassica, the genes mediating both stylar (SRK, S receptor kinase) and pollen (SCR/SP11, S locus cystein rich protein/S locus protein 11) expression of self_incompatible reaction have been characterized though the first S locus_encoded gene, SLG (S locus glycoprotein), was isolated nearly fifteen years ago. These findings have finally unveiled the molecular partners in pollen recognition during self_incompatible reaction in Brassica.  相似文献   

15.
Self-incompatibility in Brassica is controlled by a single multi-allelic locus (the S locus) which harbors at least two highly polymorphic genes, SLG and SRK. SRK is a putative transmembrane receptor kinase and its amino acid sequence of the extracellular domain of SRK (the S domain) exhibits high homology to that of SLG. The amino acid sequences of the SLGs of S8 and S46 haplotypes of B. rapa are very similar and those of S23 and S29 haplotypes of B. oleracea were also found to be almost identical. In both cases, SLG and the S domain of SRK of the same haplotype were less similar. This seems to contradict the idea that SLG and SRK of the same haplotype have the same self-recognition specificity. In the transmembrane-kinase domain, the SRK alleles of the S8 and S46 haplotypes had almost identical nucleotide sequences in spite of their lower homology in the S domain. Such a cluster of nucleotide substitutions is probably due to recombination or related events, although recombination in the S locus is thought to be suppressed. Based on our observations, the recognition mechanism and the evolution of self-incompatibility in Brassica are discussed.  相似文献   

16.
Selfincompatibility (SI) is a major genetic mechanism to prevent selffertilization in flowering plants and, in most cases, controlled by a single multiallelic locus, known as the S locus. In Brassica, the genes mediating both stylar (SRK, S receptor kinase) and pollen (SCR/SP11, S locus cystein rich protein/S locus protein 11) expression of selfincompatible reaction have been characterized though the first S locus-encoded gene, SLG (S locus glycoprotein), was isolated nearly fifteen years ago. These findings have finally unveiled the molecular partners in pollen recognition during selfincompatible reaction in Brassica.  相似文献   

17.
18.
In most self-incompatible plant species, recognition of self-pollen is controlled by a single locus, termed the S-locus. In Brassica, genetic dissection of the S-locus has revealed the presence of three highly-polymorphic genes: S-receptor kinase (SRK), S-locus protein 11 (SP11) (also known as S-locus cysteine-rich protein; SCR) and S-locus glycoprotein (SLG). SRK encodes a membrane-spanning serine/threonine kinase that determines the S-haplotype specificity of the stigma. SP11 encodes a small cysteine-rich protein that determines the S-haplotype specificity of pollen. SLG encodes a secreted form of stigma protein similar to the extracellular domain of SRK. Recent biochemical studies have revealed that SP11 functions as the sole ligand for its cognate SRK receptor complex. Their interaction induces the autophosphorylation of SRK, which is expected to trigger the signalling cascade that results in the rejection of self-pollen. This so-called ligand-receptor complex interaction and receptor activation occur in an S-haplotype-specific manner, and this specificity is almost certainly the basis for self-pollen recognition.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号