首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 187 毫秒
1.
The recessive fgr gene on chromosome 8 is associated with rice fragrance. It has been reported that this gene is a non-functional badh2 allele and that the functional Badh2 allele encoding putative betaine aldehyde dehydrogenase (BADH2) could render rice non-fragrant. Here we report the discovery of a new badh2 allele and the development of functional markers for the badh2 locus. A total of 24 fragrant and ten non-fragrant rice varieties were studied and sequenced for their Badh2/badh2 loci. Of the 24 fragrant rice varieties, 12 were found to have the known badh2 allele (badh2-E7), which has an 8-bp deletion and three single nucleotide polymorphisms (SNPs) in exon 7; the others had a novel null badh2 allele (badh2-E2), which has a sequence identical to that of the Badh2 allele in exon 7, but with a 7-bp deletion in exon 2. Both null badh2 alleles are responsible for rice fragrance. Based on sequence divergence amongst the functional Badh2 and two null badh2 alleles, we developed functional markers which can be easily used to distinguish non-fragrant from fragrant rice and to differentiate between two kinds of fragrant rice. These functional markers will find their usefulness in breeding for fragrant rice varieties via marker-assisted selection. Weiwei Shi and Yi Yang contributed equally to this work.  相似文献   

2.
Fragrance development in rice has been reported due to a 8-bp deletion in the exon 7 of badh2 gene located on Chromosome 8S. Multiplex markers targeting the functional InDel polymorphism was earlier reported for genotyping fragrance trait, but the marker was observed to be inconsistent and difficult to use. We have developed a simple, co-dominant, functional marker for fragrance trait, which can be resolved in an agarose gel and validated in Basmati and non-Basmati aromatic rice varieties and in a mapping population segregated for fragrance trait. The marker targets the InDel polymorphism in badh2 gene and amplifies 95 and 103 bp fragments in fragrant and non-fragrant genotypes, respectively. The newly developed marker was highly efficient in discriminating all fragrant and non-fragrant genotypes and showed perfect co-segregation with the trait of fragrance in the mapping population. We recommend the use of this simple, low-cost marker in routine genotyping for fragrance trait in large scale breeding materials and germplasm.  相似文献   

3.
根据香型与非香型水稻甜菜碱醛脱氢酶2基因(badh2)在第2、第4内含子、第7外显子3处序列差异和第2外显子1处序列差异,分别设计了两类检测badh2第7和第2外显子突变的功能性分子标记引物M7和M2;利用两类引物,分别对属于第7外显子突变的香型水稻W香99075和第2外显子突变的香型水稻武香14、非香型水稻以及两种香稻分别与非香稻杂交的F1植株基因组DNA进行PCR检测后发现,M7和M2引物完全能够分别被用于以第7和第2外显子突变的香稻作为亲本,进行分子标记辅助培育香稻新品种的研究.M7引物综合考虑了badh2内含子和外显子两方面突变情况而设计的.以非香稻261S、分别发生第7和第2外显子突变的香稻品种W香99075和武香14为对照,使用M7和M2引物,对本实验室收集的另外22份香稻品种进行badh2突变位点检测,结果可将这些香稻分为badh2第2外显子突变类型、第7外显子突变类型和外显子未发生突变类型,同时明确了大多目前在上海等周边地区种植的香稻品种的badh2所属的突变位点.开展本研究为利用分子标记辅助选育香型水稻新品种研究奠定了重要的基础.  相似文献   

4.
In this study, we investigated the cause and origin of fragrance in NERICA1, a fragrant rice inbred line developed from an interspecific cross between two non-fragrant parents. The genetic cause of fragrance in NERICA1 was found to be due to a previously reported mutation in the BADH2 gene, the same allele responsible for the majority of modern fragrant rice varieties. Haplotype analysis around the BADH2 gene in NERICA1, its parents, and 95 other varieties carrying the badh2.1 allele identified the source of the badh2.1 allele in NERICA1 was a fragrant tropical japonica variety, WAB638-1, which had been growing in the vicinity of the NERICA1 nursery during varietal development. The allele-specific marker for the badh2.1 allele consistently predicted fragrance in the diverse African germplasm tested, making it very useful for marker-assisted breeding of fragrant rice varieties in Africa.  相似文献   

5.
Fragrance in soybean is due to the presence of 2-acetyl-1-pyrroline (2AP). BADH2 gene coding for betaine aldehyde dehydrogenase has been identified as the candidate gene responsible for fragrance in rice (Oryza sativa L.). In this study, using the RIL population derived from fragrant soybean cultivar "Kaori" and non-fragrant soybean cultivar "Chiang Mai 60" (CM60), STS markers designed from BADH2 homolog were found associating with 2AP production. Genetic mapping demonstrated that QTL position of fragrance and 2AP production coincides with the position of GmBADH2 (Glycine max betaine aldehyde dehydrogenase 2). Sequence comparison of GmBADH2 between Kaori and non-fragrant soybeans revealed non-synonymous single-nucleotide polymorphism (SNP) in exon 10. Nucleotide substitution of G to A in the exon results in an amino acid change of glycine (GGC; G) to aspartic acid (GAC; D) in Kaori. The amino acid substitution changes the conserved EGCRLGPIVS motif of GmBADH2, which is essential for functional activity of GmBADH2 protein, to EGCRLDPIVS motif, suggesting that the SNP in GmBADH2 is responsible for the fragrance in Kaori. Five single nucleotide-amplified polymorphism (SNAP) markers which are PCR-based allele specific SNP markers were developed for fragrance based on the SNP in GmBADH2. Two markers specific to A allele produced a band in only Kaori, while three markers specific to G alleles produced a band in only CM60. The simple PCR-based allele specific SNAP markers developed in the present study are useful in marker-assisted breeding of fragrant soybean.  相似文献   

6.
The gene for fragrance in rice   总被引:21,自引:0,他引:21  
The flavour or fragrance of basmati and jasmine rice is associated with the presence of 2-acetyl-1-pyrroline. A recessive gene (fgr) on chromosome 8 of rice has been linked to this important trait. Here, we show that a gene with homology to the gene that encodes betaine aldehyde dehydrogenase (BAD) has significant polymorphisms in the coding region of fragrant genotypes relative to non-fragrant genotypes. The accumulation of 2-acetyl-1-pyrroline in fragrant rice genotypes may be explained by the presence of mutations resulting in a loss of function of the fgr gene product. The allele in fragrant genotypes has a mutation introducing a stop codon upstream of key amino acid sequences conserved in other BADs. The fgr gene corresponds to the gene encoding BAD2 in rice, while BAD1 is encoded by a gene on chromosome 4. BAD has been linked to stress tolerance in plants. However, the apparent loss of function of BAD2 does not seem to limit the growth of fragrant rice genotypes. Fragrance in domesticated rice has apparently originated from a common ancestor and may have evolved in a genetically isolated population, or may be the outcome of a separate domestication event. This is an example of effective human selection for a recessive trait during domestication.  相似文献   

7.
Several chemical constituents are important to the fragrance of cooked rice. However, the chemical compound 2-acetyl-1-pyrroline (AP) is regarded as the most important component of fragrance in the basmati- and jasmine-style fragrant rices. AP is found in all parts of the plant except the roots. It is believed that a single recessive gene is responsible for the production of fragrance in most rice plants. The detection of fragrance can be carried out via sensory or chemical methods, although each has their disadvantages. To overcome these difficulties, we have identified an (AT)40 repeat microsatellite or simple sequence repeat (SSR) marker for fragrant and non-fragrant alleles of the fgr gene. Identification of this marker was facilitated through use of both the publicly available and restricted access sequence information of the Monsanto rice sequence databases. Fifty F2 individuals from a mapping population were genotyped for the polymorphic marker. This marker has a high polymorphism information content (PIC = 0.9). Other SSR markers linked to fragrance could be identified in the same way of use in other populations. This study demonstrates that analysis of the rice genome sequence is an effective option for identification of markers for use in rice improvement.  相似文献   

8.
Fragrance is one of the most important and valued quality characters in sorghum and other foods and attracts a premium price in local and global trade. The allele of the SbBADH2 gene in fragrant sorghum cultivar E228 was characterized. A 1441 bp deletion extending from exon 13 to 15 was found rather than a deletion from exon 12 to 15 as had been reported earlier. This allowed the development and validation of a new perfect PCR-based marker for identification of fragrant sorghum accessions in breeding. The concentration of 2-acetyl-1-pyrroline (2AP) in the grain of this cultivar was estimated to be 6.5 ± 0.4 ppb using headspace solid-phase microextraction (HS-SPME) coupled with GC-MS. Flavor components of fragrant sorghum accession E228 (IC 568489) were analyzed and compared with the non-fragrant M35-1 cultivar. PCA analysis revealed that 2AP, benzothiazole, 2,3,5-trimethylpyridine, (1E)-1-ethylidene-1H-indene, cedrene, 2,4-bis(2-methyl-2-propanyl)phenol, 2-hexyl-1-octanol, and 2-butyl-1-octanol were among 25 compounds that were found in sorghum grain that may be contributing toward the aroma of fragrant sorghum. Proline and methylglyoxal contents were found to be higher in E228 than in M35-1, while SbBADH2 expression in E228 was half that in M35-1, suggesting a similar 2AP biosynthetic mechanism to that found in fragrant rice and soybean.  相似文献   

9.
近年来稻米的香味品质受到消费市场的格外重视。水稻OsBADH2基因是影响稻米香味的重要基因,选择优质粳稻品种,针对该基因进行基因编辑,有望创制出香味品质优异的粳稻材料。本研究通过分析OsBADH2基因外显子序列的保守性,选择了3个特异性靶点,分别构建了U6启动子驱动的包含不同靶点的gRNA表达盒,并将其连入植物基因编辑表达载体。利用基因枪介导的瞬时转化体系,对非香型粳稻品种"吉粳88"进行遗传转化,T_0代共获得847株再生材料。经高分辨率溶解曲线(High Resolution Melting,HRM)分析和测序验证,24株T_0代材料的OsBADH2基因编辑靶点发生了不同类型的编辑。在T_1代材料中获得了7类不含转基因成分,且OsBADH2基因靶点纯合的基因编辑后代材料。本研究结果表明基于基因枪介导的瞬时转化体系,转化再生过程中省略了抗性筛选过程,并辅以高效的HRM检测,能够在T_1代即获得位点发生纯合编辑且无转基因成分的基因编辑后代材料。本研究获得的OsBADH2基因编辑的"吉粳88"后代材料也为培育香味品质改良的粳稻品种提供了新材料。  相似文献   

10.
The RAPD (random amplified polymorphic DNA) markers OPE15750 and OPE15300 were affected by loss of heterozygosity (LOH) in rice hybrids AMR x 'M202' and AMR x 'L202'. The markers were mapped to the same locus at or near the centromere of rice chromosome 2. The two RAPD products were cloned, sequenced, and found to have lengths of 734 bp and 297 bp, respectively. The 297-bp sequence shares a 98% homology with one end of the 734-bp sequence, accounting for the cross-hybridization previously observed between the two clones. Based on the DNA sequence of the 734-bp fragment, a pair of STS (sequence-tagged site) primers was designed and tested. Rice plants homozygous for either OPE15734 or OPE15297 all produced PCR fragments of the same length, 482 bp. However, the two PCR products were discernible by digestion with the restriction enzyme XbaI prior to gel electrophoresis. The STS product from plants homozygous for OPE15734 was cut into two fragments of 239 and 240 bp, which appeared as one single band in an agarose gel; whereas the STS product from plants homozygous for OPE15297 was not cut by XbaI and was characterized by a 482-bp band in the agarose gel. These STS primers were tested in rice hybrids and F2 progenies derived from the hybrids of AMR x 'M202' and AMR x 'L202'. Homozygosity for OPE15297 was confirmed for all F2 panicle rows derived from AMR x 'M202'. In contrast, F2 panicle rows of AMR x 'L202' exhibited two different segregation patterns (genotypes), i.e., either uniformly homozygous for the 240-bp marker (OPE15734/OPE15734) or segregating for the 482- and 240-bp markers (OPE15734/OPE15297). This STS-marker system provides a robust assay for detecting the occurrence of LOH in rice hybrid progenies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号